LinearOperator<double> epetraMatrixMatrixProduct(
  const LinearOperator<double>& A,
  const LinearOperator<double>& B)
{
  /* Extract the underlying Epetra matrix for A. Type checking is done
   * ny rcp_dynamic_cast, so we need no error check here. */
  RCP<const Epetra_CrsMatrix> A_crs = EpetraMatrix::getConcretePtr(A);

  /* Extract the underlying Epetra matrix for A. Type checking is done
   * ny rcp_dynamic_cast, so we need no error check here. */
  RCP<const Epetra_CrsMatrix> B_crs = EpetraMatrix::getConcretePtr(B);
  
  bool transA = false;
  bool transB = false;
  

  /* Get the row map from A. We will need this to build the target matrix C */
  const Epetra_Map* rowmap 
    = transA ? &(A_crs->DomainMap()) : &(A_crs->RowMap());

  /* make the target matrix */
  RCP<Epetra_CrsMatrix> C = rcp(new Epetra_CrsMatrix(Copy, *rowmap, 1));

  /* Carry out the multiplication */
  int ierr 
    = EpetraExt::MatrixMatrix::Multiply(*A_crs, transA, *B_crs, transB, *C);
  TEUCHOS_TEST_FOR_EXCEPTION(ierr != 0, RuntimeError,
    "EpetraExt Matrix-matrix multiply failed with error code ierr=" << ierr);

  /* Prepare an operator object for the scaled matrix */
  RCP<LinearOperatorBase<double> > rtn 
    = rcp(new EpetraMatrix(C, B.domain(), A.range()));
  return rtn;
  
}
    virtual Preconditioner <Scalar>
    createPreconditioner(const LinearOperator<Scalar>& A) const 
    {
      /* In order for ICC factorization to work, the operator A must
       * implement the ICCFactorizableOp interface. We cast A's pointer
       * to a ICCFactorizableOp ptr. If the cast fails, throw a spoke. */
      
      const ICCFactorizableOp<Scalar>* fop 
        = dynamic_cast<const ICCFactorizableOp<Scalar>*>(A.ptr().get());

      TEUCHOS_TEST_FOR_EXCEPTION(fop==0, std::runtime_error,
                         "ICCPreconditionerFactory attempted to "
                         "create an ICC preconditioner for an operator type "
                         "that does not implement the ICCFactorizableOp "
                         "interface. The op is " << A.description());

      
      /* Now we can delegate the construction of the ICC factors to 
      * the factorizable op. */
      Preconditioner<Scalar> P;
      fop->getICCPreconditioner(fillLevels_,
                                 overlapFill_,
                                 relaxationValue_,
                                 relativeThreshold_,
                                 absoluteThreshold_,
                                 P);
      /* Return the preconditioner */
      return P;
    }
Example #3
0
Epetra_TSFOperator::Epetra_TSFOperator(const LinearOperator<double>& A,
				       const LinearSolver<double>& solver)
  : A_(A), solver_(solver), useTranspose_(false), comm_(), domain_(), range_(),
    isNativeEpetra_(false), isCompoundEpetra_(false), label_(A.description())
{
  const EpetraMatrix* em = dynamic_cast<const EpetraMatrix*>(A.ptr().get());
  const EpetraVectorSpace* ed = dynamic_cast<const EpetraVectorSpace*>(A.domain().ptr().get());
  const EpetraVectorSpace* er = dynamic_cast<const EpetraVectorSpace*>(A.range().ptr().get());

  if (em)
    {
      isNativeEpetra_ = true;
      const Epetra_CrsMatrix* crs = em->crsMatrix();
      domain_ = rcp(new Epetra_Map(crs->OperatorDomainMap()));
      range_ = rcp(new Epetra_Map(crs->OperatorRangeMap()));
      useTranspose_ = crs->UseTranspose();
      comm_ = rcp(crs->Comm().Clone());
    }
  else if (er != 0 && ed != 0)
    {
      domain_ = ed->epetraMap();
      range_ = er->epetraMap();
      comm_ = rcp(domain_->Comm().Clone());
      isCompoundEpetra_ = true;
    }
  else
    {
      TEST_FOR_EXCEPT(true);
    }
}
Example #4
0
 /** 
  * Construct a InverseLTIOp that takes <t>numTimesteps</t> steps
  * with the operator \f$ A\f$.
  */
 InverseLTIOp(int numTimesteps, const LinearOperator<Scalar>& A,
   const LinearOperator<Scalar>& At)
   : HomogeneouslyBlockedLinearOp<Scalar>(
     A.domain(), numTimesteps,
     A.range(), numTimesteps),
     A_(A), At_(At)
   {}
 LinearOperator<double> createW() const 
 {
   static LinearOperator<double> J = prob_.allocateJacobian();
   TEST_FOR_EXCEPTION(J.ptr().get()==0, RuntimeError,
                      "null Jacobian");
   return J;
 }
//============================================================================
KrylovSolverStatus CGNR_Solver::
solve(const LinearOperator &A, const double *rhs, double *result,
      const LinearOperator *preconditioner, bool use_given_initial_guess)
{
   const int m=A.m, n=A.n;
   assert(preconditioner==0 || (preconditioner->m==n && preconditioner->n==n));
   if((int)s.size()!=n){
      r.resize(n);
      z.resize(n);
      s.resize(n);
      u.resize(m);
   }
   // convergence tolerance
   A.apply_transpose(rhs, &r[0]); // form A^T*rhs in r
   double tol=tolerance_factor*BLAS::abs_max(r);
   // initial guess
   if(use_given_initial_guess){
      A.apply_and_subtract(result, rhs, &u[0]);
      A.apply_transpose(u, r);
   }else{
      BLAS::set_zero(n, result);
   }
   // check instant convergence
   iteration=0;
   residual_norm=BLAS::abs_max(r);
   if(residual_norm==0) return status=KRYLOV_CONVERGED;
   // set up CG
   double rho;
   if(preconditioner) preconditioner->apply(r, z); else BLAS::copy(r, z);
   rho=BLAS::dot(r, z);
   if(rho<=0 || rho!=rho) return status=KRYLOV_BREAKDOWN;
   BLAS::copy(z, s);
   // and iterate
   for(iteration=1; iteration<max_iterations; ++iteration){
      double alpha;
      A.apply(s, u);
      A.apply_transpose(u, z);
      double sz=BLAS::dot(u, u);
      if(sz<=0 || sz!=sz) return status=KRYLOV_BREAKDOWN;
      alpha=rho/sz;
      BLAS::add_scaled(n, alpha, &s[0], result);
      BLAS::add_scaled(-alpha, z, r);
      residual_norm=BLAS::abs_max(r);
      if(residual_norm<=tol) return status=KRYLOV_CONVERGED;
      if(preconditioner) preconditioner->apply(r, z); else BLAS::copy(r, z);
      double rho_new=BLAS::dot(r, z);
      if(rho_new<=0 || rho_new!=rho_new) return status=KRYLOV_BREAKDOWN;
      double beta=rho_new/rho;
      BLAS::add_scaled(beta, s, z); s.swap(z); // s=beta*s+z
      rho=rho_new;
      
      if ( iteration % 5000 == 0 )
      {
         std::cout << "CGNR_Solver --- residual_norm: " << residual_norm << std::endl;
      }
      
