void PromoteMem2Reg::run() { Function &F = *DF.getRoot()->getParent(); if (AST) PointerAllocaValues.resize(Allocas.size()); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info; LargeBlockInfo LBI; for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. if (AST) AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed RemoveFromAllocasList(AllocaNum); ++NumDeadAlloca; continue; } // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { RewriteSingleStoreAlloca(AI, Info, LBI); // Finally, after the scan, check to see if the store is all that is left. if (Info.UsingBlocks.empty()) { // Record debuginfo for the store and remove the declaration's debuginfo. if (DbgDeclareInst *DDI = Info.DbgDeclare) { ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore); DDI->eraseFromParent(); } // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); ++NumSingleStore; continue; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock) { PromoteSingleBlockAlloca(AI, Info, LBI); // Finally, after the scan, check to see if the stores are all that is // left. if (Info.UsingBlocks.empty()) { // Remove the (now dead) stores and alloca. while (!AI->use_empty()) { StoreInst *SI = cast<StoreInst>(AI->use_back()); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = Info.DbgDeclare) ConvertDebugDeclareToDebugValue(DDI, SI); SI->eraseFromParent(); LBI.deleteValue(SI); } if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); // The alloca's debuginfo can be removed as well. if (DbgDeclareInst *DDI = Info.DbgDeclare) DDI->eraseFromParent(); ++NumLocalPromoted; continue; } } // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) BBNumbers[I] = ID++; } // If we have an AST to keep updated, remember some pointer value that is // stored into the alloca. if (AST) PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; // Remember the dbg.declare intrinsic describing this alloca, if any. if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need PHI // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. DetermineInsertionPoint(AI, AllocaNum, Info); } if (Allocas.empty()) return; // All of the allocas must have been trivial! LBI.clear(); // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // RenamePassData::ValVector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // std::vector<RenamePassData> RenamePassWorkList; RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); do { RenamePassData RPD; RPD.swap(RenamePassWorkList.back()); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); } while (!RenamePassWorkList.empty()); // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); // Remove the allocas themselves from the function. for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { Instruction *A = Allocas[i]; // If there are any uses of the alloca instructions left, they must be in // sections of dead code that were not processed on the dominance frontier. // Just delete the users now. // if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); if (AST) AST->deleteValue(A); A->eraseFromParent(); } // Remove alloca's dbg.declare instrinsics from the function. for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) DDI->eraseFromParent(); // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = PN->hasConstantValue(&DT)) { if (AST && PN->getType()->isPointerTy()) AST->deleteValue(PN); PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) continue; // Get the preds for BB. SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVector<BasicBlock*, 16>::iterator EntIt = std::lower_bound(Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast<PHINode>(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *UndefVal = UndefValue::get(SomePHI->getType()); for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) SomePHI->addIncoming(UndefVal, Preds[pred]); } } NewPhiNodes.clear(); }
void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info; LargeBlockInfo LBI; ForwardIDFCalculator IDF(DT); for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); removeLifetimeIntrinsicUsers(AI); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed RemoveFromAllocasList(AllocaNum); ++NumDeadAlloca; continue; } // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); ++NumSingleStore; continue; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock && promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); continue; } // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; for (auto &BB : F) BBNumbers[&BB] = ID++; } // Remember the dbg.declare intrinsic describing this alloca, if any. if (!Info.DbgDeclares.empty()) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need PHI // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. // Unique the set of defining blocks for efficient lookup. SmallPtrSet<BasicBlock *, 32> DefBlocks; DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); // Determine which blocks the value is live in. These are blocks which lead // to uses. SmallPtrSet<BasicBlock *, 32> LiveInBlocks; ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need phi // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. IDF.setLiveInBlocks(LiveInBlocks); IDF.setDefiningBlocks(DefBlocks); SmallVector<BasicBlock *, 32> PHIBlocks; IDF.calculate(PHIBlocks); if (PHIBlocks.size() > 1) llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { return BBNumbers.lookup(A) < BBNumbers.lookup(B); }); unsigned CurrentVersion = 0; for (BasicBlock *BB : PHIBlocks) QueuePhiNode(BB, AllocaNum, CurrentVersion); } if (Allocas.empty()) return; // All of the allocas must have been trivial! LBI.clear(); // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. RenamePassData::ValVector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // When handling debug info, treat all incoming values as if they have unknown // locations until proven otherwise. RenamePassData::LocationVector Locations(Allocas.size()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary std::vector<RenamePassData> RenamePassWorkList; RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), std::move(Locations)); do { RenamePassData RPD = std::move(RenamePassWorkList.back()); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); } while (!RenamePassWorkList.empty()); // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); // Remove the allocas themselves from the function. for (Instruction *A : Allocas) { // If there are any uses of the alloca instructions left, they must be in // unreachable basic blocks that were not processed by walking the dominator // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); A->eraseFromParent(); } // Remove alloca's dbg.declare instrinsics from the function. for (auto &Declares : AllocaDbgDeclares) for (auto *DII : Declares) DII->eraseFromParent(); // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; // Iterating over NewPhiNodes is deterministic, so it is safe to try to // simplify and RAUW them as we go. If it was not, we could add uses to // the values we replace with in a non-deterministic order, thus creating // non-deterministic def->use chains. for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = SimplifyInstruction(PN, SQ)) { PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) continue; // Get the preds for BB. SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { return BBNumbers.lookup(A) < BBNumbers.lookup(B); }; llvm::sort(Preds, CompareBBNumbers); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i), CompareBBNumbers); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast<PHINode>(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *UndefVal = UndefValue::get(SomePHI->getType()); for (BasicBlock *Pred : Preds) SomePHI->addIncoming(UndefVal, Pred); } } NewPhiNodes.clear(); }