Example #1
0
LTOCodeGenerator::LTOCodeGenerator(LLVMContext &Context)
    : Context(Context), MergedModule(new Module("ld-temp.o", Context)),
      TheLinker(new Linker(*MergedModule)) {
  Context.setDiscardValueNames(LTODiscardValueNames);
  Context.enableDebugTypeODRUniquing();
  initializeLTOPasses();
}
Example #2
0
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal();
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext Context;
  Context.setDiagnosticHandler(diagnosticHandlerWithContext, nullptr, true);

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  cl::ParseCommandLineOptions(argc, argv, "llvm linker\n");

  auto Composite = make_unique<Module>("llvm-link", Context);
  Linker L(*Composite);

  unsigned Flags = Linker::Flags::None;
  if (Internalize)
    Flags |= Linker::Flags::InternalizeLinkedSymbols;
  if (OnlyNeeded)
    Flags |= Linker::Flags::LinkOnlyNeeded;

  // First add all the regular input files
  if (!linkFiles(argv[0], Context, L, InputFilenames, Flags))
    return 1;

  // Next the -override ones.
  if (!linkFiles(argv[0], Context, L, OverridingInputs,
                 Flags | Linker::Flags::OverrideFromSrc))
    return 1;

  // Import any functions requested via -import
  if (!importFunctions(argv[0], Context, L))
    return 1;

  if (DumpAsm) errs() << "Here's the assembly:\n" << *Composite;

  std::error_code EC;
  tool_output_file Out(OutputFilename, EC, sys::fs::F_None);
  if (EC) {
    errs() << EC.message() << '\n';
    return 1;
  }

  if (verifyModule(*Composite, &errs())) {
    errs() << argv[0] << ": error: linked module is broken!\n";
    return 1;
  }

  if (Verbose) errs() << "Writing bitcode...\n";
  if (OutputAssembly) {
    Composite->print(Out.os(), nullptr, PreserveAssemblyUseListOrder);
  } else if (Force || !CheckBitcodeOutputToConsole(Out.os(), true))
    WriteBitcodeToFile(Composite.get(), Out.os(), PreserveBitcodeUseListOrder);

  // Declare success.
  Out.keep();

  return 0;
}
Example #3
0
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal(argv[0]);
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext Context;
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.

  Context.setDiagnosticHandler(diagnosticHandler, argv[0]);

  cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .ll disassembler\n");

  Expected<std::unique_ptr<Module>> MOrErr = openInputFile(Context);
  if (!MOrErr) {
    handleAllErrors(MOrErr.takeError(), [&](ErrorInfoBase &EIB) {
      errs() << argv[0] << ": ";
      EIB.log(errs());
      errs() << '\n';
    });
    return 1;
  }
  std::unique_ptr<Module> M = std::move(*MOrErr);

  // Just use stdout.  We won't actually print anything on it.
  if (DontPrint)
    OutputFilename = "-";

  if (OutputFilename.empty()) { // Unspecified output, infer it.
    if (InputFilename == "-") {
      OutputFilename = "-";
    } else {
      StringRef IFN = InputFilename;
      OutputFilename = (IFN.endswith(".bc") ? IFN.drop_back(3) : IFN).str();
      OutputFilename += ".ll";
    }
  }

  std::error_code EC;
  std::unique_ptr<tool_output_file> Out(
      new tool_output_file(OutputFilename, EC, sys::fs::F_None));
  if (EC) {
    errs() << EC.message() << '\n';
    return 1;
  }

  std::unique_ptr<AssemblyAnnotationWriter> Annotator;
  if (ShowAnnotations)
    Annotator.reset(new CommentWriter());

  // All that llvm-dis does is write the assembly to a file.
  if (!DontPrint)
    M->print(Out->os(), Annotator.get(), PreserveAssemblyUseListOrder);

  // Declare success.
  Out->keep();

  return 0;
}
Example #4
0
// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
  // Sequential linking phase
  auto Index = linkCombinedIndex();

  // Save temps: index.
  if (!SaveTempsDir.empty()) {
    auto SaveTempPath = SaveTempsDir + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None);
    if (EC)
      report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                         " to save optimized bitcode\n");
    WriteIndexToFile(*Index, OS);
  }

  // Prepare the resulting object vector
  assert(ProducedBinaries.empty() && "The generator should not be reused");
  ProducedBinaries.resize(Modules.size());

  // Prepare the module map.
  auto ModuleMap = generateModuleMap(Modules);

  // Parallel optimizer + codegen
  {
    ThreadPool Pool(ThreadCount);
    int count = 0;
    for (auto &ModuleBuffer : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // Save temps: original file.
        if (!SaveTempsDir.empty()) {
          saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");
        }

        ProducedBinaries[count] = ProcessThinLTOModule(
            *TheModule, *Index, ModuleMap, *TMBuilder.create(), CacheOptions,
            SaveTempsDir, count);
      }, count);
      count++;
    }
  }

  // If statistics were requested, print them out now.
  if (llvm::AreStatisticsEnabled())
    llvm::PrintStatistics();
}
Example #5
0
std::unique_ptr<MIRParser>
llvm::createMIRParser(std::unique_ptr<MemoryBuffer> Contents,
                      LLVMContext &Context) {
  auto Filename = Contents->getBufferIdentifier();
  if (Context.shouldDiscardValueNames()) {
    Context.diagnose(DiagnosticInfoMIRParser(
        DS_Error,
        SMDiagnostic(
            Filename, SourceMgr::DK_Error,
            "Can't read MIR with a Context that discards named Values")));
    return nullptr;
  }
  return llvm::make_unique<MIRParser>(
      llvm::make_unique<MIRParserImpl>(std::move(Contents), Filename, Context));
}
Example #6
0
void llvm::emitOptimizationRemarkAnalysis(LLVMContext &Ctx,
                                          const char *PassName,
                                          const Function &Fn,
                                          const DebugLoc &DLoc,
                                          const Twine &Msg) {
  Ctx.diagnose(
      DiagnosticInfoOptimizationRemarkAnalysis(PassName, Fn, DLoc, Msg));
}
Example #7
0
File: llc.cpp Project: efcs/llvm
// main - Entry point for the llc compiler.
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal(argv[0]);
  PrettyStackTraceProgram X(argc, argv);

  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  LLVMContext Context;
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.

  // Initialize targets first, so that --version shows registered targets.
  InitializeAllTargets();
  InitializeAllTargetMCs();
  InitializeAllAsmPrinters();
  InitializeAllAsmParsers();

  // Initialize codegen and IR passes used by llc so that the -print-after,
  // -print-before, and -stop-after options work.
  PassRegistry *Registry = PassRegistry::getPassRegistry();
  initializeCore(*Registry);
  initializeCodeGen(*Registry);
  initializeLoopStrengthReducePass(*Registry);
  initializeLowerIntrinsicsPass(*Registry);
  initializeCountingFunctionInserterPass(*Registry);
  initializeUnreachableBlockElimLegacyPassPass(*Registry);
  initializeConstantHoistingLegacyPassPass(*Registry);

  // Register the target printer for --version.
  cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);

  cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n");

  Context.setDiscardValueNames(DiscardValueNames);

  // Set a diagnostic handler that doesn't exit on the first error
  bool HasError = false;
  Context.setDiagnosticHandler(DiagnosticHandler, &HasError);