   }
   return status=KRYLOV_EXCEEDED_MAX_ITERATIONS;
}
//============================================================================
KrylovSolverStatus MINRES_CR_Solver::
solve(const LinearOperator &A, const double *rhs, double *result,
      const LinearOperator *preconditioner, bool use_given_initial_guess)
{
   const int n=A.m;
   assert(A.n==n);
   assert(preconditioner==0 || (preconditioner->m==n && preconditioner->n==n));
   if((int)s.size()!=n){
      r.resize(n);
      z.resize(n);
      q.resize(n);
      s.resize(n);
      t.resize(n);
   }
   // convergence tolerance
   double tol=tolerance_factor*BLAS::abs_max(n, rhs);
   // initial guess
   if(use_given_initial_guess){
      A.apply_and_subtract(result, rhs, &r[0]);
   }else{
      BLAS::set_zero(n, result);
      BLAS::copy(n, rhs, &r[0]);
   }
   // check instant convergence
   iteration=0;
   residual_norm=BLAS::abs_max(r);
   if(residual_norm==0) return status=KRYLOV_CONVERGED;
   // set up CR
   double rho;
   if(preconditioner) preconditioner->apply(r, z); else BLAS::copy(r, s);
   A.apply(s, t);
   rho=BLAS::dot(r, t);
   if(rho==0 || rho!=rho) return status=KRYLOV_BREAKDOWN;
   // and iterate
   for(iteration=1; iteration<max_iterations; ++iteration){
      double alpha;
      double tt=BLAS::dot(t, t);
      if(tt==0 || tt!=tt) return status=KRYLOV_BREAKDOWN;
      alpha=rho/tt;
      BLAS::add_scaled(n, alpha, &s[0], result);
      BLAS::add_scaled(-alpha, t, r);
      residual_norm=BLAS::abs_max(r);
      if(residual_norm<=tol) return KRYLOV_CONVERGED;
      if(preconditioner) preconditioner->apply(r, z);
      else               BLAS::copy(r, z);
      A.apply(z, q);
      double rho_new=BLAS::dot(r, q);
      if(rho_new==0 || rho_new!=rho_new) return KRYLOV_BREAKDOWN;
      double beta=rho_new/rho;
      BLAS::add_scaled(beta, s, z); s.swap(z); // s=beta*s+z
      BLAS::add_scaled(beta, t, q); t.swap(q); // t=beta*t+q
      rho=rho_new;
   }
   return KRYLOV_EXCEEDED_MAX_ITERATIONS;
}
Example #8
0
bool runit(const VectorType<double>& vecType,
           const LinearSolver<double>& solver)
{
    typedef Teuchos::ScalarTraits<double> ST;

    /* create the range space  */
    int nLocalRows = 10;

    MatrixLaplacian1D builder(nLocalRows, vecType);

    LinearOperator<double> A = builder.getOp();

    Out::root() << "matrix is " << std::endl;
    Out::os() << A << std::endl;

    Vector<double> x = A.domain().createMember();

    x.randomize();

    Out::root() << "input is " << std::endl;
    Out::os() << x << std::endl;
    Vector<double> y = A*x;

    Out::root() << "rhs is " << std::endl;
    Out::os() << y << std::endl;

    Vector<double> ans = A.range().createMember();

    Out::root() << "slot for solution is " << std::endl;
    Out::os() << ans << std::endl;

    LinearOperator<double> AInv = inverse(A, solver);

    ans = AInv * y;

    Out::root() << "answer is " << std::endl;
    Out::os() << ans << std::endl;

    double err = (x-ans).norm2();
    Out::root() << "error norm = " << err << std::endl;

    double tol = 1.0e-7;

    if (err <= tol)
    {
        Out::root() << "Poisson solve test PASSED" << std::endl;
        return true;
    }
    else
    {
        Out::root() << "Poisson solve test FAILED" << std::endl;
        return false;
    }
}
Example #9
0
void NLOp::
computeJacobianAndFunction(LinearOperator<double>& J,
  Vector<double>& resid) const
{
  /* Set the vector underlying the discrete 
   * function to the evaluation point*/

  TEST_FOR_EXCEPTION(discreteU0_==0, RuntimeError,
    "null discrete function pointer in "
    "NLOp::jacobian()");

  TEST_FOR_EXCEPTION(currentEvalPt().ptr().get()==0, RuntimeError,
    "null evaluation point in "
    "NLOp::jacobian()");

  TEST_FOR_EXCEPTION(J.ptr().get()==0, RuntimeError,
    "null Jacobian pointer in "
    "NLOp::jacobian()");

  TEST_FOR_EXCEPTION(resid.ptr().get()==0, RuntimeError,
    "null residual pointer in "
    "NLOp::jacobian()");

  discreteU0_->setVector(currentEvalPt());

  Array<Vector<double> > mv(1);
  mv[0] = resid;

  assembler_->assemble(J, mv);

  resid.acceptCopyOf(mv[0]);

  J_ = J;
}
LinearOperator<double> PartitionedMatrixFactory::createMatrix() const
{

  RCP<LinearOpBase<double> > op 
    = rcp(new TSFExtended::LoadableBlockOperator<double>(domain_, lowestLocalCol_, isBCCol_, remoteBCCols_, range_, lowestLocalRow_, isBCRow_));
  LinearOperator<double> A = op;

  LinearOperator<double> A_ii = blockFactory_[0][0]->createMatrix();
  LinearOperator<double> A_ib = blockFactory_[0][1]->createMatrix();
  LinearOperator<double> A_bb = blockFactory_[1][1]->createMatrix();

  A.setBlock(0,0,A_ii);
  A.setBlock(0,1,A_ib);
  A.setBlock(1,1,A_bb);

  A.endBlockFill();

  return A;
}
Example #11
0
void TestOpGradient::testCall() {
    const size_t n = 40;
    const double tol = 1e-8;

    LinearOperator * op = new OpGradient(n);

    _ASSERT_EQ(n, op->dimensionIn().first);
    _ASSERT_EQ(n - 1, op->dimensionOut().first);
    _ASSERT_NOT(op->isSelfAdjoint());

    Matrix x(n, 1);
    Matrix y(n - 1, 1);

    for (size_t i = 0; i < n; i++) {
        x.set(i, 0, i + 1);
    }

    for (size_t i = 0; i < n - 1; i++) {
        y.set(i, 0, 3 * i + 1);
    }

    Matrix Tx = op->call(x);
    Matrix Tstar_y = op->callAdjoint(y);

    Matrix err = y * Tx;
    Matrix temp = x*Tstar_y;
    Matrix::add(err, -1.0, temp, 1.0);

    _ASSERT(std::abs(err.get(0, 0)) < tol);

    delete op;
}
LinearOperator<double> epetraLeftScale(
  const Vector<double>& d,
  const LinearOperator<double>& A)
{
  /* Extract the underlying Epetra matrix. Type checking is done
   * ny rcp_dynamic_cast, so we need no error check here. */
  RCP<const Epetra_CrsMatrix> A_crs = EpetraMatrix::getConcretePtr(A);
  
  /* Make a deep copy of A */
  RCP<Epetra_CrsMatrix> mtxCopy = rcp(new Epetra_CrsMatrix(*A_crs));

  /* Extract the underlying Epetra vector. Type checking is done
   * internally, so we need no error check here. */
  const Epetra_Vector& epv = EpetraVector::getConcrete(d);
  
  /* Scale the copy */
  mtxCopy->LeftScale(epv);

  RCP<LinearOperatorBase<double> > rtn 
    = rcp(new EpetraMatrix(mtxCopy, A.domain(), A.range()));
  return rtn;
  
}
Example #13
0
        void constructPreconditionerAndSolve(LinearOperator& linearOperator,
                                             Vector& x, Vector& istlb,
                                             const POrComm& parallelInformation_arg,
                                             Dune::InverseOperatorResult& result) const
        {
            // Construct scalar product.
            typedef Dune::ScalarProductChooser<Vector, POrComm, category> ScalarProductChooser;
            typedef std::unique_ptr<typename ScalarProductChooser::ScalarProduct> SPPointer;
            SPPointer sp(ScalarProductChooser::construct(parallelInformation_arg));

            // Communicate if parallel.
            parallelInformation_arg.copyOwnerToAll(istlb, istlb);

#if ! HAVE_UMFPACK
            if( parameters_.linear_solver_use_amg_ )
            {
                typedef ISTLUtility::CPRSelector< Matrix, Vector, Vector, POrComm>  CPRSelectorType;
                typedef typename CPRSelectorType::AMG AMG;
                typedef typename CPRSelectorType::Operator MatrixOperator;

                std::unique_ptr< AMG > amg;
                std::unique_ptr< MatrixOperator > opA;

                if( ! std::is_same< LinearOperator, MatrixOperator > :: value )
                {
                    // create new operator in case linear operator and matrix operator differ
                    opA.reset( CPRSelectorType::makeOperator( linearOperator.getmat(), parallelInformation_arg ) );
                }

                const double relax = 1.0;

                // Construct preconditioner.
                constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax );

                // Solve.
                solve(linearOperator, x, istlb, *sp, *amg, result);
            }
            else
#endif
            {
                // Construct preconditioner.
                auto precond = constructPrecond(linearOperator, parallelInformation_arg);

                // Solve.
                solve(linearOperator, x, istlb, *sp, *precond, result);
            }
        }
Example #14
0
 ::Spacy::Real LinearOperator::operator()( const LinearOperator& dx ) const
 {
     return Real( get() * dx.get() );
 }
  template <class Scalar> inline
  SolverState<Scalar> BlockTriangularSolver<Scalar>
  ::solve(const LinearOperator<Scalar>& op,
          const Vector<Scalar>& rhs,
          Vector<Scalar>& soln) const
  {
    int nRows = op.numBlockRows();
    int nCols = op.numBlockCols();

    soln = op.domain().createMember();
    //    bool converged = false;

    TEST_FOR_EXCEPTION(nRows != rhs.space().numBlocks(), std::runtime_error,
                       "number of rows in operator " << op
                       << " not equal to number of blocks on RHS "
                       << rhs);

    TEST_FOR_EXCEPTION(nRows != nCols, std::runtime_error,
                       "nonsquare block structure in block triangular "
                       "solver: nRows=" << nRows << " nCols=" << nCols);

    bool isUpper = false;
    bool isLower = false;

    for (int r=0; r<nRows; r++)
      {
        for (int c=0; c<nCols; c++)
          {
            if (op.getBlock(r,c).ptr().get() == 0 ||
                dynamic_cast<const SimpleZeroOp<Scalar>* >(op.getBlock(r,c).ptr().get()))
              {
                TEST_FOR_EXCEPTION(r==c, std::runtime_error,
                                   "zero diagonal block (" << r << ", " << c 
                                   << " detected in block "
                                   "triangular solver. Operator is " << op);
                continue;
              }
            else
              {
                if (r < c) isUpper = true;
                if (c < r) isLower = true;
              }
          }
      }

    TEST_FOR_EXCEPTION(isUpper && isLower, std::runtime_error, 
                       "block triangular solver detected non-triangular operator "
                       << op);

    bool oneSolverFitsAll = false;
    if ((int) solvers_.size() == 1 && nRows != 1) 
      {
        oneSolverFitsAll = true;
      }

    for (int i=0; i<nRows; i++)
      {
        int r = i;
        if (isUpper) r = nRows - 1 - i;
        Vector<Scalar> rhs_r = rhs.getBlock(r);
        for (int j=0; j<i; j++)
          {
            int c = j;
            if (isUpper) c = nCols - 1 - j;
            if (op.getBlock(r,c).ptr().get() != 0)
              {
                rhs_r = rhs_r - op.getBlock(r,c) * soln.getBlock(c);
              }
          }

        SolverState<Scalar> state;
        Vector<Scalar> soln_r;
        if (oneSolverFitsAll)
          {
            state = solvers_[0].solve(op.getBlock(r,r), rhs_r, soln_r);
          }
        else
          {
            state = solvers_[r].solve(op.getBlock(r,r), rhs_r, soln_r);
          }
        if (nRows > 1) soln.setBlock(r, soln_r);
        else soln = soln_r;
        if (state.finalState() != SolveConverged)
          {
            return state;
          }
      }

    return SolverState<Scalar>(SolveConverged, "block solves converged",
                               0, ScalarTraits<Scalar>::zero());
  }
Example #16
0
int main(int argc, char *argv[]) 
{
  int stat = 0;
  try
    {
      GlobalMPISession session(&argc, &argv);

      VectorType<double> vecType = new SerialVectorType();

      VectorSpace<double> domain 
        = vecType.createEvenlyPartitionedSpace(MPIComm::world(), 3);
      VectorSpace<double> range
        = vecType.createEvenlyPartitionedSpace(MPIComm::world(), 5);

      RCP<MatrixFactory<double> > mf 
        = vecType.createMatrixFactory(domain, range);

      LinearOperator<double> A = mf->createMatrix();
      RCP<DenseSerialMatrix> APtr 
        = rcp_dynamic_cast<DenseSerialMatrix>(A.ptr());

      APtr->setRow(0, tuple(1.0,   2.0,  3.0));
      APtr->setRow(1, tuple(4.0,   5.0,  6.0));
      APtr->setRow(2, tuple(7.0,   8.0,  9.0));
      APtr->setRow(3, tuple(10.0, 11.0,  12.0));
      APtr->setRow(4, tuple(13.0, 14.0,  15.0));

      Out::os() << "A = " << std::endl;
      A.setVerb(10);
      Out::os() << A << std::endl;

      LinearOperator<double> U;
      LinearOperator<double> Vt;
      Vector<double> sigma;

      denseSVD(A, U, sigma, Vt);

      Out::os() << "U = " << std::endl;
      U.setVerb(10);
      Out::os() << U << std::endl;

      Out::os() << "sigma = " << std::endl;
      Out::os() << sigma << std::endl; 

      Out::os() << "Vt = " << std::endl;
      Vt.setVerb(10);
      Out::os() << Vt << std::endl;

      int nSamples = 10;
      bool allOK = true;
      double tol = 1.0e-13;
      for (int i=0; i<nSamples; i++)
      {
        Out::os() << "Sample #" << i << " of " << nSamples << std::endl;
        Vector<double> x = domain.createMember();
        x.randomize();
        
        U.setVerb(0);
        Vt.setVerb(0);
        A.setVerb(0);
        
        LinearOperator<double> Sigma = diagonalOperator(sigma);
        
        Vector<double> z = (U * Sigma * Vt)*x - A*x;
        double ez = z.norm2();
        Out::os() << "|| (U Sigma Vt - A)*x || = " << ez << std::endl;
        
        Vector<double> y = (U.transpose() * U)*x - x;
        double ey = y.norm2();
        Out::os() << "|| (U^T U - I)*x || = " << ey << std::endl;
        
        Vector<double> w = (Vt * Vt.transpose())*x - x;
        double ew = w.norm2();
        Out::os() << "|| (V^T*V - I)*x || = " << ew << std::endl;
        if (ew > tol || ez > tol || ey > tol) allOK = false;
      }

      if (allOK)
      {
        Out::os() << "SVD test PASSED" << std::endl;
      }
      else
      {
        Out::os() << "SVD test FAILED" << std::endl;
        stat = -1;
      }

      
    }
  catch(std::exception& e)
    {
      stat = -1;
      Out::os() << "Caught exception: " << e.what() << std::endl;
    }
  return stat;
}
Example #17
0
int main(int argc, char *argv[]) 
{
  typedef Teuchos::ScalarTraits<double> ST;

  try
    {
      GlobalMPISession session(&argc, &argv);
      

      MPIComm::world().synchronize();

      VectorType<double> type = new EpetraVectorType();

      /* create the range space  */
      int nLocalRows = 10;

      MatrixLaplacian1D builder(nLocalRows, type);

      LinearOperator<double> A = builder.getOp();

      int nBlocks = 3;
      Array<Vector<double> > x(nBlocks);
      Array<VectorSpace<double> > space(nBlocks);
      for (int i=0; i<nBlocks; i++)
        {
          space[i] = A.domain();
          x[i] = A.domain().createMember();
          Thyra::randomize(-ST::one(),+ST::one(),x[i].ptr().ptr());          
        }

      VectorSpace<double> blockSpace = productSpace(space);

      LinearOperator<double> bigA = makeBlockOperator(blockSpace, blockSpace);
      Vector<double> bigRHS = blockSpace.createMember();
      Vector<double> bigX = blockSpace.createMember();
      
      for (int i=0; i<nBlocks; i++)
        {
          bigX.setBlock(i, x[i]);
          for (int j=i; j<nBlocks; j++)
            {
              MatrixLaplacian1D builder(nLocalRows, type);
              LinearOperator<double> Aij = builder.getOp();
              bigA.setBlock(i,j,Aij);
            }
        }
      bigA.endBlockFill();
      
      bigRHS = bigA * bigX;
      Vector<double> bigSoln = blockSpace.createMember();

