static LegalizeMutation oneMoreElement(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); }; }
LegalizeMutation LegalizeMutations::changeElementTo(unsigned TypeIdx, LLT NewEltTy) { return [=](const LegalityQuery &Query) { const LLT OldTy = Query.Types[TypeIdx]; return std::make_pair(TypeIdx, OldTy.changeElementType(NewEltTy)); }; }
bool AMDGPULegalizerInfo::legalizeFrint( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MIRBuilder.setInstr(MI); unsigned Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Src); assert(Ty.isScalar() && Ty.getSizeInBits() == 64); APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); auto C1 = MIRBuilder.buildFConstant(Ty, C1Val); auto CopySign = MIRBuilder.buildFCopysign(Ty, C1, Src); // TODO: Should this propagate fast-math-flags? auto Tmp1 = MIRBuilder.buildFAdd(Ty, Src, CopySign); auto Tmp2 = MIRBuilder.buildFSub(Ty, Tmp1, CopySign); auto C2 = MIRBuilder.buildFConstant(Ty, C2Val); auto Fabs = MIRBuilder.buildFAbs(Ty, Src); auto Cond = MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); return true; }
std::pair<LegalizerInfo::LegalizeAction, LLT> LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { assert(Aspect.Type.isVector()); // First legalize the vector element size, then legalize the number of // lanes in the vector. if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) return {NotFound, Aspect.Type}; const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; const unsigned TypeIdx = Aspect.Idx; if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) return {NotFound, Aspect.Type}; const SizeAndActionsVec &ElemSizeVec = ScalarInVectorActions[OpcodeIdx][TypeIdx]; LLT IntermediateType; auto ElementSizeAndAction = findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); IntermediateType = LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); if (ElementSizeAndAction.second != Legal) return {ElementSizeAndAction.second, IntermediateType}; auto i = NumElements2Actions[OpcodeIdx].find( IntermediateType.getScalarSizeInBits()); if (i == NumElements2Actions[OpcodeIdx].end()) { return {NotFound, IntermediateType}; } const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; auto NumElementsAndAction = findAction(NumElementsVec, IntermediateType.getNumElements()); return {NumElementsAndAction.second, LLT::vector(NumElementsAndAction.first, IntermediateType.getScalarSizeInBits())}; }
MachineLegalizeHelper::LegalizeResult MachineLegalizeHelper::libcall(MachineInstr &MI) { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = Ty.getSizeInBits(); MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_FREM: { auto &Ctx = MIRBuilder.getMF().getFunction()->getContext(); Type *Ty = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); const char *Name = TLI.getLibcallName(Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32); CLI.lowerCall(MIRBuilder, MachineOperand::CreateES(Name), Ty, MI.getOperand(0).getReg(), {Ty, Ty}, {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); MI.eraseFromParent(); return Legalized; } } }
LLT MachineLegalizer::findLegalType(unsigned Opcode, LLT Ty, LegalizeAction Action) const { switch(Action) { default: llvm_unreachable("Cannot find legal type"); case Legal: return Ty; case NarrowScalar: { return findLegalType(Opcode, Ty, [&](LLT Ty) -> LLT { return Ty.halfScalarSize(); }); } case WidenScalar: { return findLegalType(Opcode, Ty, [&](LLT Ty) -> LLT { return Ty.doubleScalarSize(); }); } case FewerElements: { return findLegalType(Opcode, Ty, [&](LLT Ty) -> LLT { return Ty.halfElements(); }); } case MoreElements: { return findLegalType( Opcode, Ty, [&](LLT Ty) -> LLT { return Ty.doubleElements(); }); } } }
static LegalityPredicate isMultiple32(unsigned TypeIdx, unsigned MaxSize = 512) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getScalarType(); return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0; }; }
static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; return Ty.isVector() && Ty.getNumElements() % 2 != 0 && Ty.getElementType().getSizeInBits() < 32; }; }
LegalizeMutation LegalizeMutations::widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; unsigned NewEltSizeInBits = std::max(1u << Log2_32_Ceil(Ty.getScalarSizeInBits()), Min); return std::make_pair(TypeIdx, Ty.changeElementSize(NewEltSizeInBits)); }; }