  // Compile the module TimeCompilations times to give better compile time
  // metrics.
  for (unsigned I = TimeCompilations; I; --I)
    if (int RetVal = compileModule(argv, Context))
      return RetVal;
  return 0;
}
Example #8
0
/// Perform the ThinLTO backend on a single module, invoking the LTO and codegen
/// pipelines.
static void thinLTOBackendTask(claimed_file &F, const void *View,
                               ld_plugin_input_file &File,
                               raw_fd_ostream *ApiFile,
                               const ModuleSummaryIndex &CombinedIndex,
                               raw_fd_ostream *OS, unsigned TaskID) {
  // Need to use a separate context for each task
  LLVMContext Context;
  Context.setDiagnosticHandler(diagnosticHandlerForContext, nullptr, true);

  std::unique_ptr<llvm::Module> NewModule(new llvm::Module(File.name, Context));
  IRMover L(*NewModule.get());

  StringSet<> Dummy;
  if (linkInModule(Context, L, F, View, File, ApiFile, Dummy, Dummy))
    message(LDPL_FATAL, "Failed to rename module for ThinLTO");
  if (renameModuleForThinLTO(*NewModule, CombinedIndex))
    message(LDPL_FATAL, "Failed to rename module for ThinLTO");

  CodeGen codeGen(std::move(NewModule), OS, TaskID, &CombinedIndex, File.name);
  codeGen.runAll();
}
Example #9
0
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromFile(LLVMContext &Context, StringRef path,
                          const TargetOptions &options) {
  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
      MemoryBuffer::getFile(path);
  if (std::error_code EC = BufferOrErr.getError()) {
    Context.emitError(EC.message());
    return EC;
  }
  std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
  return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
                       /* ShouldBeLazy*/ false);
}
Example #10
0
void MIPrinter::printSyncScope(const LLVMContext &Context, SyncScope::ID SSID) {
  switch (SSID) {
  case SyncScope::System: {
    break;
  }
  default: {
    if (SSNs.empty())
      Context.getSyncScopeNames(SSNs);

    OS << "syncscope(\"";
    PrintEscapedString(SSNs[SSID], OS);
    OS << "\") ";
    break;
  }
  }
}
Example #11
0
static void printSyncScope(raw_ostream &OS, const LLVMContext &Context,
                           SyncScope::ID SSID,
                           SmallVectorImpl<StringRef> &SSNs) {
  switch (SSID) {
  case SyncScope::System:
    break;
  default:
    if (SSNs.empty())
      Context.getSyncScopeNames(SSNs);

    OS << "syncscope(\"";
    printEscapedString(SSNs[SSID], OS);
    OS << "\") ";
    break;
  }
}
Example #12
0
static ErrorOr<std::unique_ptr<Module>>
parseBitcodeFileImpl(MemoryBufferRef Buffer, LLVMContext &Context,
                     bool ShouldBeLazy) {

  // Find the buffer.
  ErrorOr<MemoryBufferRef> MBOrErr =
      IRObjectFile::findBitcodeInMemBuffer(Buffer);
  if (std::error_code EC = MBOrErr.getError()) {
    Context.emitError(EC.message());
    return EC;
  }

  if (!ShouldBeLazy) {
    // Parse the full file.
    return expectedToErrorOrAndEmitErrors(Context,
                                          parseBitcodeFile(*MBOrErr, Context));
  }

  // Parse lazily.
  return expectedToErrorOrAndEmitErrors(
      Context,
      getLazyBitcodeModule(*MBOrErr, Context, true /*ShouldLazyLoadMetadata*/));
}
Example #13
0
static int compileModule(char **argv, LLVMContext &Context) {
  // Load the module to be compiled...
  SMDiagnostic Err;
  std::unique_ptr<Module> M;
  std::unique_ptr<MIRParser> MIR;
  Triple TheTriple;

  bool SkipModule = MCPU == "help" ||
                    (!MAttrs.empty() && MAttrs.front() == "help");

  // If user just wants to list available options, skip module loading
  if (!SkipModule) {
    if (StringRef(InputFilename).endswith_lower(".mir")) {
      MIR = createMIRParserFromFile(InputFilename, Err, Context);
      if (MIR)
        M = MIR->parseLLVMModule();
    } else
      M = parseIRFile(InputFilename, Err, Context);
    if (!M) {
      Err.print(argv[0], errs());
      return 1;
    }

    // Verify module immediately to catch problems before doInitialization() is
    // called on any passes.
    if (!NoVerify && verifyModule(*M, &errs())) {
      errs() << argv[0] << ": " << InputFilename
             << ": error: input module is broken!\n";
      return 1;
    }

    // If we are supposed to override the target triple, do so now.
    if (!TargetTriple.empty())
      M->setTargetTriple(Triple::normalize(TargetTriple));
    TheTriple = Triple(M->getTargetTriple());
  } else {
    TheTriple = Triple(Triple::normalize(TargetTriple));
  }

  if (TheTriple.getTriple().empty())
    TheTriple.setTriple(sys::getDefaultTargetTriple());

  // Get the target specific parser.
  std::string Error;
  const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple,
                                                         Error);
  if (!TheTarget) {
    errs() << argv[0] << ": " << Error;
    return 1;
  }

  std::string CPUStr = getCPUStr(), FeaturesStr = getFeaturesStr();

  CodeGenOpt::Level OLvl = CodeGenOpt::Default;
  switch (OptLevel) {
  default:
    errs() << argv[0] << ": invalid optimization level.\n";
    return 1;
  case ' ': break;
  case '0': OLvl = CodeGenOpt::None; break;
  case '1': OLvl = CodeGenOpt::Less; break;
  case '2': OLvl = CodeGenOpt::Default; break;
  case '3': OLvl = CodeGenOpt::Aggressive; break;
  }

  TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
  Options.DisableIntegratedAS = NoIntegratedAssembler;
  Options.MCOptions.ShowMCEncoding = ShowMCEncoding;
  Options.MCOptions.MCUseDwarfDirectory = EnableDwarfDirectory;
  Options.MCOptions.AsmVerbose = AsmVerbose;
  Options.MCOptions.PreserveAsmComments = PreserveComments;
  Options.MCOptions.IASSearchPaths = IncludeDirs;

  std::unique_ptr<TargetMachine> Target(
      TheTarget->createTargetMachine(TheTriple.getTriple(), CPUStr, FeaturesStr,
                                     Options, getRelocModel(), CMModel, OLvl));

  assert(Target && "Could not allocate target machine!");

  // If we don't have a module then just exit now. We do this down
  // here since the CPU/Feature help is underneath the target machine
  // creation.
  if (SkipModule)
    return 0;

  assert(M && "Should have exited if we didn't have a module!");
  if (FloatABIForCalls != FloatABI::Default)
    Options.FloatABIType = FloatABIForCalls;

  // Figure out where we are going to send the output.
  std::unique_ptr<tool_output_file> Out =
      GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0]);
  if (!Out) return 1;

  // Build up all of the passes that we want to do to the module.
  legacy::PassManager PM;

  // Add an appropriate TargetLibraryInfo pass for the module's triple.
  TargetLibraryInfoImpl TLII(Triple(M->getTargetTriple()));

  // The -disable-simplify-libcalls flag actually disables all builtin optzns.
  if (DisableSimplifyLibCalls)
    TLII.disableAllFunctions();
  PM.add(new TargetLibraryInfoWrapperPass(TLII));

  // Add the target data from the target machine, if it exists, or the module.
  M->setDataLayout(Target->createDataLayout());

  // Override function attributes based on CPUStr, FeaturesStr, and command line
  // flags.
  setFunctionAttributes(CPUStr, FeaturesStr, *M);

  if (RelaxAll.getNumOccurrences() > 0 &&
      FileType != TargetMachine::CGFT_ObjectFile)
    errs() << argv[0]
             << ": warning: ignoring -mc-relax-all because filetype != obj";

  {
    raw_pwrite_stream *OS = &Out->os();