#ifdef HAVE_CONFIG_H
      ParameterXMLFileReader reader(Sundance::searchForFile("SolverParameters/poissonParams.xml"));
#else
      ParameterXMLFileReader reader("poissonParams.xml");
#endif

      ParameterList solverParams = reader.getParameters();
      LinearSolver<double> solver 
        = LinearSolverBuilder::createSolver(solverParams);
      LinearSolver<double> blockSolver 
        = new BlockTriangularSolver<double>(solver);
      
      SolverState<double> state = blockSolver.solve(bigA, bigRHS, bigSoln);
      
      std::cerr << state << std::endl;

      double err = (bigSoln - bigX).norm2();
      std::cerr << "error norm = " << err << std::endl;

      double tol = 1.0e-8;
      if (err > tol)
        {
          std::cerr << "Poisson solve test FAILED" << std::endl;
          return 1;
        }
      else
        {
          std::cerr << "Poisson solve test PASSED" << std::endl;
          return 0;
        }
    }
  catch(std::exception& e)
    {
      std::cerr << "Caught exception: " << e.what() << std::endl;
      return -1;
    }
  return 0;
}
Example #18
0
int main(int argc, char *argv[]) 
{
  int stat = 0;
  try
  {
    GlobalMPISession session(&argc, &argv);
    MPIComm::world().synchronize();

    Out::os() << "go!" << std::endl;
    VectorType<double> type = new EpetraVectorType();

    Array<int> domainBlockSizes = tuple(2,3,4);
    Array<int> rangeBlockSizes = tuple(2,2);

    Array<VectorSpace<double> > domainBlocks(domainBlockSizes.size());
    Array<VectorSpace<double> > rangeBlocks(rangeBlockSizes.size());

    for (int i=0; i<domainBlocks.size(); i++)
    {
      domainBlocks[i] = type.createEvenlyPartitionedSpace(MPIComm::world(),
        domainBlockSizes[i]);
    }

    for (int i=0; i<rangeBlocks.size(); i++)
    {
      rangeBlocks[i] = type.createEvenlyPartitionedSpace(MPIComm::world(),
        rangeBlockSizes[i]);
    }
      
    VectorSpace<double> domain = blockSpace(domainBlocks);
    VectorSpace<double> range = blockSpace(rangeBlocks);

    double blockDensity = 0.75;
    double onProcDensity = 0.5;
    double offProcDensity = 0.1;
      
    RandomBlockMatrixBuilder<double> builder(domain, range, 
      blockDensity,
      onProcDensity,
      offProcDensity,
      type);

    LinearOperator<double> A = builder.getOp();

    Out::os() << "A num block rows = " << A.numBlockRows() << std::endl;
    Out::os() << "A num block cols = " << A.numBlockCols() << std::endl;

    Vector<double> x = domain.createMember();
    Out::os() << "randomizing trial vector" << std::endl;
    x.randomize();

    Array<Vector<double> > xBlock(domain.numBlocks());
    for (int i=0; i<xBlock.size(); i++)
    {
      xBlock[i] = x.getBlock(i);
    }

    Vector<double> xx = x.copy();

      

    Out::os() << "------------------------------------------------------------" << std::endl;
    Out::os() << "computing A*x..." << std::endl;
    Vector<double> y0 = A * x;
    for (int i=0; i<y0.space().numBlocks(); i++)
    {
      Out::os() << "y0[" << i << "] = " << std::endl << y0.getBlock(i) << std::endl;
    }
      

    Vector<double> y1 = range.createMember();
    Out::os() << "------------------------------------------------------------" << std::endl;
    Out::os() << "computing A*x block-by-block..." << std::endl;
    Array<Vector<double> > yBlock(range.numBlocks());
    for (int i=0; i<yBlock.size(); i++)
    {
      yBlock[i] = range.getBlock(i).createMember();
      yBlock[i].zero();
      for (int j=0; j<xBlock.size(); j++)
      {
        LinearOperator<double> Aij = A.getBlock(i,j);
        if (Aij.ptr().get() != 0)
        {
          Out::os() << "A(" << i << ", " << j << ") = " << std::endl 
                    << Aij << std::endl;
        }
        else
        {
          Out::os() << "A(" << i << ", " << j << ") = 0 " << std::endl;
        }
        Out::os() << "x[" << j << "] = " << std::endl << xBlock[j] << std::endl;
        if (Aij.ptr().get()==0) continue;
        yBlock[i] = yBlock[i] + Aij * xBlock[j];
      }
      y1.setBlock(i, yBlock[i]);
    }

    for (int i=0; i<y1.space().numBlocks(); i++)
    {
      Out::os() << "y1[" << i << "] = " << std::endl << y1.getBlock(i) << std::endl;
    }
    double err = (y1 - y0).norm2();
    Out::os() << "error = " << err << std::endl;

    double tol = 1.0e-13;
    if (err < tol)
    {
      Out::os() << "block op test PASSED" << std::endl;
    }
    else
    {
      stat = -1;
      Out::os() << "block op test FAILED" << std::endl;
    }
  }
  catch(std::exception& e)
  {
    stat = -1;
    Out::os() << "Caught exception: " << e.what() << std::endl;
  }
  return stat;
}
Example #19
0
int main(int argc, char *argv[]) 
{
  typedef Teuchos::ScalarTraits<double> ST;

  try
  {
    GlobalMPISession session(&argc, &argv);

    MPIComm::world().synchronize();

    VectorType<double> type = new EpetraVectorType();


    ParameterXMLFileReader reader("anasazi-ml.xml");
    ParameterList solverParams = reader.getParameters().sublist("Eigensolver");

    /* create the range space  */
    int nLocalRows = 40;
    MatrixLaplacian1D builder(nLocalRows, type);
    typedef Anasazi::MultiVec<double> MV;
    typedef Anasazi::Operator<double> OP;

    LinearOperator<double> A = builder.getOp();
    LinearOperator<double> M;

    Teuchos::RCP<Anasazi::OutputManager<double> > MyOM = Teuchos::rcp( new Anasazi::BasicOutputManager<double>() );
    MyOM->setVerbosity(Anasazi::Warnings);

    int nv = 1;
    RCP<const Array<Vector<double> > > initMV = rcp(new Array<Vector<double> >(nv));
    RCP<Array<Vector<double> > > nc 
      = rcp_const_cast<Array<Vector<double> > >(initMV);
    for (int i=0; i<nv; i++) 
    {
      (*nc)[i] = A.domain().createMember();
      (*nc)[i].randomize();
    }

#ifdef BLARF
    bool mvPass = Anasazi::TestMultiVecTraits<double,Array<Vector<double> > >(MyOM,initMV);
    if (mvPass) Out::os() << "******* MV unit test PASSED ******* " << endl;
    else Out::os() << "******* MV unit test FAILED ******* " << endl;

    RCP<const LinearOperator<double> > APtr = rcp(&A, false);
    bool opPass = Anasazi::TestOperatorTraits<double, Array<Vector<double> >, LinearOperator<double>  >(MyOM, initMV, APtr);
    if (opPass) Out::os() << "******* OP unit test PASSED ******* " << endl;
    else Out::os() << "******* OP unit test FAILED ******* " << endl;
#endif
    Eigensolver<double> solver = new AnasaziEigensolver<double>(solverParams);
    
    Array<Vector<double> > ev;
    Array<std::complex<double> > ew;
    
    solver.solve(A, M, ev, ew);

    Out::os() << "Eigenvalues are " << ew << endl;

    const double pi = 4.0*atan(1.0);
    double err = 0.0;
    for (int i=0; i<ev.size(); i++)
    {
      double x = (i+1)*pi;
      err += ::fabs(ew[i].real()-x*x)/x/x;
    }
    err = err / ew.size();
    
    Out::os() << "error = " << err << endl;
    if (err < 0.01)
    {
      cout << "Belos poisson solve test PASSED" << std::endl;
      return 0;
    }
    else
    {
      cout << "Belos poisson solve test FAILED" << std::endl;
      return 1;
    }
  }
  catch(std::exception& e)
  {
    cout << "Caught exception: " << e.what() << std::endl;
    return -1;
  }
}
inline bool LinearCombinationTester<Scalar>
::selfModifyingOpTests() const
{
  bool pass = true;