bool CLinearRidgeRegression::train_machine(CFeatures* data) { REQUIRE(m_labels,"No labels set\n"); if (!data) data=features; REQUIRE(data,"No features provided and no featured previously set\n"); REQUIRE(m_labels->get_num_labels() == data->get_num_vectors(), "Number of training vectors (%d) does not match number of labels (%d)\n", m_labels->get_num_labels(), data->get_num_vectors()); REQUIRE(data->get_feature_class() == C_DENSE, "Expected Dense Features (%d) but got (%d)\n", C_DENSE, data->get_feature_class()); REQUIRE(data->get_feature_type() == F_DREAL, "Expected Real Features (%d) but got (%d)\n", F_DREAL, data->get_feature_type()); CDenseFeatures<float64_t>* feats=(CDenseFeatures<float64_t>*) data; int32_t num_feat=feats->get_num_features(); int32_t num_vec=feats->get_num_vectors(); SGMatrix<float64_t> kernel_matrix(num_feat,num_feat); SGMatrix<float64_t> feats_matrix(feats->get_feature_matrix()); SGVector<float64_t> y(num_feat); SGVector<float64_t> tau_vector(num_feat); tau_vector.zero(); tau_vector.add(m_tau); Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, num_feat,num_feat); Map<MatrixXd> eigen_feats_matrix(feats_matrix.matrix, num_feat,num_vec); Map<VectorXd> eigen_y(y.vector, num_feat); Map<VectorXd> eigen_labels(((CRegressionLabels*)m_labels)->get_labels(),num_vec); Map<VectorXd> eigen_tau(tau_vector.vector, num_feat); eigen_kernel_matrix = eigen_feats_matrix*eigen_feats_matrix.transpose(); eigen_kernel_matrix.diagonal() += eigen_tau; eigen_y = eigen_feats_matrix*eigen_labels ; LLT<MatrixXd> llt; llt.compute(eigen_kernel_matrix); if(llt.info() != Eigen::Success) { SG_WARNING("Features covariance matrix was not positive definite\n"); return false; } eigen_y = llt.solve(eigen_y); set_w(y); return true; }
LegalizeMutation LegalizeMutations::moreElementsToNextPow2(unsigned TypeIdx, unsigned Min) { return [=](const LegalityQuery &Query) { const LLT VecTy = Query.Types[TypeIdx]; unsigned NewNumElements = std::max(1u << Log2_32_Ceil(VecTy.getNumElements()), Min); return std::make_pair(TypeIdx, LLT::vector(NewNumElements, VecTy.getElementType())); }; }
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); unsigned Size = Ty.getSizeInBits(); unsigned Pieces = (Size + 63) / 64; unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); }; }
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) { MachineInstr &MI = OpdMapper.getMI(); MachineRegisterInfo &MRI = OpdMapper.getMRI(); LLVM_DEBUG(dbgs() << "Applying default-like mapping\n"); for (unsigned OpIdx = 0, EndIdx = OpdMapper.getInstrMapping().getNumOperands(); OpIdx != EndIdx; ++OpIdx) { LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx); MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n"); continue; } if (!MO.getReg()) { LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n"); continue; } assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns != 0 && "Invalid mapping"); assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns == 1 && "This mapping is too complex for this function"); iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs = OpdMapper.getVRegs(OpIdx); if (empty(NewRegs)) { LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n"); continue; } unsigned OrigReg = MO.getReg(); unsigned NewReg = *NewRegs.begin(); LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr)); MO.setReg(NewReg); LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr)); // The OperandsMapper creates plain scalar, we may have to fix that. // Check if the types match and if not, fix that. LLT OrigTy = MRI.getType(OrigReg); LLT NewTy = MRI.getType(NewReg); if (OrigTy != NewTy) { // The default mapping is not supposed to change the size of // the storage. However, right now we don't necessarily bump all // the types to storage size. For instance, we can consider // s16 G_AND legal whereas the storage size is going to be 32. assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() && "Types with difference size cannot be handled by the default " "mapping"); LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to " << OrigTy); MRI.setType(NewReg, OrigTy); } LLVM_DEBUG(dbgs() << '\n'); } }