    // Manually do the buffering rather than using buffer_ostream,
    // so we can memcmp the contents in CompileTwice mode
    SmallVector<char, 0> Buffer;
    std::unique_ptr<raw_svector_ostream> BOS;
    if ((FileType != TargetMachine::CGFT_AssemblyFile &&
         !Out->os().supportsSeeking()) ||
        CompileTwice) {
      BOS = make_unique<raw_svector_ostream>(Buffer);
      OS = BOS.get();
    }

    if (!RunPassNames->empty()) {
      if (!StartAfter.empty() || !StopAfter.empty() || !StartBefore.empty() ||
          !StopBefore.empty()) {
        errs() << argv[0] << ": start-after and/or stop-after passes are "
                             "redundant when run-pass is specified.\n";
        return 1;
      }
      if (!MIR) {
        errs() << argv[0] << ": run-pass needs a .mir input.\n";
        return 1;
      }
      LLVMTargetMachine &LLVMTM = static_cast<LLVMTargetMachine&>(*Target);
      TargetPassConfig &TPC = *LLVMTM.createPassConfig(PM);
      PM.add(&TPC);
      MachineModuleInfo *MMI = new MachineModuleInfo(&LLVMTM);
      MMI->setMachineFunctionInitializer(MIR.get());
      PM.add(MMI);
      TPC.printAndVerify("");

      for (const std::string &RunPassName : *RunPassNames) {
        if (addPass(PM, argv[0], RunPassName, TPC))
          return 1;
      }
      PM.add(createPrintMIRPass(*OS));
    } else {
      const char *argv0 = argv[0];
      AnalysisID StartBeforeID = getPassID(argv0, "start-before", StartBefore);
      AnalysisID StartAfterID = getPassID(argv0, "start-after", StartAfter);
      AnalysisID StopAfterID = getPassID(argv0, "stop-after", StopAfter);
      AnalysisID StopBeforeID = getPassID(argv0, "stop-before", StopBefore);

      if (StartBeforeID && StartAfterID) {
        errs() << argv[0] << ": -start-before and -start-after specified!\n";
        return 1;
      }
      if (StopBeforeID && StopAfterID) {
        errs() << argv[0] << ": -stop-before and -stop-after specified!\n";
        return 1;
      }

      // Ask the target to add backend passes as necessary.
      if (Target->addPassesToEmitFile(PM, *OS, FileType, NoVerify,
                                      StartBeforeID, StartAfterID, StopBeforeID,
                                      StopAfterID, MIR.get())) {
        errs() << argv[0] << ": target does not support generation of this"
               << " file type!\n";
        return 1;
      }
    }

    // Before executing passes, print the final values of the LLVM options.
    cl::PrintOptionValues();

    // If requested, run the pass manager over the same module again,
    // to catch any bugs due to persistent state in the passes. Note that
    // opt has the same functionality, so it may be worth abstracting this out
    // in the future.
    SmallVector<char, 0> CompileTwiceBuffer;
    if (CompileTwice) {
      std::unique_ptr<Module> M2(llvm::CloneModule(M.get()));
      PM.run(*M2);
      CompileTwiceBuffer = Buffer;
      Buffer.clear();
    }

    PM.run(*M);

    auto HasError = *static_cast<bool *>(Context.getDiagnosticContext());
    if (HasError)
      return 1;

    // Compare the two outputs and make sure they're the same
    if (CompileTwice) {
      if (Buffer.size() != CompileTwiceBuffer.size() ||
          (memcmp(Buffer.data(), CompileTwiceBuffer.data(), Buffer.size()) !=
           0)) {
        errs()
            << "Running the pass manager twice changed the output.\n"
               "Writing the result of the second run to the specified output\n"
               "To generate the one-run comparison binary, just run without\n"
               "the compile-twice option\n";
        Out->os() << Buffer;
        Out->keep();
        return 1;
      }
    }

    if (BOS) {
      Out->os() << Buffer;
    }
  }

  // Declare success.
  Out->keep();

  return 0;
}
Example #14
0
// main - Entry point for the llc compiler.
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal(argv[0]);
  PrettyStackTraceProgram X(argc, argv);

  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  LLVMContext Context;
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.

  // Initialize targets first, so that --version shows registered targets.
  InitializeAllTargets();
  InitializeAllTargetMCs();
  InitializeAllAsmPrinters();
  InitializeAllAsmParsers();

  // Initialize codegen and IR passes used by llc so that the -print-after,
  // -print-before, and -stop-after options work.
  PassRegistry *Registry = PassRegistry::getPassRegistry();
  initializeCore(*Registry);
  initializeCodeGen(*Registry);
  initializeLoopStrengthReducePass(*Registry);
  initializeLowerIntrinsicsPass(*Registry);
  initializeCountingFunctionInserterPass(*Registry);
  initializeUnreachableBlockElimLegacyPassPass(*Registry);
  initializeConstantHoistingLegacyPassPass(*Registry);
  initializeScalarOpts(*Registry);
  initializeVectorization(*Registry);

  // Register the target printer for --version.
  cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);

  cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n");

  Context.setDiscardValueNames(DiscardValueNames);

  // Set a diagnostic handler that doesn't exit on the first error
  bool HasError = false;
  Context.setDiagnosticHandler(DiagnosticHandler, &HasError);
  Context.setInlineAsmDiagnosticHandler(InlineAsmDiagHandler, &HasError);

  if (PassRemarksWithHotness)
    Context.setDiagnosticHotnessRequested(true);

  std::unique_ptr<tool_output_file> YamlFile;
  if (RemarksFilename != "") {
    std::error_code EC;
    YamlFile = llvm::make_unique<tool_output_file>(RemarksFilename, EC,
                                                   sys::fs::F_None);
    if (EC) {
      errs() << EC.message() << '\n';
      return 1;
    }
    Context.setDiagnosticsOutputFile(
        llvm::make_unique<yaml::Output>(YamlFile->os()));
  }

  // Compile the module TimeCompilations times to give better compile time
  // metrics.
  for (unsigned I = TimeCompilations; I; --I)
    if (int RetVal = compileModule(argv, Context))
      return RetVal;

  if (YamlFile)
    YamlFile->keep();
  return 0;
}
Example #15
0
/// gold informs us that all symbols have been read. At this point, we use
/// get_symbols to see if any of our definitions have been overridden by a
/// native object file. Then, perform optimization and codegen.
static ld_plugin_status allSymbolsReadHook(raw_fd_ostream *ApiFile) {
  if (Modules.empty())
    return LDPS_OK;

  LLVMContext Context;
  Context.setDiagnosticHandler(diagnosticHandler, nullptr, true);

  // If we are doing ThinLTO compilation, simply build the combined
  // function index/summary and emit it. We don't need to parse the modules
  // and link them in this case.
  if (options::thinlto) {
    std::unique_ptr<FunctionInfoIndex> CombinedIndex(new FunctionInfoIndex());
    uint64_t NextModuleId = 0;
    for (claimed_file &F : Modules) {
      ld_plugin_input_file File;
      if (get_input_file(F.handle, &File) != LDPS_OK)
        message(LDPL_FATAL, "Failed to get file information");

      std::unique_ptr<FunctionInfoIndex> Index =
          getFunctionIndexForFile(Context, F, File);
      CombinedIndex->mergeFrom(std::move(Index), ++NextModuleId);
    }

    std::error_code EC;
    raw_fd_ostream OS(output_name + ".thinlto.bc", EC,
                      sys::fs::OpenFlags::F_None);
    if (EC)
      message(LDPL_FATAL, "Unable to open %s.thinlto.bc for writing: %s",
              output_name.data(), EC.message().c_str());
    WriteFunctionSummaryToFile(CombinedIndex.get(), OS);
    OS.close();

    cleanup_hook();
    exit(0);
  }

  std::unique_ptr<Module> Combined(new Module("ld-temp.o", Context));
  Linker L(Combined.get());

  std::string DefaultTriple = sys::getDefaultTargetTriple();