  RandomSparseMatrixBuilder<double> ABuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);
  RandomSparseMatrixBuilder<double> BBuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);
  RandomSparseMatrixBuilder<double> CBuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);


  LinearOperator<double> A = ABuilder.getOp();
  LinearOperator<double> B = BBuilder.getOp();
  LinearOperator<double> C = CBuilder.getOp();

  VectorSpace<Scalar> vs = A.domain();
  A = identityOperator(vs);
  B = identityOperator(vs);
  C = identityOperator(vs);

  Vector<Scalar> x = A.domain().createMember();
  Vector<Scalar> y = A.domain().createMember();
  Vector<Scalar> z = A.domain().createMember();

  this->randomizeVec(x);
  this->randomizeVec(y);
  this->randomizeVec(z);

  Vector<Scalar> a = x.copy();
  Vector<Scalar> b = y.copy();
  Vector<Scalar> c = z.copy();
    

  Out::os() << "starting linear combination tests" << std::endl;

  x = 2.0*A*x;
  Scalar err = (x - 2.0*A*a).norm2();
  if (!this->checkTest(spec_, err, "x=2.0*A*x")) pass = false;

  a = x.copy();
  x = x + y;
  err = (x - (a + y)).norm2();
  if (!this->checkTest(spec_, err, "x=x+y")) pass = false;

  a = x.copy();
  x = y + x;
  err = (x - (y + a)).norm2();
  if (!this->checkTest(spec_, err, "x=y+x")) pass = false;

  a = x.copy();
  x = A*x + B*y;
  err = (x - (A*a + B*y)).norm2();
  if (!this->checkTest(spec_, err, "x=A*x+B*y")) pass = false;

  a = x.copy();
  x = B*y + A*x;
  err = (x - (B*y + A*a)).norm2();
  if (!this->checkTest(spec_, err, "x=B*y+A*x")) pass = false;

  a = x.copy();
  x = A*x + (B*y + C*x);
  err = (x - (A*a + (B*y + C*a))).norm2();
  if (!this->checkTest(spec_, err, "x=A*x + (B*y + C*x)")) pass = false;

  a = x.copy();
  x = (A*x + B*y) + C*x;
  err = (x - ((A*a + B*y) + C*a)).norm2();
  if (!this->checkTest(spec_, err, "x=(A*x + B*y) + C*x")) pass = false;

  /* test assignment of OpTimesLC into empty and non-empty vectors */
  Vector<Scalar> u;
  u = 2.0*A*B*x;
  err = (u - 2.0*A*B*x).norm2();
  if (!this->checkTest(spec_, err, "(empty) u=2*A*B*x")) pass = false;

  u = 2.0*A*B*x;
  err = (u - 2.0*A*B*x).norm2();
  if (!this->checkTest(spec_, err, "(non-empty) u=2*A*B*x")) pass = false;

  /* test assignment of LC2 into empty and non-empty vectors */
  Vector<Scalar> v;
  v = 2.0*x + 3.0*y;
  err = (v - (2.0*x + 3.0*y)).norm2();
  if (!this->checkTest(spec_, err, "(empty) v=2*x + 3*y")) pass = false;

  v = 2.0*x + 3.0*y;
  err = (v - (2.0*x + 3.0*y)).norm2();
  if (!this->checkTest(spec_, err, "(non-empty) v=2*x + 3*y")) pass = false;

  /* test assignment of LC3 into empty and non-empty vectors */
  Vector<Scalar> w;
  w = 2.0*x + 3.0*y + 5.0*z;
  err = (w - (2.0*x + 3.0*y + 5.0*z)).norm2();
  if (!this->checkTest(spec_, err, "(empty) w=2*x + 3*y + 5*z")) pass = false;

  w = 2.0*x + 3.0*y + 5.0*z;
  err = (w - (2.0*x + 3.0*y + 5.0*z)).norm2();
  if (!this->checkTest(spec_, err, "(non-empty) w=2*x + 3*y + 5*z")) pass = false;

  /* test assignment of LC4 into empty and non-empty vectors */
  Vector<Scalar> w2;
  w2 = 2.0*x + 3.0*y + 5.0*z + 7.0*u;
  err = (w2 - (2.0*x + 3.0*y + 5.0*z + 7.0*u)).norm2();
  if (!this->checkTest(spec_, err, 
      "(empty) w2=2*x + 3*y + 5*z + 7*u")) pass = false;

  w2 = 2.0*x + 3.0*y + 5.0*z + 7.0*u;
  err = (w2 - (2.0*x + 3.0*y + 5.0*z + 7.0*u)).norm2();
  if (!this->checkTest(spec_, err, 
      "(non-empty) w2=2*x + 3*y + 5*z + 7*u")) pass = false;

  /* test assignment of LC3 into one of the operands */
  x = 2.0*x + 3.0*y + 5.0*z;
  err = (w - x).norm2(); // Note: w contains 2x + 3y + 5z 
  if (!this->checkTest(spec_, err, "x=2*x + 3*y + 5*z")) pass = false;


  return pass;
}
inline bool LinearCombinationTester<Scalar>
::nonModifyingOpTests() const
{
  bool pass = true;

  RandomSparseMatrixBuilder<double> ABuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);
  RandomSparseMatrixBuilder<double> BBuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);
  RandomSparseMatrixBuilder<double> CBuilder(nLocalRows_, nLocalRows_, 
    onProcDensity_, offProcDensity_, 
    vecType_);


  LinearOperator<double> A = ABuilder.getOp();
  LinearOperator<Scalar> B = BBuilder.getOp();
  LinearOperator<Scalar> C = CBuilder.getOp();

  Vector<Scalar> x = A.domain().createMember();
  Vector<Scalar> y = A.domain().createMember();
  Vector<Scalar> z = A.domain().createMember();

  this->randomizeVec(x);
  this->randomizeVec(y);
  this->randomizeVec(z);


  TESTER(x*2.0, 2.0*x);

  TESTER(2.0*(x + y), 2.0*x + 2.0*y);

  TESTER(2.0*(x - y), 2.0*x - 2.0*y);

  TESTER((2.0*x + y) - y, 2.0*x);

  TESTER(-1.0*y + (2.0*x + y), 2.0*x);

  TESTER((x + y)*2.0, 2.0*x + 2.0*y);

  TESTER((x - y)*2.0, 2.0*x - 2.0*y);

  TESTER(2.0*(x - y), -2.0*(y - x));

  TESTER(0.25*(2.0*(x + y) - 2.0*(x - y)), y);

  TESTER((2.0*A)*x, 2.0*(A*x));

  TESTER(2.0*(A*x), (A*x)*2.0);

  TESTER(A*(B*x), (A*B)*x);

  TESTER(2.0*A*(B*x), A*(B*(2.0*x)));

  TESTER(3.0*(2.0*A)*x, 6.0*(A*x));

  TESTER(y + A*x, A*x + y);


  TESTER(z + (A*x + B*y), (B*y + A*x) + z);


  TESTER(z - (A*x + B*y), -1.0*((B*y + A*x) - z));

  TESTER(C*z + (A*x + B*y), (B*y + A*x) + C*z);

  TESTER(C*z - (A*x + B*y), -1.0*((B*y + A*x) - C*z));

  TESTER(2.0*z + (A*x + B*y), (B*y + A*x) + 2.0*z);

  TESTER(2.0*z - (A*x + B*y), -1.0*((B*y + A*x) - 2.0*z));

  TESTER(A*x - y, -1.0*(y - A*x));

  TESTER(A*x + B*y, B*y + A*x);

  TESTER(A*x - B*y - A*x + B*y +z, z);

  TESTER(2.0*(A*x + y), 2.0*A*x + 2.0*y);

  TESTER(2.0*(A*x + B*y), A*x + B*y + A*x + B*y);

  TESTER(2.0*(y + A*x), 2.0*y + 2.0*(A*x));

  TESTER(x + 2.0*A*y, x + 2.0*(A*y));

  TESTER(2.0*A*y + x, 2.0*(A*y) + x);

  TESTER(2.0*A*(3.0*B)*y, 6.0*(A*B*y));

  TESTER(2.0*A*(3.0*B)*y, 6.0*(A*(B*y)));