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MIRBuilder.setInstr(MI); MachineFunction &MF = MIRBuilder.getMF(); unsigned Align = MI.getOperand(2).getImm(); unsigned Dst = MI.getOperand(0).getReg(); unsigned ListPtr = MI.getOperand(1).getReg(); LLT PtrTy = MRI.getType(ListPtr); LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); const unsigned PtrSize = PtrTy.getSizeInBits() / 8; unsigned List = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildLoad( List, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, PtrSize, /* Align = */ PtrSize)); unsigned DstPtr; if (Align > PtrSize) { // Realign the list to the actual required alignment. unsigned AlignMinus1 = MRI.createGenericVirtualRegister(IntPtrTy); MIRBuilder.buildConstant(AlignMinus1, Align - 1); unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(ListTmp, List, AlignMinus1); DstPtr = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align)); } else DstPtr = List; uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8; MIRBuilder.buildLoad( Dst, DstPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, ValSize, std::max(Align, PtrSize))); unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy); MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize)); unsigned NewList = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(NewList, DstPtr, SizeReg); MIRBuilder.buildStore( NewList, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, PtrSize, /* Align = */ PtrSize)); MI.eraseFromParent(); return true; }
void MachineLegalizer::computeTables() { for (auto &Op : Actions) { LLT Ty = Op.first.second; if (!Ty.isVector()) continue; auto &Entry = MaxLegalVectorElts[std::make_pair(Op.first.first, Ty.getElementType())]; Entry = std::max(Entry, Ty.getNumElements()); } TablesInitialized = true; }
Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1, const unsigned Op2, const MachineRegisterInfo &MRI) { auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI); if (MaybeOp1Cst && MaybeOp2Cst) { LLT Ty = MRI.getType(Op1); APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true); APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true); switch (Opcode) { default: break; case TargetOpcode::G_ADD: return C1 + C2; case TargetOpcode::G_AND: return C1 & C2; case TargetOpcode::G_ASHR: return C1.ashr(C2); case TargetOpcode::G_LSHR: return C1.lshr(C2); case TargetOpcode::G_MUL: return C1 * C2; case TargetOpcode::G_OR: return C1 | C2; case TargetOpcode::G_SHL: return C1 << C2; case TargetOpcode::G_SUB: return C1 - C2; case TargetOpcode::G_XOR: return C1 ^ C2; case TargetOpcode::G_UDIV: if (!C2.getBoolValue()) break; return C1.udiv(C2); case TargetOpcode::G_SDIV: if (!C2.getBoolValue()) break; return C1.sdiv(C2); case TargetOpcode::G_UREM: if (!C2.getBoolValue()) break; return C1.urem(C2); case TargetOpcode::G_SREM: if (!C2.getBoolValue()) break; return C1.srem(C2); } } return None; }
// FIXME: inefficient implementation for now. Without ComputeValueVTs we're // probably going to need specialized lookup structures for various types before // we have any hope of doing well with something like <13 x i3>. Even the common // cases should do better than what we have now. std::pair<MachineLegalizer::LegalizeAction, LLT> MachineLegalizer::getAction(const InstrAspect &Aspect) const { assert(TablesInitialized && "backend forgot to call computeTables"); // These *have* to be implemented for now, they're the fundamental basis of // how everything else is transformed. // FIXME: the long-term plan calls for expansion in terms of load/store (if // they're not legal). if (Aspect.Opcode == TargetOpcode::G_SEQUENCE || Aspect.Opcode == TargetOpcode::G_EXTRACT) return std::make_pair(Legal, Aspect.Type); LegalizeAction Action = findInActions(Aspect); if (Action != NotFound) return findLegalAction(Aspect, Action); unsigned Opcode = Aspect.Opcode; LLT Ty = Aspect.Type; if (!Ty.isVector()) { auto DefaultAction = DefaultActions.find(Aspect.Opcode); if (DefaultAction != DefaultActions.end() && DefaultAction->second == Legal) return std::make_pair(Legal, Ty); assert(DefaultAction->second == NarrowScalar && "unexpected default"); return findLegalAction(Aspect, NarrowScalar); } LLT EltTy = Ty.getElementType(); int NumElts = Ty.getNumElements(); auto ScalarAction = ScalarInVectorActions.find(std::make_pair(Opcode, EltTy)); if (ScalarAction != ScalarInVectorActions.end() && ScalarAction->second != Legal) return findLegalAction(Aspect, ScalarAction->second); // The element type is legal in principle, but the number of elements is // wrong. auto MaxLegalElts = MaxLegalVectorElts.lookup(std::make_pair(Opcode, EltTy)); if (MaxLegalElts > NumElts) return findLegalAction(Aspect, MoreElements); if (MaxLegalElts == 0) { // Scalarize if there's no legal vector type, which is just a special case // of FewerElements. return std::make_pair(FewerElements, EltTy); } return findLegalAction(Aspect, FewerElements); }