  StringSet<> Internalize;
  StringSet<> Maybe;
  for (claimed_file &F : Modules) {
    ld_plugin_input_file File;
    if (get_input_file(F.handle, &File) != LDPS_OK)
      message(LDPL_FATAL, "Failed to get file information");
    std::unique_ptr<Module> M =
        getModuleForFile(Context, F, File, ApiFile, Internalize, Maybe);
    if (!options::triple.empty())
      M->setTargetTriple(options::triple.c_str());
    else if (M->getTargetTriple().empty()) {
      M->setTargetTriple(DefaultTriple);
    }

    if (L.linkInModule(M.get()))
      message(LDPL_FATAL, "Failed to link module");
    if (release_input_file(F.handle) != LDPS_OK)
      message(LDPL_FATAL, "Failed to release file information");
  }

  for (const auto &Name : Internalize) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (GV)
      internalize(*GV);
  }

  for (const auto &Name : Maybe) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (!GV)
      continue;
    GV->setLinkage(GlobalValue::LinkOnceODRLinkage);
    if (canBeOmittedFromSymbolTable(GV))
      internalize(*GV);
  }

  if (options::TheOutputType == options::OT_DISABLE)
    return LDPS_OK;

  if (options::TheOutputType != options::OT_NORMAL) {
    std::string path;
    if (options::TheOutputType == options::OT_BC_ONLY)
      path = output_name;
    else
      path = output_name + ".bc";
    saveBCFile(path, *L.getModule());
    if (options::TheOutputType == options::OT_BC_ONLY)
      return LDPS_OK;
  }

  codegen(std::move(Combined));

  if (!options::extra_library_path.empty() &&
      set_extra_library_path(options::extra_library_path.c_str()) != LDPS_OK)
    message(LDPL_FATAL, "Unable to set the extra library path.");

  return LDPS_OK;
}
Example #16
0
/// Called by gold to see whether this file is one that our plugin can handle.
/// We'll try to open it and register all the symbols with add_symbol if
/// possible.
static ld_plugin_status claim_file_hook(const ld_plugin_input_file *file,
                                        int *claimed) {
  LLVMContext Context;
  MemoryBufferRef BufferRef;
  std::unique_ptr<MemoryBuffer> Buffer;
  if (get_view) {
    const void *view;
    if (get_view(file->handle, &view) != LDPS_OK) {
      message(LDPL_ERROR, "Failed to get a view of %s", file->name);
      return LDPS_ERR;
    }
    BufferRef =
        MemoryBufferRef(StringRef((const char *)view, file->filesize), "");
  } else {
    int64_t offset = 0;
    // Gold has found what might be IR part-way inside of a file, such as
    // an .a archive.
    if (file->offset) {
      offset = file->offset;
    }
    ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
        MemoryBuffer::getOpenFileSlice(file->fd, file->name, file->filesize,
                                       offset);
    if (std::error_code EC = BufferOrErr.getError()) {
      message(LDPL_ERROR, EC.message().c_str());
      return LDPS_ERR;
    }
    Buffer = std::move(BufferOrErr.get());
    BufferRef = Buffer->getMemBufferRef();
  }

  Context.setDiagnosticHandler(diagnosticHandler);
  ErrorOr<std::unique_ptr<object::IRObjectFile>> ObjOrErr =
      object::IRObjectFile::create(BufferRef, Context);
  std::error_code EC = ObjOrErr.getError();
  if (EC == object::object_error::invalid_file_type ||
      EC == object::object_error::bitcode_section_not_found)
    return LDPS_OK;

  *claimed = 1;

  if (EC) {
    message(LDPL_ERROR, "LLVM gold plugin has failed to create LTO module: %s",
            EC.message().c_str());
    return LDPS_ERR;
  }
  std::unique_ptr<object::IRObjectFile> Obj = std::move(*ObjOrErr);

  Modules.resize(Modules.size() + 1);
  claimed_file &cf = Modules.back();

  cf.handle = file->handle;

  // If we are doing ThinLTO compilation, don't need to process the symbols.
  // Later we simply build a combined index file after all files are claimed.
  if (options::thinlto) return LDPS_OK;

  for (auto &Sym : Obj->symbols()) {
    uint32_t Symflags = Sym.getFlags();
    if (shouldSkip(Symflags))
      continue;

    cf.syms.push_back(ld_plugin_symbol());
    ld_plugin_symbol &sym = cf.syms.back();
    sym.version = nullptr;

    SmallString<64> Name;
    {
      raw_svector_ostream OS(Name);
      Sym.printName(OS);
    }
    sym.name = strdup(Name.c_str());

    const GlobalValue *GV = Obj->getSymbolGV(Sym.getRawDataRefImpl());

    sym.visibility = LDPV_DEFAULT;
    if (GV) {
      switch (GV->getVisibility()) {
      case GlobalValue::DefaultVisibility:
        sym.visibility = LDPV_DEFAULT;
        break;
      case GlobalValue::HiddenVisibility:
        sym.visibility = LDPV_HIDDEN;
        break;
      case GlobalValue::ProtectedVisibility:
        sym.visibility = LDPV_PROTECTED;
        break;
      }
    }

    if (Symflags & object::BasicSymbolRef::SF_Undefined) {
      sym.def = LDPK_UNDEF;
      if (GV && GV->hasExternalWeakLinkage())
        sym.def = LDPK_WEAKUNDEF;
    } else {
      sym.def = LDPK_DEF;
      if (GV) {
        assert(!GV->hasExternalWeakLinkage() &&
               !GV->hasAvailableExternallyLinkage() && "Not a declaration!");
        if (GV->hasCommonLinkage())
          sym.def = LDPK_COMMON;
        else if (GV->isWeakForLinker())
          sym.def = LDPK_WEAKDEF;
      }
    }

    sym.size = 0;
    sym.comdat_key = nullptr;
    if (GV) {
      const GlobalObject *Base = getBaseObject(*GV);
      if (!Base)
        message(LDPL_FATAL, "Unable to determine comdat of alias!");
      const Comdat *C = Base->getComdat();
      if (C)
        sym.comdat_key = strdup(C->getName().str().c_str());
      else if (Base->hasWeakLinkage() || Base->hasLinkOnceLinkage())
        sym.comdat_key = strdup(sym.name);
    }

    sym.resolution = LDPR_UNKNOWN;
  }

  if (!cf.syms.empty()) {
    if (add_symbols(cf.handle, cf.syms.size(), cf.syms.data()) != LDPS_OK) {
      message(LDPL_ERROR, "Unable to add symbols!");
      return LDPS_ERR;
    }
  }

  return LDPS_OK;
}
Example #17
0
void llvm::emitLoopInterleaveWarning(LLVMContext &Ctx, const Function &Fn,
                                     const DebugLoc &DLoc, const Twine &Msg) {
  Ctx.diagnose(DiagnosticInfoOptimizationFailure(
      Fn, DLoc, Twine("loop not interleaved: " + Msg)));
}
Example #18
0
// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
  if (CodeGenOnly) {
    // Perform only parallel codegen and return.
    ThreadPool Pool;
    assert(ProducedBinaries.empty() && "The generator should not be reused");
    ProducedBinaries.resize(Modules.size());
    int count = 0;
    for (auto &ModuleBuffer : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // CodeGen
        ProducedBinaries[count] = codegen(*TheModule);
      }, count++);
    }

    return;
  }

  // Sequential linking phase
  auto Index = linkCombinedIndex();

  // Save temps: index.
  if (!SaveTempsDir.empty()) {
    auto SaveTempPath = SaveTempsDir + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None);
    if (EC)
      report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                         " to save optimized bitcode\n");
    WriteIndexToFile(*Index, OS);
  }