  TESTER(2.0*A*(3.0*B + 2.0*A)*x, 6.0*A*B*x + 4.0*A*A*x );

  TESTER(2.0*(A*x + B*y), 2.0*A*x + 2.0*B*y);

  TESTER(2.0*(A*x - B*y), 2.0*A*x - 2.0*B*y);

  TESTER(2.0*(A*x + B*y + z), 2.0*A*x + 2.0*B*y + 2.0*z);

  TESTER(2.0*(A*x + 3.0*B*y), 2.0*A*x + 6.0*B*y);

  TESTER(2.0*(A*x + 3.0*(z + B*y)), 2.0*A*x + 6.0*B*y + 6.0*z);

  TESTER(2.0*(z + A*x + B*y + z), 2.0*A*x + 2.0*B*y + 4.0*z);

  TESTER(2.0*(3.0*(z + A*x) + B*y), 6.0*z + 6.0*A*x + 2.0*B*y);

  TESTER(2.0*(3.0*(z + A*x) + 4.0*(B*y + z)), 6.0*z + 6.0*A*x + 8.0*B*y + 8.0*z);
    
  TESTER((A*x + B*y) + (A*y + B*x), (A + B)*x + (A+B)*y);
  TESTER((A*x + B*y) - (A*y + B*x), A*x - A*y + B*y - B*x);

  TESTER((A*x + B*y) + 2.0*(A*y + B*x), A*(x + 2.0*y) + B*(2.0*x + y));
  TESTER((A*x + B*y) - 2.0*(A*y + B*x), A*(x - 2.0*y) + B*(y - 2.0*x));


  return pass;
}
  void run( Vector<Real> &x, LinearOperator<Real> &A, const Vector<Real> &b,
            LinearOperator<Real> &M, int &iter, int &flag ) {

    using Teuchos::RCP;
 
    flag = 0; 

    Real zero = 0.0;
    Real one =  1.0;

    if ( !isInitialized_ ) {
      r_  = b.clone();
      w_  = b.clone();
      z_  = x.clone();

      isInitialized_ = true;
    }

    Real itol  = std::sqrt(ROL_EPSILON<Real>()); 

    // Compute initial residual
    if(useInitialGuess_) {
    
      A.apply(*r_,x,itol);
      r_->scale(-1.0);
      r_->plus(b);       // r = b-Ax
 
    }
    else {
      x.zero();
      r_->set(b);
    }

    Real temp  = 0;

    std::vector<RCP<Vector<Real > > > V;
    std::vector<RCP<Vector<Real > > > Z;

    (*res_)[0] = r_->norm();
     
    Real rtol  = std::min(absTol_,relTol_*(*res_)[0]);

    V.push_back(b.clone());
    (V[0])->set(*r_);
    (V[0])->scale(one/(*res_)[0]);    

    (*s_)(0) = (*res_)[0];

    for( iter=0; iter<maxit_; ++iter ) {

//      std::cout << (*res_)[iter] << std::endl;

      if( useInexact_ ) {
        itol = rtol/(maxit_*(*res_)[iter]); 
      }

      Z.push_back(x.clone());

      // Apply right preconditioner
      M.applyInverse(*(Z[iter]),*(V[iter]),itol);

      // Apply operator
      A.apply(*w_,*(Z[iter]),itol);

      // Evaluate coefficients and orthogonalize using Gram-Schmidt
      for( int k=0; k<=iter; ++k ) {
        (*H_)(k,iter) = w_->dot(*(V[k]));
        w_->axpy( -(*H_)(k,iter), *(V[k]) );
      } 
     
      (*H_)(iter+1,iter) = w_->norm();

      V.push_back( b.clone() );
      (V[iter+1])->set(*w_);
      (V[iter+1])->scale(one/((*H_)(iter+1,iter)));

      // Apply Givens rotations
      for( int k=0; k<=iter-1; ++k ) {
        temp            =  (*cs_)(k)*(*H_)(k,iter) + (*sn_)(k)*(*H_)(k+1,iter);
        (*H_)(k+1,iter) = -(*sn_)(k)*(*H_)(k,iter) + (*cs_)(k)*(*H_)(k+1,iter); 
        (*H_)(k,iter)   = temp;
      } 

      // Form i-th rotation matrix
      if( (*H_)(iter+1,iter) == zero ) {
        (*cs_)(iter) = one;
        (*sn_)(iter) = zero;
      }
      else if ( std::abs((*H_)(iter+1,iter)) > std::abs((*H_)(iter,iter)) ) { 
        temp = (*H_)(iter,iter) / (*H_)(iter+1,iter);
        (*sn_)(iter) = one / std::sqrt( one + temp*temp );
        (*cs_)(iter) = temp*(*sn_)(iter); 
      }
      else {
        temp = (*H_)(iter+1,iter) / (*H_)(iter,iter);
        (*cs_)(iter) = one / std::sqrt( one + temp*temp );
        (*sn_)(iter) = temp*(*cs_)(iter);  
      }
     
      // Approximate residual norm
      temp               = (*cs_)(iter)*(*s_)(iter);
      (*s_)(iter+1)      = -(*sn_)(iter)*(*s_)(iter);
      (*s_)(iter)        = temp;
      (*H_)(iter,iter)   = (*cs_)(iter)*(*H_)(iter,iter) + (*sn_)(iter)*(*H_)(iter+1,iter);
      (*H_)(iter+1,iter) = zero;
      (*res_)[iter+1]    = std::abs((*s_)(iter+1));
  
      // Update solution approximation.
      const char uplo = 'U';
      const char trans = 'N';
      const char diag = 'N';
      const char normin = 'N';
      Real scaling = zero;
      int info = 0;
      *y_ = *s_;
      lapack_.LATRS(uplo, trans, diag, normin, iter+1, H_->values(), maxit_+1, y_->values(), &scaling, cnorm_->values(), &info);

      z_->zero();

      for( int k=0; k<=iter;++k ) {
        z_->axpy((*y_)(k),*(Z[k]));
      }

      if( (*res_)[iter+1] <= rtol ) {
        // Update solution vector
        x.plus(*z_);  
        break;
      }

      if(iter == maxit_) {
        flag = 1;
      }
    } // loop over iter

  }  
SolverState<double> BelosSolver::solve(const LinearOperator<double>& A, 
  const Vector<double>& rhs, 
  Vector<double>& soln) const
{
  typedef Anasazi::SimpleMV                      MV;
  typedef LinearOperator<double>                 OP;
  typedef Belos::LinearProblem<double, MV, OP>   LP;

  TEUCHOS_TEST_FOR_EXCEPT(!A.ptr().get());
  TEUCHOS_TEST_FOR_EXCEPT(!rhs.ptr().get());

  if (!soln.ptr().get()) 
  {
    soln = rhs.copy();
    /* KRL 8 Jun 2012: set x0 to zero to workaround bug in Belos */
    soln.zero();
  }

  if (rhs.norm2()==0.0)
  {
    soln.zero();
    SolverStatusCode code = SolveConverged;
    SolverState<double> state(code, "Detected trivial solution", 0, 0.0);
    
    return state;
  }


  RCP<OP> APtr = rcp(new LinearOperator<double>(A));
  RCP<MV> bPtr = rcp(new MV(1));
  (*bPtr)[0] = rhs;
  RCP<MV> ansPtr = rcp(new MV(1));
  (*ansPtr)[0] = soln;
  
  
  RCP<LP> prob = rcp(new LP(APtr, ansPtr, bPtr));

  TEUCHOS_TEST_FOR_EXCEPT(!prob->setProblem());

  
  if (pf_.ptr().get())
  {
    Preconditioner<double> P = pf_.createPreconditioner(A);
    if (P.hasLeft())
    {
      prob->setLeftPrec(rcp(new OP(P.left())));
    }
  
    if (P.hasRight())
    {
      prob->setRightPrec(rcp(new OP(P.right())));
    }
  }

  if (!hasSolver_)
  {

    ParameterList plist = parameters();