MachineLegalizeHelper::LegalizeResult MachineLegalizeHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_ADD: { unsigned NarrowSize = NarrowTy.getSizeInBits(); unsigned DstReg = MI.getOperand(0).getReg(); int NumParts = MRI.getType(DstReg).getSizeInBits() / NarrowSize; MIRBuilder.setInstr(MI); SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs, Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildAdd(DstReg, Src1Regs[i], Src2Regs[i]); DstRegs.push_back(DstReg); Indexes.push_back(i * NarrowSize); } MIRBuilder.buildSequence(DstReg, DstRegs, Indexes); MI.eraseFromParent(); return Legalized; } } }
void LegalizerInfo::computeTables() { for (unsigned Opcode = 0; Opcode <= LastOp - FirstOp; ++Opcode) { for (unsigned Idx = 0; Idx != Actions[Opcode].size(); ++Idx) { for (auto &Action : Actions[Opcode][Idx]) { LLT Ty = Action.first; if (!Ty.isVector()) continue; auto &Entry = MaxLegalVectorElts[std::make_pair(Opcode + FirstOp, Ty.getElementType())]; Entry = std::max(Entry, Ty.getNumElements()); } } } TablesInitialized = true; }
// Recompute the kernel. void GPCMGaussianProcess::recomputeKernel() { // Constants. int N = dataMatrix.rows(); int D = dataMatrix.cols(); // Initialize the covariance matrix. K.noalias() = kernel->covariance(X); // Compute inverse of kernel matrix. LLT<MatrixXd> cholesky = K.llt(); logDetK = cholesky.matrixLLT().diagonal().array().log().sum()*2.0; invK = cholesky.solve(MatrixXd::Identity(N,N)); // Clear gK matrices. gK.setZero(N,N); gKd.setZero(N,N); }
void MachineLegalizeHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, SmallVectorImpl<unsigned> &VRegs) { unsigned Size = Ty.getSizeInBits(); SmallVector<uint64_t, 4> Indexes; for (int i = 0; i < NumParts; ++i) { VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); Indexes.push_back(i * Size); } MIRBuilder.buildExtract(VRegs, Indexes, Reg); }
MachineLegalizeHelper::LegalizeResult MachineLegalizeHelper::narrowScalar(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_ADD: { // Expand in terms of carry-setting/consuming G_ADDE instructions. unsigned NarrowSize = NarrowTy.getSizeInBits(); int NumParts = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() / NarrowTy.getSizeInBits(); MIRBuilder.setInstr(MI); SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs, Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildConstant(CarryIn, 0); for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], Src2Regs[i], CarryIn); DstRegs.push_back(DstReg); Indexes.push_back(i * NarrowSize); CarryIn = CarryOut; } unsigned DstReg = MI.getOperand(0).getReg(); MIRBuilder.buildSequence(DstReg, DstRegs, Indexes); MI.eraseFromParent(); return Legalized; } } }
unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const { const TargetRegisterClass *RC{}; if (isPhysicalRegister(Reg)) { // The size is not directly available for physical registers. // Instead, we need to access a register class that contains Reg and // get the size of that register class. RC = getMinimalPhysRegClass(Reg); } else { LLT Ty = MRI.getType(Reg); unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0; // If Reg is not a generic register, query the register class to // get its size. if (RegSize) return RegSize; // Since Reg is not a generic register, it must have a register class. RC = MRI.getRegClass(Reg); } assert(RC && "Unable to deduce the register class"); return getRegSizeInBits(*RC); }
bool CKernelRidgeRegression::solve_krr_system() { SGMatrix<float64_t> kernel_matrix(kernel->get_kernel_matrix()); int32_t n = kernel_matrix.num_rows; SGVector<float64_t> y = ((CRegressionLabels*)m_labels)->get_labels(); for(index_t i=0; i<n; i++) kernel_matrix(i,i) += m_tau; Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, n, n); Map<VectorXd> eigen_alphas(m_alpha.vector, n); Map<VectorXd> eigen_y(y.vector, n); LLT<MatrixXd> llt; llt.compute(eigen_kernel_matrix); if (llt.info() != Eigen::Success) { SG_WARNING("Features covariance matrix was not positive definite\n"); return false; } eigen_alphas = llt.solve(eigen_y); return true; }
RegisterBankInfo::InstructionMapping AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI); if (Mapping.isValid()) return Mapping; // As a top-level guess, vectors go in FPRs, scalars in GPRs. Obviously this // won't work for normal floating-point types (or NZCV). When such // instructions exist we'll need to look at the MI's opcode. LLT Ty = MI.getType(); unsigned BankID; if (Ty.isVector()) BankID = AArch64::FPRRegBankID; else BankID = AArch64::GPRRegBankID; Mapping = InstructionMapping{1, 1, MI.getNumOperands()}; int Size = Ty.isSized() ? Ty.getSizeInBits() : 0; for (unsigned Idx = 0; Idx < MI.getNumOperands(); ++Idx) Mapping.setOperandMapping(Idx, Size, getRegBank(BankID)); return Mapping; }
