// Computes the center of mass and second moments for the old baseline and // 2nd moment normalizations. Returns the outline length. // The input denorm should be the normalizations that have been applied from // the image to the current state of this TBLOB. int TBLOB::ComputeMoments(FCOORD* center, FCOORD* second_moments) const { // Compute 1st and 2nd moments of the original outline. LLSQ accumulator; TBOX box = bounding_box(); // Iterate the outlines, accumulating edges relative the box.botleft(). CollectEdges(box, NULL, &accumulator, NULL, NULL); *center = accumulator.mean_point() + box.botleft(); // The 2nd moments are just the standard deviation of the point positions. double x2nd = sqrt(accumulator.x_variance()); double y2nd = sqrt(accumulator.y_variance()); if (x2nd < 1.0) x2nd = 1.0; if (y2nd < 1.0) y2nd = 1.0; second_moments->set_x(x2nd); second_moments->set_y(y2nd); return accumulator.count(); }
// Helper returns the mean direction vector from the given stats. Use the // mean direction from dirs if there is information available, otherwise, use // the fit_vector from point_diffs. static FCOORD MeanDirectionVector(const LLSQ& point_diffs, const LLSQ& dirs, const FCOORD& start_pt, const FCOORD& end_pt) { FCOORD fit_vector; if (dirs.count() > 0) { // There were directions, so use them. To avoid wrap-around problems, we // have 2 accumulators in dirs: x for normal directions and y for // directions offset by 128. We will use the one with the least variance. FCOORD mean_pt = dirs.mean_point(); double mean_dir = 0.0; if (dirs.x_variance() <= dirs.y_variance()) { mean_dir = mean_pt.x(); } else { mean_dir = mean_pt.y() + 128; } fit_vector.from_direction(Modulo(IntCastRounded(mean_dir), 256)); } else { // There were no directions, so we rely on the vector_fit to the points. // Since the vector_fit is 180 degrees ambiguous, we align with the // supplied feature_dir by making the scalar product non-negative. FCOORD feature_dir(end_pt - start_pt); fit_vector = point_diffs.vector_fit(); if (fit_vector.x() == 0.0f && fit_vector.y() == 0.0f) { // There was only a single point. Use feature_dir directly. fit_vector = feature_dir; } else { // Sometimes the least mean squares fit is wrong, due to the small sample // of points and scaling. Use a 90 degree rotated vector if that matches // feature_dir better. FCOORD fit_vector2 = !fit_vector; // The fit_vector is 180 degrees ambiguous, so resolve the ambiguity by // insisting that the scalar product with the feature_dir should be +ve. if (fit_vector % feature_dir < 0.0) fit_vector = -fit_vector; if (fit_vector2 % feature_dir < 0.0) fit_vector2 = -fit_vector2; // Even though fit_vector2 has a higher mean squared error, it might be // a better fit, so use it if the dot product with feature_dir is bigger. if (fit_vector2 % feature_dir > fit_vector % feature_dir) fit_vector = fit_vector2; } } return fit_vector; }
// Given an initial estimate of line spacing (m_in) and the positions of each // baseline, computes the line spacing of the block more accurately in m_out, // and the corresponding intercept in c_out, and the number of spacings seen // in index_delta. Returns the error of fit to the line spacing model. // Uses a simple linear regression, but optimized the offset using the median. double BaselineBlock::FitLineSpacingModel( const GenericVector<double>& positions, double m_in, double* m_out, double* c_out, int* index_delta) { if (m_in == 0.0f || positions.size() < 2) { *m_out = m_in; *c_out = 0.0; if (index_delta != NULL) *index_delta = 0; return 0.0; } GenericVector<double> offsets; // Get the offset (remainder) linespacing for each line and choose the median. for (int i = 0; i < positions.size(); ++i) offsets.push_back(fmod(positions[i], m_in)); // Get the median offset. double median_offset = MedianOfCircularValues(m_in, &offsets); // Now fit a line to quantized line number and offset. LLSQ llsq; int min_index = MAX_INT32; int max_index = -MAX_INT32; for (int i = 0; i < positions.size(); ++i) { double y_pos = positions[i]; int row_index = IntCastRounded((y_pos - median_offset) / m_in); UpdateRange(row_index, &min_index, &max_index); llsq.add(row_index, y_pos); } // Get the refined line spacing. *m_out = llsq.m(); // Use the median offset rather than the mean. offsets.truncate(0); for (int i = 0; i < positions.size(); ++i) offsets.push_back(fmod(positions[i], *m_out)); // Get the median offset. if (debug_level_ > 2) { for (int i = 0; i < offsets.size(); ++i) tprintf("%d: %g\n", i, offsets[i]); } *c_out = MedianOfCircularValues(*m_out, &offsets); if (debug_level_ > 1) { tprintf("Median offset = %g, compared to mean of %g.