    RCP<ParameterList> belosList = rcp(&plist, false);

    std::string solverType = parameters().get<string>("Method");
      
    if (solverType=="GMRES")
    {
      solver_=rcp(new Belos::BlockGmresSolMgr<double, MV, OP>(prob, belosList));
    }
    else if (solverType=="CG")
    {
      solver_=rcp(new Belos::BlockCGSolMgr<double, MV, OP>(prob, belosList));
    }
    else if (solverType=="TFQMR")
    {
      solver_=rcp(new Belos::TFQMRSolMgr<double, MV, OP>(prob, belosList));
    }
    else if (solverType=="GCRODR")
    {
      solver_=rcp(new Belos::GCRODRSolMgr<double, MV, OP>(prob, belosList));
      hasSolver_ = true; // only cache recycling solvers
    }
    else if (solverType=="RCG")
    {
      solver_=rcp(new Belos::RCGSolMgr<double, MV, OP>(prob, belosList));
      hasSolver_ = true; // only cache recycling solvers
    }
    else
    {
      TEUCHOS_TEST_FOR_EXCEPT(!(solverType=="GMRES" || solverType=="CG"));
    }
  }
  else // reset problem
  {
    solver_->setProblem( prob );
  }
  
  Belos::ReturnType rtn = solver_->solve();

  int numIters = solver_->getNumIters();
  double resid = solver_->achievedTol();
  
  SolverStatusCode code = SolveFailedToConverge;
  if (rtn==Belos::Converged) code = SolveConverged;
  SolverState<double> state(code, "Belos solver completed", numIters, resid);
  
  return state;
}
Example #24
0
int main(int argc, char *argv[]) 
{
  typedef Teuchos::ScalarTraits<double> ST;

  try
  {
    GlobalMPISession session(&argc, &argv);

    MPIComm::world().synchronize();

    VectorType<double> type = new EpetraVectorType();


#ifdef HAVE_CONFIG_H
      ParameterXMLFileReader reader(Sundance::searchForFile("SolverParameters/userPrecParams.xml"));
#else
      ParameterXMLFileReader reader("userPrecParams.xml");
#endif

    ParameterList solverParams = reader.getParameters();
    ParameterList innerSolverParams = solverParams.sublist("Inner Solve");
    ParameterList outerSolverParams = solverParams.sublist("Outer Solve");

    /* create the range space  */
    int nLocalRows = solverParams.get<int>("nLocal");

    MatrixLaplacian1D builder(nLocalRows, type);

    LinearOperator<double> A = builder.getOp();

    Vector<double> x = A.domain().createMember();
    int myRank = MPIComm::world().getRank();
    int nProcs = MPIComm::world().getNProc();
      

    Thyra::randomize(-ST::one(),+ST::one(),x.ptr().ptr());
#ifdef TRILINOS_6
    if (myRank==0) x[0] = 0.0;
    if (myRank==nProcs-1) x[nProcs * nLocalRows - 1] = 0.0;
    // need to fix operator[] routine
#else
    if (myRank==0) x.setElement(0, 0);
    if (myRank==nProcs-1) x.setElement(nProcs * nLocalRows - 1, 0.0);
#endif

    cout << "x=" << std::endl;
    x.print(cout);
      
    Vector<double> y = A*x;
    cout << "y=" << std::endl;
    y.print(cout);

    Vector<double> ans = A.range().createMember();

    LinearSolver<double> innerSolver 
      = LinearSolverBuilder::createSolver(innerSolverParams);

    LinearSolver<double> outerSolver 
      = LinearSolverBuilder::createSolver(outerSolverParams);

    /* call the setUserPrec() function to set the operator and solver 
     * to be used for preconditioning */
    outerSolver.setUserPrec(A, innerSolver);

    LinearOperator<double> AInv = inverse(A, outerSolver);
      

    ans = AInv * y;

    //      SolverState<double> state = solver.solve(A, y, ans);
      

      
    //      cout << state << std::endl;

    cout << "answer is " << std::endl;
    ans.print(cout);
      
    double err = (x-ans).norm2();
    cout << "error norm = " << err << std::endl;

    double tol = 1.0e-8;
    if (err > tol)
    {
      cout << "User-defined preconditioner test FAILED" << std::endl;
      return 1;
    }
    else
    {
      cout << "User-defined preconditioner test PASSED" << std::endl;
      return 0;
    }
  }
  catch(std::exception& e)
  {
    cout << "Caught exception: " << e.what() << std::endl;
    return -1;
  }
}
Example #25
0
SolverState<double> BelosSolver::solve(const LinearOperator<double>& A, 
  const Vector<double>& rhs, 
  Vector<double>& soln) const
{
  typedef Thyra::MultiVectorBase<double>         MV;
  typedef Thyra::LinearOpBase<double>            OP;
  typedef Belos::LinearProblem<double, MV, OP>   LP;

  TEST_FOR_EXCEPT(!A.ptr().get());
  TEST_FOR_EXCEPT(!rhs.ptr().get());

  /* get Thyra objects */
  RCP<OP> APtr = A.ptr();
  RCP<MV> bPtr = rhs.ptr(); 

  if (!soln.ptr().get()) soln = rhs.copy();

  RCP<MV> ansPtr = soln.ptr();

  
  
  RCP<LP> prob = rcp(new LP(APtr, ansPtr, bPtr));

  TEST_FOR_EXCEPT(!prob->setProblem());

  
  if (pf_.ptr().get())
  {
    Preconditioner<double> P = pf_.createPreconditioner(A);
    if (P.hasLeft())
    {
      prob->setLeftPrec(P.left().ptr());
    }
  
    if (P.hasRight())
    {
      prob->setRightPrec(P.right().ptr());
    }
  }

  ParameterList plist = parameters();

  RCP<ParameterList> belosList = rcp(&plist, false);
  RCP<Belos::SolverManager<double, MV, OP> > solver ;
  std::string solverType = parameters().get<string>("Method");
  
  if (solverType=="GMRES")
  {
    solver=rcp(new Belos::BlockGmresSolMgr<double, MV, OP>(prob, belosList));
  }
  else if (solverType=="CG")
  {
    solver=rcp(new Belos::BlockCGSolMgr<double, MV, OP>(prob, belosList));
  }
  else
  {
    TEST_FOR_EXCEPT(!(solverType=="GMRES" || solverType=="CG"));
  }

  Belos::ReturnType rtn = solver->solve();

  int numIters = solver->getNumIters();
  double resid = -1.0;
  
  SolverStatusCode code = SolveFailedToConverge;
  if (rtn==Belos::Converged) code = SolveConverged;
  SolverState<double> state(code, "Belos solver completed", numIters, resid);
  
  return state;
}
bool DuffingFloquet()
{
  int np = MPIComm::world().getNProc();
  TEUCHOS_TEST_FOR_EXCEPT(np != 1);

  const double pi = 4.0*atan(1.0);

  /* We will do our linear algebra using Epetra */
  VectorType<double> vecType = new EpetraVectorType();

  /* Create a periodic mesh */
  int nx = 128;

  MeshType meshType = new PeriodicMeshType1D();
  MeshSource mesher = new PeriodicLineMesher(0.0, 2.0*pi, nx, meshType);
  Mesh mesh = mesher.getMesh();

  /* Create a cell filter that will identify the maximal cells
   * in the interior of the domain */
  CellFilter interior = new MaximalCellFilter();
  CellFilter pts = new DimensionalCellFilter(0);
      
  CellFilter left = pts.subset(new CoordinateValueCellPredicate(0,0.0));
  CellFilter right = pts.subset(new CoordinateValueCellPredicate(0,2.0*pi));
      
  /* Create unknown and test functions, discretized using first-order
   * Lagrange interpolants */
  Expr u1 = new UnknownFunction(new Lagrange(1), "u1");
  Expr u2 = new UnknownFunction(new Lagrange(1), "u2");
  Expr v1 = new TestFunction(new Lagrange(1), "v1");
  Expr v2 = new TestFunction(new Lagrange(1), "v2");

  /* Create differential operator and coordinate function */
  Expr dx = new Derivative(0);
  Expr x = new CoordExpr(0);

  /* We need a quadrature rule for doing the integrations */
  QuadratureFamily quad = new GaussianQuadrature(4);

  double F0 = 0.5;
  double gamma = 2.0/3.0;
  double a0 = 1.0;
  double w0 = 1.0;
  double eps = 0.5;