unsigned MachineRegisterInfo::createGenericVirtualRegister(LLT Ty) { assert(Ty.isValid() && "Cannot create empty virtual register"); // New virtual register number. unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs()); VRegInfo.grow(Reg); // FIXME: Should we use a dummy register bank? VRegInfo[Reg].first = static_cast<RegisterBank *>(nullptr); getVRegToType()[Reg] = Ty; RegAllocHints.grow(Reg); if (TheDelegate) TheDelegate->MRI_NoteNewVirtualRegister(Reg); return Reg; }
X86GenRegisterBankInfo::PartialMappingIdx X86GenRegisterBankInfo::getPartialMappingIdx(const LLT &Ty, bool isFP) { if ((Ty.isScalar() && !isFP) || Ty.isPointer()) { switch (Ty.getSizeInBits()) { case 1: case 8: return PMI_GPR8; case 16: return PMI_GPR16; case 32: return PMI_GPR32; case 64: return PMI_GPR64; case 128: return PMI_VEC128; break; default: llvm_unreachable("Unsupported register size."); } } else if (Ty.isScalar()) { switch (Ty.getSizeInBits()) { case 32: return PMI_FP32; case 64: return PMI_FP64; case 128: return PMI_VEC128; default: llvm_unreachable("Unsupported register size."); } } else { switch (Ty.getSizeInBits()) { case 128: return PMI_VEC128; case 256: return PMI_VEC256; case 512: return PMI_VEC512; default: llvm_unreachable("Unsupported register size."); } } return PMI_None; }
const RegisterBankInfo::InstructionMapping & AArch64RegisterBankInfo::getSameKindOfOperandsMapping( const MachineInstr &MI) const { const unsigned Opc = MI.getOpcode(); const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned NumOperands = MI.getNumOperands(); assert(NumOperands <= 3 && "This code is for instructions with 3 or less operands"); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = Ty.getSizeInBits(); bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc); PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR; #ifndef NDEBUG // Make sure all the operands are using similar size and type. // Should probably be checked by the machine verifier. // This code won't catch cases where the number of lanes is // different between the operands. // If we want to go to that level of details, it is probably // best to check that the types are the same, period. // Currently, we just check that the register banks are the same // for each types. for (unsigned Idx = 1; Idx != NumOperands; ++Idx) { LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg()); assert( AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset( RBIdx, OpTy.getSizeInBits()) == AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) && "Operand has incompatible size"); bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc); (void)OpIsFPR; assert(IsFPR == OpIsFPR && "Operand has incompatible type"); } #endif // End NDEBUG. return getInstructionMapping(DefaultMappingID, 1, getValueMapping(RBIdx, Size), NumOperands); }
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM) { using namespace TargetOpcode; auto GetAddrSpacePtr = [&TM](unsigned AS) { return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); }; const LLT S1 = LLT::scalar(1); const LLT S8 = LLT::scalar(8); const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT S128 = LLT::scalar(128); const LLT S256 = LLT::scalar(256); const LLT S512 = LLT::scalar(512); const LLT V2S16 = LLT::vector(2, 16); const LLT V4S16 = LLT::vector(4, 16); const LLT V8S16 = LLT::vector(8, 16); const LLT V2S32 = LLT::vector(2, 32); const LLT V3S32 = LLT::vector(3, 32); const LLT V4S32 = LLT::vector(4, 32); const LLT V5S32 = LLT::vector(5, 32); const LLT V6S32 = LLT::vector(6, 32); const LLT V7S32 = LLT::vector(7, 32); const LLT V8S32 = LLT::vector(8, 32); const LLT V9S32 = LLT::vector(9, 32); const LLT V10S32 = LLT::vector(10, 32); const LLT V11S32 = LLT::vector(11, 32); const LLT V12S32 = LLT::vector(12, 32); const LLT V13S32 = LLT::vector(13, 32); const LLT V14S32 = LLT::vector(14, 32); const LLT V15S32 = LLT::vector(15, 32); const LLT V16S32 = LLT::vector(16, 32); const LLT V2S64 = LLT::vector(2, 64); const LLT V3S64 = LLT::vector(3, 64); const LLT V4S64 = LLT::vector(4, 64); const LLT V5S64 = LLT::vector(5, 64); const LLT V6S64 = LLT::vector(6, 64); const LLT V7S64 = LLT::vector(7, 64); const LLT V8S64 = LLT::vector(8, 64); std::initializer_list<LLT> AllS32Vectors = {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32}; std::initializer_list<LLT> AllS64Vectors = {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64}; const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); const LLT CodePtr = FlatPtr; const std::initializer_list<LLT> AddrSpaces64 = { GlobalPtr, ConstantPtr, FlatPtr }; const std::initializer_list<LLT> AddrSpaces32 = { LocalPtr, PrivatePtr }; setAction({G_BRCOND, S1}, Legal); // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more // elements for v3s16 getActionDefinitionsBuilder(G_PHI) .