  // Prepare the resulting object vector
  assert(ProducedBinaries.empty() && "The generator should not be reused");
  ProducedBinaries.resize(Modules.size());

  // Prepare the module map.
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Modules.size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Collect the import/export lists for all modules from the call-graph in the
  // combined index.
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  // Convert the preserved symbols set from string to GUID, this is needed for
  // computing the caching hash and the internalization.
  auto GUIDPreservedSymbols =
      computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);

  // We use a std::map here to be able to have a defined ordering when
  // producing a hash for the cache entry.
  // FIXME: we should be able to compute the caching hash for the entry based
  // on the index, and nuke this map.
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;

  // Resolve LinkOnce/Weak symbols, this has to be computed early because it
  // impacts the caching.
  resolveWeakForLinkerInIndex(*Index, ResolvedODR);

  auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
    const auto &ExportList = ExportLists.find(ModuleIdentifier);
    return (ExportList != ExportLists.end() &&
            ExportList->second.count(GUID)) ||
           GUIDPreservedSymbols.count(GUID);
  };

  // Use global summary-based analysis to identify symbols that can be
  // internalized (because they aren't exported or preserved as per callback).
  // Changes are made in the index, consumed in the ThinLTO backends.
  thinLTOInternalizeAndPromoteInIndex(*Index, isExported);

  // Make sure that every module has an entry in the ExportLists and
  // ResolvedODR maps to enable threaded access to these maps below.
  for (auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) {
    ExportLists[DefinedGVSummaries.first()];
    ResolvedODR[DefinedGVSummaries.first()];
  }

  // Compute the ordering we will process the inputs: the rough heuristic here
  // is to sort them per size so that the largest module get schedule as soon as
  // possible. This is purely a compile-time optimization.
  std::vector<int> ModulesOrdering;
  ModulesOrdering.resize(Modules.size());
  std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
  std::sort(ModulesOrdering.begin(), ModulesOrdering.end(),
            [&](int LeftIndex, int RightIndex) {
              auto LSize = Modules[LeftIndex].getBufferSize();
              auto RSize = Modules[RightIndex].getBufferSize();
              return LSize > RSize;
            });

  // Parallel optimizer + codegen
  {
    ThreadPool Pool(ThreadCount);
    for (auto IndexCount : ModulesOrdering) {
      auto &ModuleBuffer = Modules[IndexCount];
      Pool.async([&](int count) {
        auto ModuleIdentifier = ModuleBuffer.getBufferIdentifier();
        auto &ExportList = ExportLists[ModuleIdentifier];

        auto &DefinedFunctions = ModuleToDefinedGVSummaries[ModuleIdentifier];

        // The module may be cached, this helps handling it.
        ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier,
                                    ImportLists[ModuleIdentifier], ExportList,
                                    ResolvedODR[ModuleIdentifier],
                                    DefinedFunctions, GUIDPreservedSymbols);

        {
          auto ErrOrBuffer = CacheEntry.tryLoadingBuffer();
          DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss") << " '"
                       << CacheEntry.getEntryPath() << "' for buffer " << count
                       << " " << ModuleIdentifier << "\n");

          if (ErrOrBuffer) {
            // Cache Hit!
            ProducedBinaries[count] = std::move(ErrOrBuffer.get());
            return;
          }
        }

        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);
        Context.enableDebugTypeODRUniquing();
        auto DiagFileOrErr = setupOptimizationRemarks(Context, count);
        if (!DiagFileOrErr) {
          errs() << "Error: " << toString(DiagFileOrErr.takeError()) << "\n";
          report_fatal_error("ThinLTO: Can't get an output file for the "
                             "remarks");
        }

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // Save temps: original file.
        saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");

        auto &ImportList = ImportLists[ModuleIdentifier];
        // Run the main process now, and generates a binary
        auto OutputBuffer = ProcessThinLTOModule(
            *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
            ExportList, GUIDPreservedSymbols,
            ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions,
            DisableCodeGen, SaveTempsDir, count);

        OutputBuffer = CacheEntry.write(std::move(OutputBuffer));
        ProducedBinaries[count] = std::move(OutputBuffer);
      }, IndexCount);
    }
  }

  CachePruning(CacheOptions.Path)
      .setPruningInterval(std::chrono::seconds(CacheOptions.PruningInterval))
      .setEntryExpiration(std::chrono::seconds(CacheOptions.Expiration))
      .setMaxSize(CacheOptions.MaxPercentageOfAvailableSpace)
      .prune();

  // If statistics were requested, print them out now.
  if (llvm::AreStatisticsEnabled())
    llvm::PrintStatistics();
}
Example #19
0
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal();
  PrettyStackTraceProgram X(argc, argv);

  llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
  cl::ParseCommandLineOptions(argc, argv, "llvm LTO linker\n");

  if (OptLevel < '0' || OptLevel > '3')
    error("optimization level must be between 0 and 3");

  // Initialize the configured targets.
  InitializeAllTargets();
  InitializeAllTargetMCs();
  InitializeAllAsmPrinters();
  InitializeAllAsmParsers();

  // set up the TargetOptions for the machine
  TargetOptions Options = InitTargetOptionsFromCodeGenFlags();

  if (ListSymbolsOnly) {
    listSymbols(Options);
    return 0;
  }

  if (ThinLTOMode.getNumOccurrences()) {
    if (ThinLTOMode.getNumOccurrences() > 1)
      report_fatal_error("You can't specify more than one -thinlto-action");
    thinlto::ThinLTOProcessing ThinLTOProcessor(Options);
    ThinLTOProcessor.run();
    return 0;
  }

  if (ThinLTO) {
    createCombinedFunctionIndex();
    return 0;
  }

  unsigned BaseArg = 0;

  LLVMContext Context;
  Context.setDiagnosticHandler(diagnosticHandlerWithContext, nullptr, true);

  LTOCodeGenerator CodeGen(Context);

  if (UseDiagnosticHandler)
    CodeGen.setDiagnosticHandler(handleDiagnostics, nullptr);

  CodeGen.setCodePICModel(RelocModel);

  CodeGen.setDebugInfo(LTO_DEBUG_MODEL_DWARF);
  CodeGen.setTargetOptions(Options);
  CodeGen.setShouldRestoreGlobalsLinkage(RestoreGlobalsLinkage);

  llvm::StringSet<llvm::MallocAllocator> DSOSymbolsSet;
  for (unsigned i = 0; i < DSOSymbols.size(); ++i)
    DSOSymbolsSet.insert(DSOSymbols[i]);

  std::vector<std::string> KeptDSOSyms;

  for (unsigned i = BaseArg; i < InputFilenames.size(); ++i) {
    CurrentActivity = "loading file '" + InputFilenames[i] + "'";
    ErrorOr<std::unique_ptr<LTOModule>> ModuleOrErr =
        LTOModule::createFromFile(Context, InputFilenames[i].c_str(), Options);
    std::unique_ptr<LTOModule> &Module = *ModuleOrErr;
    CurrentActivity = "";

    unsigned NumSyms = Module->getSymbolCount();
    for (unsigned I = 0; I < NumSyms; ++I) {
      StringRef Name = Module->getSymbolName(I);
      if (!DSOSymbolsSet.count(Name))
        continue;
      lto_symbol_attributes Attrs = Module->getSymbolAttributes(I);
      unsigned Scope = Attrs & LTO_SYMBOL_SCOPE_MASK;
      if (Scope != LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN)
        KeptDSOSyms.push_back(Name);
    }

    // We use the first input module as the destination module when
    // SetMergedModule is true.
    if (SetMergedModule && i == BaseArg) {
      // Transfer ownership to the code generator.
      CodeGen.setModule(std::move(Module));
    } else if (!CodeGen.addModule(Module.get())) {
      // Print a message here so that we know addModule() did not abort.
      errs() << argv[0] << ": error adding file '" << InputFilenames[i] << "'\n";
      return 1;
    }
  }