\n", *c_out, llsq.c(*m_out)); } // Index_delta is the number of hypothesized line gaps present. if (index_delta != NULL) *index_delta = max_index - min_index; // Use the regression model's intercept to compute the error, as it may be // a full line-spacing in disagreement with the median. double rms_error = llsq.rms(*m_out, llsq.c(*m_out)); if (debug_level_ > 1) { tprintf("Linespacing of y=%g x + %g improved to %g x + %g, rms=%g\n", m_in, median_offset, *m_out, *c_out, rms_error); } return rms_error; }
// Fits a straight baseline to the points. Returns true if it had enough // points to be reasonably sure of the fitted baseline. // If use_box_bottoms is false, baselines positions are formed by // considering the outlines of the blobs. bool BaselineRow::FitBaseline(bool use_box_bottoms) { // Deterministic fitting is used wherever possible. fitter_.Clear(); // Linear least squares is a backup if the DetLineFit produces a bad line. LLSQ llsq; BLOBNBOX_IT blob_it(blobs_); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { BLOBNBOX* blob = blob_it.data(); if (!use_box_bottoms) blob->EstimateBaselinePosition(); const TBOX& box = blob->bounding_box(); int x_middle = (box.left() + box.right()) / 2; #ifdef kDebugYCoord if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord) { tprintf("Box bottom = %d, baseline pos=%d for box at:", box.bottom(), blob->baseline_position()); box.print(); } #endif fitter_.Add(ICOORD(x_middle, blob->baseline_position()), box.width() / 2); llsq.add(x_middle, blob->baseline_position()); } // Fit the line. ICOORD pt1, pt2; baseline_error_ = fitter_.Fit(&pt1, &pt2); baseline_pt1_ = pt1; baseline_pt2_ = pt2; if (baseline_error_ > max_baseline_error_ && fitter_.SufficientPointsForIndependentFit()) { // The fit was bad but there were plenty of points, so try skipping // the first and last few, and use the new line if it dramatically improves // the error of fit. double error = fitter_.Fit(kNumSkipPoints, kNumSkipPoints, &pt1, &pt2); if (error < baseline_error_ / 2.0) { baseline_error_ = error; baseline_pt1_ = pt1; baseline_pt2_ = pt2; } } int debug = 0; #ifdef kDebugYCoord Print(); debug = bounding_box_.bottom() < kDebugYCoord && bounding_box_.top() > kDebugYCoord ? 3 : 2; #endif // Now we obtained a direction from that fit, see if we can improve the // fit using the same direction and some other start point. FCOORD direction(pt2 - pt1); double target_offset = direction * pt1; good_baseline_ = false; FitConstrainedIfBetter(debug, direction, 0.0, target_offset); // Wild lines can be produced because DetLineFit allows vertical lines, but // vertical text has been rotated so angles over pi/4 should be disallowed. // Near vertical lines can still be produced by vertically aligned components // on very short lines. double angle = BaselineAngle(); if (fabs(angle) > M_PI * 0.25) { // Use the llsq fit as a backup. baseline_pt1_ = llsq.mean_point(); baseline_pt2_ = baseline_pt1_ + FCOORD(1.0f, llsq.m()); // TODO(rays) get rid of this when m and c are no longer used. double m = llsq.m(); double c = llsq.c(m); baseline_error_ = llsq.rms(m, c); good_baseline_ = false; } return good_baseline_; }