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) .legalFor(AllS32Vectors) .legalFor(AllS64Vectors) .legalFor(AddrSpaces64) .legalFor(AddrSpaces32) .clampScalar(0, S32, S256) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .legalIf(isPointer(0)); getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_UMULH, G_SMULH}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); // Report legal for any types we can handle anywhere. For the cases only legal // on the SALU, RegBankSelect will be able to re-legalize. getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) .legalFor({S32, S1, S64, V2S32, V2S16, V4S16}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(vectorWiderThan(0, 32), fewerEltsToSize64Vector(0)) .widenScalarToNextPow2(0) .scalarize(0); getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) .legalFor({{S32, S1}}) .clampScalar(0, S32, S32); getActionDefinitionsBuilder(G_BITCAST) .legalForCartesianProduct({S32, V2S16}) .legalForCartesianProduct({S64, V2S32, V4S16}) .legalForCartesianProduct({V2S64, V4S32}) // Don't worry about the size constraint. .legalIf(all(isPointer(0), isPointer(1))); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64, S16}) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64}) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_IMPLICIT_DEF) .legalFor({S1, S32, S64, V2S32, V4S32, V2S16, V4S16, GlobalPtr, ConstantPtr, LocalPtr, FlatPtr, PrivatePtr}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampScalarOrElt(0, S32, S512) .legalIf(isMultiple32(0)) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16); // FIXME: i1 operands to intrinsics should always be legal, but other i1 // values may not be legal. We need to figure out how to distinguish // between these two scenarios. getActionDefinitionsBuilder(G_CONSTANT) .legalFor({S1, S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0) .legalIf(isPointer(0)); setAction({G_FRAME_INDEX, PrivatePtr}, Legal); auto &FPOpActions = getActionDefinitionsBuilder( { G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA, G_FCANONICALIZE}) .legalFor({S32, S64}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) FPOpActions.legalFor({S16, V2S16}); else FPOpActions.legalFor({S16}); } if (ST.hasVOP3PInsts()) FPOpActions.clampMaxNumElements(0, S16, 2); FPOpActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64, S16}) .scalarize(0) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64}) .scalarize(0) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_FPTRUNC) .legalFor({{S32, S64}, {S16, S32}}) .scalarize(0); getActionDefinitionsBuilder(G_FPEXT) .legalFor({{S64, S32}, {S32, S16}}) .lowerFor({{S64, S16}}) // FIXME: Implement .scalarize(0); getActionDefinitionsBuilder(G_FCOPYSIGN) .legalForCartesianProduct({S16, S32, S64}, {S16, S32, S64}) .scalarize(0); getActionDefinitionsBuilder(G_FSUB) // Use actual fsub instruction .legalFor({S32}) // Must use fadd + fneg .lowerFor({S64, S16, V2S16}) .scalarize(0) .clampScalar(0, S32, S64); getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, {S32, S1}, {S64, S1}, {S16, S1}, // FIXME: Hack {S64, LLT::scalar(33)}, {S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}}) .scalarize(0); getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalFor({{S32, S32}, {S64, S32}}) .lowerFor({{S32, S64}}) .customFor({{S64, S64}}) .scalarize(0); getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalFor({{S32, S32}, {S32, S64}}) .scalarize(0); getActionDefinitionsBuilder(G_INTRINSIC_ROUND) .legalFor({S32, S64}) .scalarize(0); if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32, S64}) .clampScalar(0, S32, S64) .scalarize(0); } else { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32}) .customFor({S64}) .clampScalar(0, S32, S64) .scalarize(0); } getActionDefinitionsBuilder(G_GEP) .