  // Add all the exported symbols to the table of symbols to preserve.
  for (unsigned i = 0; i < ExportedSymbols.size(); ++i)
    CodeGen.addMustPreserveSymbol(ExportedSymbols[i].c_str());

  // Add all the dso symbols to the table of symbols to expose.
  for (unsigned i = 0; i < KeptDSOSyms.size(); ++i)
    CodeGen.addMustPreserveSymbol(KeptDSOSyms[i].c_str());

  // Set cpu and attrs strings for the default target/subtarget.
  CodeGen.setCpu(MCPU.c_str());

  CodeGen.setOptLevel(OptLevel - '0');

  std::string attrs;
  for (unsigned i = 0; i < MAttrs.size(); ++i) {
    if (i > 0)
      attrs.append(",");
    attrs.append(MAttrs[i]);
  }

  if (!attrs.empty())
    CodeGen.setAttr(attrs.c_str());

  if (FileType.getNumOccurrences())
    CodeGen.setFileType(FileType);

  if (!OutputFilename.empty()) {
    if (!CodeGen.optimize(DisableVerify, DisableInline, DisableGVNLoadPRE,
                          DisableLTOVectorization)) {
      // Diagnostic messages should have been printed by the handler.
      errs() << argv[0] << ": error optimizing the code\n";
      return 1;
    }

    if (SaveModuleFile) {
      std::string ModuleFilename = OutputFilename;
      ModuleFilename += ".merged.bc";
      std::string ErrMsg;

      if (!CodeGen.writeMergedModules(ModuleFilename.c_str())) {
        errs() << argv[0] << ": writing merged module failed.\n";
        return 1;
      }
    }

    std::list<tool_output_file> OSs;
    std::vector<raw_pwrite_stream *> OSPtrs;
    for (unsigned I = 0; I != Parallelism; ++I) {
      std::string PartFilename = OutputFilename;
      if (Parallelism != 1)
        PartFilename += "." + utostr(I);
      std::error_code EC;
      OSs.emplace_back(PartFilename, EC, sys::fs::F_None);
      if (EC) {
        errs() << argv[0] << ": error opening the file '" << PartFilename
               << "': " << EC.message() << "\n";
        return 1;
      }
      OSPtrs.push_back(&OSs.back().os());
    }

    if (!CodeGen.compileOptimized(OSPtrs)) {
      // Diagnostic messages should have been printed by the handler.
      errs() << argv[0] << ": error compiling the code\n";
      return 1;
    }

    for (tool_output_file &OS : OSs)
      OS.keep();
  } else {
    if (Parallelism != 1) {
      errs() << argv[0] << ": -j must be specified together with -o\n";
      return 1;
    }

    if (SaveModuleFile) {
      errs() << argv[0] << ": -save-merged-module must be specified with -o\n";
      return 1;
    }

    const char *OutputName = nullptr;
    if (!CodeGen.compile_to_file(&OutputName, DisableVerify, DisableInline,
                                 DisableGVNLoadPRE, DisableLTOVectorization)) {
      // Diagnostic messages should have been printed by the handler.
      errs() << argv[0] << ": error compiling the code\n";
      return 1;
    }

    outs() << "Wrote native object file '" << OutputName << "'\n";
  }

  return 0;
}
Example #20
0
/// gold informs us that all symbols have been read. At this point, we use
/// get_symbols to see if any of our definitions have been overridden by a
/// native object file. Then, perform optimization and codegen.
static ld_plugin_status allSymbolsReadHook(raw_fd_ostream *ApiFile) {
  if (Modules.empty())
    return LDPS_OK;

  if (unsigned NumOpts = options::extra.size())
    cl::ParseCommandLineOptions(NumOpts, &options::extra[0]);

  // If we are doing ThinLTO compilation, simply build the combined
  // module index/summary and emit it. We don't need to parse the modules
  // and link them in this case.
  if (options::thinlto) {
    ModuleSummaryIndex CombinedIndex;
    uint64_t NextModuleId = 0;
    for (claimed_file &F : Modules) {
      PluginInputFile InputFile(F.handle);

      std::unique_ptr<ModuleSummaryIndex> Index =
          getModuleSummaryIndexForFile(F, InputFile.file());

      // Skip files without a module summary.
      if (Index)
        CombinedIndex.mergeFrom(std::move(Index), ++NextModuleId);
    }

    std::error_code EC;
    raw_fd_ostream OS(output_name + ".thinlto.bc", EC,
                      sys::fs::OpenFlags::F_None);
    if (EC)
      message(LDPL_FATAL, "Unable to open %s.thinlto.bc for writing: %s",
              output_name.data(), EC.message().c_str());
    WriteIndexToFile(CombinedIndex, OS);
    OS.close();

    if (options::thinlto_index_only) {
      cleanup_hook();
      exit(0);
    }

    thinLTOBackends(ApiFile, CombinedIndex);
    return LDPS_OK;
  }

  LLVMContext Context;
  Context.setDiscardValueNames(options::DiscardValueNames);
  Context.enableDebugTypeODRUniquing(); // Merge debug info types.
  Context.setDiagnosticHandler(diagnosticHandlerForContext, nullptr, true);

  std::unique_ptr<Module> Combined(new Module("ld-temp.o", Context));
  IRMover L(*Combined);

  StringSet<> Internalize;
  StringSet<> Maybe;
  for (claimed_file &F : Modules) {
    PluginInputFile InputFile(F.handle);
    const void *View = getSymbolsAndView(F);
    if (!View)
      continue;
    if (linkInModule(Context, L, F, View, InputFile.file(), ApiFile,
                     Internalize, Maybe))
      message(LDPL_FATAL, "Failed to link module");
  }

  for (const auto &Name : Internalize) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (GV)
      internalize(*GV);
  }

  for (const auto &Name : Maybe) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (!GV)
      continue;
    GV->setLinkage(GlobalValue::LinkOnceODRLinkage);
    if (canBeOmittedFromSymbolTable(GV))
      internalize(*GV);
  }

  if (options::TheOutputType == options::OT_DISABLE)
    return LDPS_OK;

  if (options::TheOutputType != options::OT_NORMAL) {
    std::string path;
    if (options::TheOutputType == options::OT_BC_ONLY)
      path = output_name;
    else
      path = output_name + ".bc";
    saveBCFile(path, *Combined);
    if (options::TheOutputType == options::OT_BC_ONLY)
      return LDPS_OK;
  }

  CodeGen codeGen(std::move(Combined));
  codeGen.runAll();

  if (!options::extra_library_path.empty() &&
      set_extra_library_path(options::extra_library_path.c_str()) != LDPS_OK)
    message(LDPL_FATAL, "Unable to set the extra library path.");

  return LDPS_OK;
}
Example #21
0
// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
  if (CodeGenOnly) {
    // Perform only parallel codegen and return.
    ThreadPool Pool;
    assert(ProducedBinaries.empty() && "The generator should not be reused");
    ProducedBinaries.resize(Modules.size());
    int count = 0;
    for (auto &ModuleBuffer : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // CodeGen
        ProducedBinaries[count] = codegen(*TheModule);
      }, count++);
    }

    return;
  }

  // Sequential linking phase
  auto Index = linkCombinedIndex();

  // Save temps: index.
  if (!SaveTempsDir.empty()) {
    auto SaveTempPath = SaveTempsDir + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None);
    if (EC)
      report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                         " to save optimized bitcode\n");
    WriteIndexToFile(*Index, OS);
  }

  // Prepare the resulting object vector
  assert(ProducedBinaries.empty() && "The generator should not be reused");
  ProducedBinaries.resize(Modules.size());