// Extracts Tesseract features and appends them to the features vector. // Startpt to lastpt, inclusive, MUST have the same src_outline member, // which may be nullptr. The vector from lastpt to its next is included in // the feature extraction. Hidden edges should be excluded by the caller. // If force_poly is true, the features will be extracted from the polygonal // approximation even if more accurate data is available. static void ExtractFeaturesFromRun( const EDGEPT* startpt, const EDGEPT* lastpt, const DENORM& denorm, double feature_length, bool force_poly, GenericVector<INT_FEATURE_STRUCT>* features) { const EDGEPT* endpt = lastpt->next; const C_OUTLINE* outline = startpt->src_outline; if (outline != nullptr && !force_poly) { // Detailed information is available. We have to normalize only from // the root_denorm to denorm. const DENORM* root_denorm = denorm.RootDenorm(); int total_features = 0; // Get the features from the outline. int step_length = outline->pathlength(); int start_index = startpt->start_step; // pos is the integer coordinates of the binary image steps. ICOORD pos = outline->position_at_index(start_index); // We use an end_index that allows us to use a positive increment, but that // may be beyond the bounds of the outline steps/ due to wrap-around, to // so we use % step_length everywhere, except for start_index. int end_index = lastpt->start_step + lastpt->step_count; if (end_index <= start_index) end_index += step_length; LLSQ prev_points; LLSQ prev_dirs; FCOORD prev_normed_pos = outline->sub_pixel_pos_at_index(pos, start_index); denorm.NormTransform(root_denorm, prev_normed_pos, &prev_normed_pos); LLSQ points; LLSQ dirs; FCOORD normed_pos(0.0f, 0.0f); int index = GatherPoints(outline, feature_length, denorm, root_denorm, start_index, end_index, &pos, &normed_pos, &points, &dirs); while (index <= end_index) { // At each iteration we nominally have 3 accumulated sets of points and // dirs: prev_points/dirs, points/dirs, next_points/dirs and sum them // into sum_points/dirs, but we don't necessarily get any features out, // so if that is the case, we keep accumulating instead of rotating the // accumulators. LLSQ next_points; LLSQ next_dirs; FCOORD next_normed_pos(0.0f, 0.0f); index = GatherPoints(outline, feature_length, denorm, root_denorm, index, end_index, &pos, &next_normed_pos, &next_points, &next_dirs); LLSQ sum_points(prev_points); // TODO(rays) find out why it is better to use just dirs and next_dirs // in sum_dirs, instead of using prev_dirs as well. LLSQ sum_dirs(dirs); sum_points.add(points); sum_points.add(next_points); sum_dirs.add(next_dirs); bool made_features = false; // If we have some points, we can try making some features. if (sum_points.count() > 0) { // We have gone far enough from the start. Make a feature and restart. FCOORD fit_pt = sum_points.mean_point(); FCOORD fit_vector = MeanDirectionVector(sum_points, sum_dirs, prev_normed_pos, normed_pos); // The segment to which we fit features is the line passing through // fit_pt in direction of fit_vector that starts nearest to // prev_normed_pos and ends nearest to normed_pos. FCOORD start_pos = prev_normed_pos.nearest_pt_on_line(fit_pt, fit_vector); FCOORD end_pos = normed_pos.nearest_pt_on_line(fit_pt, fit_vector); // Possible correction to match the adjacent polygon segment. if (total_features == 0 && startpt != endpt) { FCOORD poly_pos(startpt->pos.x, startpt->pos.y); denorm.LocalNormTransform(poly_pos, &start_pos); } if (index > end_index && startpt != endpt) { FCOORD poly_pos(endpt->pos.x, endpt->pos.y); denorm.LocalNormTransform(poly_pos, &end_pos); } int num_features = ComputeFeatures(start_pos, end_pos, feature_length, features); if (num_features > 0) { // We made some features so shuffle the accumulators. prev_points = points; prev_dirs = dirs; prev_normed_pos = normed_pos; points = next_points; dirs = next_dirs; made_features = true; total_features += num_features; } // The end of the next set becomes the end next time around. normed_pos = next_normed_pos; } if (!made_features) { // We didn't make any features, so keep the prev accumulators and // add the next ones into the current. points.add(next_points); dirs.add(next_dirs); } } } else { // There is no outline, so we are forced to use the polygonal approximation. const EDGEPT* pt = startpt; do { FCOORD start_pos(pt->pos.x, pt->pos.y); FCOORD end_pos(pt->next->pos.x, pt->next->pos.y); denorm.LocalNormTransform(start_pos, &start_pos); denorm.LocalNormTransform(end_pos, &end_pos); ComputeFeatures(start_pos, end_pos, feature_length, features); } while ((pt = pt->next) != endpt); } }