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0); setAction({G_BLOCK_ADDR, CodePtr}, Legal); getActionDefinitionsBuilder(G_ICMP) .legalForCartesianProduct( {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) .legalFor({{S1, S32}, {S1, S64}}) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0) .legalIf(all(typeIs(0, S1), isPointer(1))); getActionDefinitionsBuilder(G_FCMP) .legalFor({{S1, S32}, {S1, S64}}) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0); // FIXME: fexp, flog2, flog10 needs to be custom lowered. getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2, G_FLOG, G_FLOG2, G_FLOG10}) .legalFor({S32}) .scalarize(0); // The 64-bit versions produce 32-bit results, but only on the SALU. getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF, G_CTTZ, G_CTTZ_ZERO_UNDEF, G_CTPOP}) .legalFor({{S32, S32}, {S32, S64}}) .clampScalar(0, S32, S32) .clampScalar(1, S32, S64) .scalarize(0) .widenScalarToNextPow2(0, 32) .widenScalarToNextPow2(1, 32); // TODO: Expand for > s32 getActionDefinitionsBuilder(G_BSWAP) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() < Query.Types[TypeIdx1].getSizeInBits(); }; }; auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() > Query.Types[TypeIdx1].getSizeInBits(); }; }; getActionDefinitionsBuilder(G_INTTOPTR) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }) .narrowScalarIf(greaterThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }); getActionDefinitionsBuilder(G_PTRTOINT) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }) .narrowScalarIf( greaterThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }); if (ST.hasFlatAddressSpace()) { getActionDefinitionsBuilder(G_ADDRSPACE_CAST) .scalarize(0) .custom(); } getActionDefinitionsBuilder({G_LOAD, G_STORE}) .narrowScalarIf([](const LegalityQuery &Query) { unsigned Size = Query.Types[0].getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (Size > 32 && MemSize < Size); }, [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(32)); }) .fewerElementsIf([=, &ST](const LegalityQuery &Query) { unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (MemSize == 96) && Query.Types[0].isVector() && ST.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS; }, [=](const LegalityQuery &Query) { return std::make_pair(0, V2S32); }) .legalIf([=, &ST](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; unsigned Size = Ty0.getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; if (Size < 32 || (Size > 32 && MemSize < Size)) return false; if (Ty0.isVector() && Size != MemSize) return false; // TODO: Decompose private loads into 4-byte components. // TODO: Illegal flat loads on SI switch (MemSize) { case 8: case 16: return Size == 32; case 32: case 64: case 128: return true; case 96: // XXX hasLoadX3 return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS); case 256: case 512: // TODO: constant loads default: return false; } }) .clampScalar(0, S32, S64); // FIXME: Handle alignment requirements. auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemDesc({ {S32, GlobalPtr, 8, 8}, {S32, GlobalPtr, 16, 8}, {S32, LocalPtr, 8, 8}, {S32, LocalPtr, 16, 8}, {S32, PrivatePtr, 8, 8}, {S32, PrivatePtr, 16, 8}}); if (ST.hasFlatAddressSpace()) { ExtLoads.legalForTypesWithMemDesc({{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 8}}); } ExtLoads.clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .unsupportedIfMemSizeNotPow2() .lower(); auto &Atomics = getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG}) .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, {S64, GlobalPtr}, {S64, LocalPtr}}); if (ST.hasFlatAddressSpace()) { Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); } // TODO: Pointer types, any 32-bit or 64-bit vector getActionDefinitionsBuilder(G_SELECT) .legalForCartesianProduct({S32, S64, V2S32, V2S16, V4S16, GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(numElementsNotEven(0), scalarize(0)) .scalarize(1) .clampMaxNumElements(0, S32, 2) .clampMaxNumElements(0, LocalPtr, 2) .clampMaxNumElements(0, PrivatePtr, 2) .scalarize(0) .widenScalarToNextPow2(0) .legalIf(all(isPointer(0), typeIs(1, S1))); // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can // be more flexible with the shift amount type. auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) .legalFor({{S32, S32}, {S64, S32}}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}}) .clampMaxNumElements(0, S16, 2); } else Shifts.legalFor({{S16, S32}, {S16, S16}}); Shifts.clampScalar(1, S16, S32); Shifts.clampScalar(0, S16, S64); Shifts.widenScalarToNextPow2(0, 16); } else { // Make sure we legalize the shift amount type first, as the general // expansion for the shifted type will produce much worse code if it hasn't // been truncated already. Shifts.clampScalar(1, S32, S32); Shifts.clampScalar(0, S32, S64); Shifts.widenScalarToNextPow2(0, 32); } Shifts.scalarize(0); for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; unsigned IdxTypeIdx = 2; getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT &VecTy = Query.Types[VecTypeIdx]; const LLT &IdxTy = Query.Types[IdxTypeIdx]; return VecTy.getSizeInBits() % 32 == 0 && VecTy.getSizeInBits() <= 512 && IdxTy.getSizeInBits() == 32; }) .clampScalar(EltTypeIdx, S32, S64) .clampScalar(VecTypeIdx, S32, S64) .clampScalar(IdxTypeIdx, S32, S32); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }); for (unsigned Op : {G_EXTRACT, G_INSERT}) { unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; // FIXME: Doesn't handle extract of illegal sizes. getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; const LLT LitTy = Query.Types[LitTyIdx]; return (BigTy.getSizeInBits() % 32 == 0) && (LitTy.getSizeInBits() % 16 == 0); }) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; return (BigTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT LitTy = Query.Types[LitTyIdx]; return (LitTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) .widenScalarToNextPow2(BigTyIdx, 32); } // TODO: vectors of pointers getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalForCartesianProduct(AllS32Vectors, {S32}) .legalForCartesianProduct(AllS64Vectors, {S64}) .clampNumElements(0, V16S32, V16S32) .clampNumElements(0, V2S64, V8S64) .minScalarSameAs(1, 0) // FIXME: Sort of a hack to make progress on other legalizations. .legalIf([=](const LegalityQuery &Query) { return Query.Types[0].getScalarSizeInBits() <= 32 || Query.Types[0].getScalarSizeInBits() == 64; }); // TODO: Support any combination of v2s32 getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalFor({{V4S32, V2S32}, {V8S32, V2S32}, {V8S32, V4S32}, {V4S64, V2S64}, {V4S16, V2S16}, {V8S16, V2S16}, {V8S16, V4S16}, {LLT::vector(4, LocalPtr), LLT::vector(2, LocalPtr)}, {LLT::vector(4, PrivatePtr), LLT::vector(2, PrivatePtr)}}); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; getActionDefinitionsBuilder(Op) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, S16, S256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, scalarize(0)) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, scalarize(1)) .clampScalar(BigTyIdx, S32, S512) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 16 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % 16 == 0 && LitTy.getSizeInBits() % 16 == 0 && BigTy.getSizeInBits() <= 512; }) // Any vectors left are the wrong size. Scalarize them. .scalarize(0) .scalarize(1); } computeTables(); verify(*ST.getInstrInfo()); }
bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MachineFunction &MF = MIRBuilder.getMF(); MIRBuilder.setInstr(MI); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); unsigned DestAS = DstTy.getAddressSpace(); unsigned SrcAS = SrcTy.getAddressSpace(); // TODO: Avoid reloading from the queue ptr for each cast, or at least each // vector element. assert(!DstTy.isVector()); const AMDGPUTargetMachine &TM = static_cast<const AMDGPUTargetMachine &>(MF.getTarget()); const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BITCAST)); return true; } if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || DestAS == AMDGPUAS::PRIVATE_ADDRESS); unsigned NullVal = TM.getNullPointerValue(DestAS); auto SegmentNull = MIRBuilder.buildConstant(DstTy, NullVal); auto FlatNull = MIRBuilder.buildConstant(SrcTy, 0); unsigned PtrLo32 = MRI.createGenericVirtualRegister(DstTy); // Extract low 32-bits of the pointer. MIRBuilder.buildExtract(PtrLo32, Src, 0); unsigned CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0)); MIRBuilder.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); MI.eraseFromParent(); return true; } assert(SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS); auto SegmentNull = MIRBuilder.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); auto FlatNull = MIRBuilder.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); unsigned ApertureReg = getSegmentAperture(DestAS, MRI, MIRBuilder); unsigned CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0)); unsigned BuildPtr = MRI.createGenericVirtualRegister(DstTy); // Coerce the type of the low half of the result so we can use merge_values. unsigned SrcAsInt = MRI.createGenericVirtualRegister(LLT::scalar(32)); MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT) .addDef(SrcAsInt) .addUse(Src); // TODO: Should we allow mismatched types but matching sizes in merges to // avoid the ptrtoint? MIRBuilder.buildMerge(BuildPtr, {SrcAsInt, ApertureReg}); MIRBuilder.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0)); MI.eraseFromParent(); return true; }