  // Prepare the module map.
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Modules.size();

  // Collect the import/export lists for all modules from the call-graph in the
  // combined index.
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(*Index, ImportLists, ExportLists);

  // Parallel optimizer + codegen
  {
    ThreadPool Pool(ThreadCount);
    int count = 0;
    for (auto &ModuleBuffer : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // Save temps: original file.
        if (!SaveTempsDir.empty()) {
          saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");
        }

        auto &ImportList = ImportLists[TheModule->getModuleIdentifier()];
        ProducedBinaries[count] = ProcessThinLTOModule(
            *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
            CacheOptions, DisableCodeGen, SaveTempsDir, count);
      }, count);
      count++;
    }
  }

  // If statistics were requested, print them out now.
  if (llvm::AreStatisticsEnabled())
    llvm::PrintStatistics();
}
/// gold informs us that all symbols have been read. At this point, we use
/// get_symbols to see if any of our definitions have been overridden by a
/// native object file. Then, perform optimization and codegen.
static ld_plugin_status allSymbolsReadHook(raw_fd_ostream *ApiFile) {
  if (Modules.empty())
    return LDPS_OK;

  LLVMContext Context;
  Context.setDiagnosticHandler(diagnosticHandler, nullptr, true);

  std::unique_ptr<Module> Combined(new Module("ld-temp.o", Context));
  Linker L(Combined.get());

  std::string DefaultTriple = sys::getDefaultTargetTriple();

  StringSet<> Internalize;
  StringSet<> Maybe;
  for (claimed_file &F : Modules) {
    ld_plugin_input_file File;
    if (get_input_file(F.handle, &File) != LDPS_OK)
      message(LDPL_FATAL, "Failed to get file information");
    std::unique_ptr<Module> M =
        getModuleForFile(Context, F, File, ApiFile, Internalize, Maybe);
    if (!options::triple.empty())
      M->setTargetTriple(options::triple.c_str());
    else if (M->getTargetTriple().empty()) {
      M->setTargetTriple(DefaultTriple);
    }

    if (L.linkInModule(M.get()))
      message(LDPL_FATAL, "Failed to link module");
    if (release_input_file(F.handle) != LDPS_OK)
      message(LDPL_FATAL, "Failed to release file information");
  }

  for (const auto &Name : Internalize) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (GV)
      internalize(*GV);
  }

  for (const auto &Name : Maybe) {
    GlobalValue *GV = Combined->getNamedValue(Name.first());
    if (!GV)
      continue;
    GV->setLinkage(GlobalValue::LinkOnceODRLinkage);
    if (canBeOmittedFromSymbolTable(GV))
      internalize(*GV);
  }

  // @LOCALMOD-BEGIN
  // Perform symbol wrapping.
  unsigned num_wrapped;
  if ((*get_num_wrapped)(&num_wrapped) != LDPS_OK) {
    (*message)(LDPL_ERROR, "Unable to get the number of wrapped symbols.");
    return LDPS_ERR;
  }
  for (unsigned i = 0; i < num_wrapped; ++i) {
    const char *sym;
    if ((*get_wrapped)(i, &sym) != LDPS_OK) {
      (*message)(LDPL_ERROR, "Unable to wrap symbol %u/%u.", i, num_wrapped);
      return LDPS_ERR;
    }
    wrapSymbol(Combined.get(), sym);
  }
  // @LOCALMOD-END

  if (options::TheOutputType == options::OT_DISABLE)
    return LDPS_OK;

  if (options::TheOutputType != options::OT_NORMAL) {
    std::string path;
    if (options::TheOutputType == options::OT_BC_ONLY)
      path = output_name;
    else
      path = output_name + ".bc";
    saveBCFile(path, *L.getModule());
    if (options::TheOutputType == options::OT_BC_ONLY)
      return LDPS_OK;
  }

  codegen(*L.getModule());

  if (!options::extra_library_path.empty() &&
      set_extra_library_path(options::extra_library_path.c_str()) != LDPS_OK)
    message(LDPL_FATAL, "Unable to set the extra library path.");

  return LDPS_OK;
}
Example #23
0
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal();
  llvm::PrettyStackTraceProgram X(argc, argv);

  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  LLVMContext Context;

  InitializeAllTargets();
  InitializeAllTargetMCs();
  InitializeAllAsmPrinters();

  // Initialize passes
  PassRegistry &Registry = *PassRegistry::getPassRegistry();
  initializeCore(Registry);
  initializeScalarOpts(Registry);
  initializeObjCARCOpts(Registry);
  initializeVectorization(Registry);
  initializeIPO(Registry);
  initializeAnalysis(Registry);
  initializeTransformUtils(Registry);
  initializeInstCombine(Registry);
  initializeInstrumentation(Registry);
  initializeTarget(Registry);
  // For codegen passes, only passes that do IR to IR transformation are
  // supported.
  initializeCodeGenPreparePass(Registry);
  initializeAtomicExpandPass(Registry);
  initializeRewriteSymbolsPass(Registry);
  initializeWinEHPreparePass(Registry);
  initializeDwarfEHPreparePass(Registry);
  initializeSafeStackPass(Registry);
  initializeSjLjEHPreparePass(Registry);

#ifdef LINK_POLLY_INTO_TOOLS
  polly::initializePollyPasses(Registry);
#endif

  cl::ParseCommandLineOptions(argc, argv,
    "llvm .bc -> .bc modular optimizer and analysis printer\n");

  if (AnalyzeOnly && NoOutput) {
    errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
    return 1;
  }

  SMDiagnostic Err;

  Context.setDiscardValueNames(DiscardValueNames);
  if (!DisableDITypeMap)
    Context.enableDebugTypeODRUniquing();

  // Load the input module...
  std::unique_ptr<Module> M = parseIRFile(InputFilename, Err, Context);

  if (!M) {
    Err.print(argv[0], errs());
    return 1;
  }

  // Strip debug info before running the verifier.
  if (StripDebug)
    StripDebugInfo(*M);

  // Immediately run the verifier to catch any problems before starting up the
  // pass pipelines.  Otherwise we can crash on broken code during
  // doInitialization().
  if (!NoVerify && verifyModule(*M, &errs())) {
    errs() << argv[0] << ": " << InputFilename
           << ": error: input module is broken!\n";
    return 1;
  }

  // If we are supposed to override the target triple, do so now.
  if (!TargetTriple.empty())
    M->setTargetTriple(Triple::normalize(TargetTriple));

  // Figure out what stream we are supposed to write to...
  std::unique_ptr<tool_output_file> Out;
  if (NoOutput) {
    if (!OutputFilename.empty())
      errs() << "WARNING: The -o (output filename) option is ignored when\n"
                "the --disable-output option is used.\n";
  } else {
    // Default to standard output.
    if (OutputFilename.empty())
      OutputFilename = "-";

    std::error_code EC;
    Out.reset(new tool_output_file(OutputFilename, EC, sys::fs::F_None));
    if (EC) {
      errs() << EC.message() << '\n';
      return 1;
    }
  }

  Triple ModuleTriple(M->getTargetTriple());
  std::string CPUStr, FeaturesStr;
  TargetMachine *Machine = nullptr;
  const TargetOptions Options = InitTargetOptionsFromCodeGenFlags();

  if (ModuleTriple.getArch()) {
    CPUStr = getCPUStr();
    FeaturesStr = getFeaturesStr();
    Machine = GetTargetMachine(ModuleTriple, CPUStr, FeaturesStr, Options);
  }

  std::unique_ptr<TargetMachine> TM(Machine);

  // Override function attributes based on CPUStr, FeaturesStr, and command line
  // flags.
  setFunctionAttributes(CPUStr, FeaturesStr, *M);

  // If the output is set to be emitted to standard out, and standard out is a
  // console, print out a warning message and refuse to do it.  We don't
  // impress anyone by spewing tons of binary goo to a terminal.
  if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
    if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
      NoOutput = true;

  if (PassPipeline.getNumOccurrences() > 0) {
    OutputKind OK = OK_NoOutput;
    if (!NoOutput)
      OK = OutputAssembly ? OK_OutputAssembly : OK_OutputBitcode;

    VerifierKind VK = VK_VerifyInAndOut;
    if (NoVerify)
      VK = VK_NoVerifier;
    else if (VerifyEach)
      VK = VK_VerifyEachPass;

    // The user has asked to use the new pass manager and provided a pipeline
    // string. Hand off the rest of the functionality to the new code for that
    // layer.
    return runPassPipeline(argv[0], Context, *M, TM.get(), Out.get(),
                           PassPipeline, OK, VK, PreserveAssemblyUseListOrder,
                           PreserveBitcodeUseListOrder)
               ? 0
               : 1;
  }

  // Create a PassManager to hold and optimize the collection of passes we are
  // about to build.
  //
  legacy::PassManager Passes;

  // Add an appropriate TargetLibraryInfo pass for the module's triple.
  TargetLibraryInfoImpl TLII(ModuleTriple);

  // The -disable-simplify-libcalls flag actually disables all builtin optzns.
  if (DisableSimplifyLibCalls)
    TLII.disableAllFunctions();
  Passes.add(new TargetLibraryInfoWrapperPass(TLII));

  // Add an appropriate DataLayout instance for this module.
  const DataLayout &DL = M->getDataLayout();
  if (DL.isDefault() && !DefaultDataLayout.empty()) {
    M->setDataLayout(DefaultDataLayout);
  }

  // Add internal analysis passes from the target machine.
  Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis()
                                                     : TargetIRAnalysis()));

  std::unique_ptr<legacy::FunctionPassManager> FPasses;
  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses.reset(new legacy::FunctionPassManager(M.get()));
    FPasses->add(createTargetTransformInfoWrapperPass(
        TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis()));
  }

  if (PrintBreakpoints) {
    // Default to standard output.
    if (!Out) {
      if (OutputFilename.empty())
        OutputFilename = "-";

      std::error_code EC;
      Out = llvm::make_unique<tool_output_file>(OutputFilename, EC,
                                                sys::fs::F_None);
      if (EC) {
        errs() << EC.message() << '\n';
        return 1;
      }
    }
    Passes.add(createBreakpointPrinter(Out->os()));
    NoOutput = true;
  }

  // Create a new optimization pass for each one specified on the command line
  for (unsigned i = 0; i < PassList.size(); ++i) {
    if (StandardLinkOpts &&
        StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardLinkPasses(Passes);
      StandardLinkOpts = false;
    }

    if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 1, 0);
      OptLevelO1 = false;
    }

    if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 0);
      OptLevelO2 = false;
    }

    if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 1);
      OptLevelOs = false;
    }

    if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 2);
      OptLevelOz = false;
    }

    if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 3, 0);
      OptLevelO3 = false;
    }

    const PassInfo *PassInf = PassList[i];
    Pass *P = nullptr;
    if (PassInf->getTargetMachineCtor())
      P = PassInf->getTargetMachineCtor()(TM.get());
    else if (PassInf->getNormalCtor())
      P = PassInf->getNormalCtor()();
    else
      errs() << argv[0] << ": cannot create pass: "******"\n";
    if (P) {
      PassKind Kind = P->getPassKind();
      addPass(Passes, P);

      if (AnalyzeOnly) {
        switch (Kind) {
        case PT_BasicBlock:
          Passes.add(createBasicBlockPassPrinter(PassInf, Out->os(), Quiet));
          break;
        case PT_Region:
          Passes.add(createRegionPassPrinter(PassInf, Out->os(), Quiet));
          break;
        case PT_Loop:
          Passes.add(createLoopPassPrinter(PassInf, Out->os(), Quiet));
          break;
        case PT_Function:
          Passes.add(createFunctionPassPrinter(PassInf, Out->os(), Quiet));
          break;
        case PT_CallGraphSCC:
          Passes.add(createCallGraphPassPrinter(PassInf, Out->os(), Quiet));
          break;
        default:
          Passes.add(createModulePassPrinter(PassInf, Out->os(), Quiet));
          break;
        }
      }
    }

    if (PrintEachXForm)
      Passes.add(
          createPrintModulePass(errs(), "", PreserveAssemblyUseListOrder));
  }

  if (StandardLinkOpts) {
    AddStandardLinkPasses(Passes);
    StandardLinkOpts = false;
  }

  if (OptLevelO1)
    AddOptimizationPasses(Passes, *FPasses, 1, 0);

  if (OptLevelO2)
    AddOptimizationPasses(Passes, *FPasses, 2, 0);

  if (OptLevelOs)
    AddOptimizationPasses(Passes, *FPasses, 2, 1);

  if (OptLevelOz)
    AddOptimizationPasses(Passes, *FPasses, 2, 2);

  if (OptLevelO3)
    AddOptimizationPasses(Passes, *FPasses, 3, 0);

  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses->doInitialization();
    for (Function &F : *M)
      FPasses->run(F);
    FPasses->doFinalization();
  }

  // Check that the module is well formed on completion of optimization
  if (!NoVerify && !VerifyEach)
    Passes.add(createVerifierPass());

  // In run twice mode, we want to make sure the output is bit-by-bit
  // equivalent if we run the pass manager again, so setup two buffers and
  // a stream to write to them. Note that llc does something similar and it
  // may be worth to abstract this out in the future.
  SmallVector<char, 0> Buffer;
  SmallVector<char, 0> CompileTwiceBuffer;
  std::unique_ptr<raw_svector_ostream> BOS;
  raw_ostream *OS = nullptr;

  // Write bitcode or assembly to the output as the last step...
  if (!NoOutput && !AnalyzeOnly) {
    assert(Out);
    OS = &Out->os();
    if (RunTwice) {
      BOS = make_unique<raw_svector_ostream>(Buffer);
      OS = BOS.get();
    }
    if (OutputAssembly) {
      if (EmitSummaryIndex)
        report_fatal_error("Text output is incompatible with -module-summary");
      if (EmitModuleHash)
        report_fatal_error("Text output is incompatible with -module-hash");
      Passes.add(createPrintModulePass(*OS, "", PreserveAssemblyUseListOrder));
    } else
      Passes.add(createBitcodeWriterPass(*OS, PreserveBitcodeUseListOrder,
                                         EmitSummaryIndex, EmitModuleHash));
  }

  // Before executing passes, print the final values of the LLVM options.
  cl::PrintOptionValues();

  // If requested, run all passes again with the same pass manager to catch
  // bugs caused by persistent state in the passes
  if (RunTwice) {
      std::unique_ptr<Module> M2(CloneModule(M.get()));
      Passes.run(*M2);
      CompileTwiceBuffer = Buffer;
      Buffer.clear();
  }

  // Now that we have all of the passes ready, run them.
  Passes.run(*M);

  // Compare the two outputs and make sure they're the same
  if (RunTwice) {
    assert(Out);
    if (Buffer.size() != CompileTwiceBuffer.size() ||
        (memcmp(Buffer.data(), CompileTwiceBuffer.data(), Buffer.size()) !=
         0)) {
      errs() << "Running the pass manager twice changed the output.\n"
                "Writing the result of the second run to the specified output.\n"
                "To generate the one-run comparison binary, just run without\n"
                "the compile-twice option\n";
      Out->os() << BOS->str();
      Out->keep();
      return 1;
    }
    Out->os() << BOS->str();
  }

  // Declare success.
  if (!NoOutput || PrintBreakpoints)
    Out->keep();

  return 0;
}