  Expr u1Guess = -0.75*cos(x) + 0.237*sin(x);
  Expr u2Guess = 0.237*cos(x) + 0.75*sin(x);

  DiscreteSpace discSpace(mesh, 
    List(new Lagrange(1), new Lagrange(1)),
    vecType);
  L2Projector proj(discSpace, List(u1Guess, u2Guess));
  Expr u0 = proj.project();


  Expr rhs1 = u2;
  Expr rhs2 = -w0*w0*u1 - gamma*u2 - eps*w0*w0*pow(u1,3.0)/a0/a0 
    + F0*w0*w0*sin(x);

  /* Define the weak form */
  Expr eqn = Integral(interior, 
    v1*(dx*u1 - rhs1) + v2*(dx*u2 - rhs2),
    quad);
  Expr dummyBC ; 

  NonlinearProblem prob(mesh, eqn, dummyBC, List(v1,v2), List(u1,u2), 
    u0, vecType);


  ParameterXMLFileReader reader("nox.xml");
  ParameterList solverParams = reader.getParameters();

  Out::root() << "finding periodic solution" << endl;
  NOXSolver solver(solverParams);
  prob.solve(solver);

  /* unfold the solution onto a non-periodic mesh */
      
  Expr uP = unfoldPeriodicDiscreteFunction(u0, "u_p");
  Out::root() << "uP=" << uP << endl;
      
  Mesh unfoldedMesh = DiscreteFunction::discFunc(uP)->mesh();
  DiscreteSpace unfDiscSpace = DiscreteFunction::discFunc(uP)->discreteSpace();

  FieldWriter writer = new MatlabWriter("Floquet.dat");
  writer.addMesh(unfoldedMesh);
  writer.addField("u_p[0]", new ExprFieldWrapper(uP[0]));
  writer.addField("u_p[1]", new ExprFieldWrapper(uP[1]));

  Array<Expr> a(2);
  a[0] = new Sundance::Parameter(0.0, "a1");
  a[1] = new Sundance::Parameter(0.0, "a2");


  Expr bc = EssentialBC(left, v1*(u1-uP[0]-a[0]) + v2*(u2-uP[1]-a[1]), quad);

  NonlinearProblem unfProb(unfoldedMesh, eqn, bc, 
    List(v1,v2), List(u1,u2), uP, vecType);

  unfProb.setEvalPoint(uP);

  LinearOperator<double> J = unfProb.allocateJacobian();
  Vector<double> b = J.domain().createMember();

  LinearSolver<double> linSolver
    = LinearSolverBuilder::createSolver("amesos.xml");
        
  SerialDenseMatrix<int, double> F(a.size(), a.size());

  for (int i=0; i<a.size(); i++)
  {
    Out::root() << "doing perturbed orbit #" << i << endl;
    for (int j=0; j<a.size(); j++) 
    {
      if (i==j) a[j].setParameterValue(1.0);
      else a[j].setParameterValue(0.0);
    }
        
    unfProb.computeJacobianAndFunction(J, b);
    Vector<double> w = b.copy();
    linSolver.solve(J, b, w);
    Expr w_i = new DiscreteFunction(unfDiscSpace, w);

    for (int j=0; j<a.size(); j++)
    {
      Out::root() << "postprocessing" << i << endl;

      writer.addField("w[" + Teuchos::toString(i)
        + ", " + Teuchos::toString(j) + "]", new ExprFieldWrapper(w_i[j]));
      Expr g = Integral(right, w_i[j], quad);
      F(j,i) = evaluateIntegral(unfoldedMesh, g);
    }
  }

  writer.write();

  Out::root() << "Floquet matrix = " << endl
              << F << endl;
        

  Out::root() << "doing eigenvalue analysis" << endl;
  Array<double> ew_r(a.size());
  Array<double> ew_i(a.size());
  int lWork = 6*a.size();
  Array<double> work(lWork);
  int info = 0;
  LAPACK<int, double> lapack;
  lapack.GEEV('N','N', a.size(), F.values(),
    a.size(), &(ew_r[0]), &(ew_i[0]), 0, 1, 0, 1, &(work[0]), lWork,
    &info);

  TEUCHOS_TEST_FOR_EXCEPTION(info != 0,
    std::runtime_error,
    "LAPACK GEEV returned error code =" << info);
      
  Array<double> ew(a.size());
  for (int i=0; i<a.size(); i++)
  {
    ew[i] = sqrt(ew_r[i]*ew_r[i]+ew_i[i]*ew_i[i]);
    Out::root() << setw(5) << i 
                << setw(16) << ew_r[i] 
                << setw(16) << ew_i[i] 
                << setw(16) << ew[i]
                << endl;
  }

  double err = ::fabs(ew[0] - 0.123);
  return SundanceGlobal::checkTest(err, 0.001);
}
int main(int argc, char *argv[]) 
{
  int stat = 0;
  try
    {
      GlobalMPISession session(&argc, &argv);
 
      /* create a distributed vector space for the multivector's vectors */
      VectorType<double> rowType = new EpetraVectorType();
      int nLocalRows = 2;
      VectorSpace<double> space 
        = rowType.createEvenlyPartitionedSpace(MPIComm::world(), nLocalRows);
      
      /* create a replicated vector space for the small space of columns */
      int nVecs = 3;
      VectorType<double> colType = new SerialVectorType();
      VectorSpace<double> replSpace 
        = colType.createEvenlyPartitionedSpace(MPIComm::world(), nVecs);

      /* create some random vectors */
      Teuchos::Array<Vector<double> > vecs(nVecs);
      for (int i=0; i<nVecs; i++)
      {
        vecs[i] = space.createMember();
        vecs[i].randomize();
      }

      /* Test multiplication by a multivector operator. We will compute
       * y1 by directly summing columns, and y2 by applying the operator */
      LinearOperator<double> A = multiVectorOperator<double>(vecs, replSpace);

      
      Vector<double> y1 = space.createMember();
      Vector<double> y2 = space.createMember();
      y1.zero(); 
      y2.zero(); 
      

      /* Sum columns, putting the weights into x */
      Vector<double> x = replSpace.createMember();

      Out::os() << "A=" << A << std::endl;
      
      for (int j=0; j<replSpace.numLocalElements(); j++)
        {
          
          x[j] = 2.0*(drand48()-0.5);
          y1 = y1 + x[j] * vecs[j];
          Out::os() << "x[" << j << "]=" << x[j] << std::endl;
          Out::os() << "vecs[j]=" << vecs[j] << std::endl;
        }  
      Out::os() << "y1=" << std::endl << y1 << std::endl;
      
      /* Apply the operator to the vector of weights */
      y2 = A * x;
      Out::os() << "y2=A*x=" << std::endl << y2 << std::endl;

      Vector<double> y12 = y1-y2;
      Vector<double> y21 = y2-y1;
      Out::os() << "y1-y2=" << std::endl << y12 << std::endl;
      Out::os() << "y2-y1=" << std::endl << y21 << std::endl;
      
      double errA = (y1-y2).norm2();

      Out::root() << "error in A*x = " << errA << std::endl;


      /* Now test z = A^T * y */
      LinearOperator<double> At = A.transpose();
      
      Vector<double> z1 = replSpace.createMember();
      z1.zero();
      Vector<double> z2 = replSpace.createMember();
      z2.zero();

      Vector<double> y = y1.copy();

      /* compute by vectorwise multiplication */
      for (int j=0; j<replSpace.numLocalElements(); j++)
      {
        z1[j] = vecs[j].dot(y);
      }
      /* compute with operator */
      z2 = At * y;
      

      double errAt = (z1-z2).normInf();
      Out::root() << "error in At*y = " << errA << std::endl;

      double tol = 1.0e-13;
      bool pass = errA + errAt < tol;
      pass = globalAnd(pass);
      if (pass)
        {
          Out::root() << "multivector op test PASSED" << std::endl;
        }
      else
        {
          stat = -1;
          Out::root() << "multivector op test FAILED" << std::endl;
        }
    }
  catch(std::exception& e)
    {
      stat = -1;
      std::cerr << "Caught exception: " << e.what() << std::endl;
    }
  return stat;
}
Preconditioner<double> 
PCDPreconditionerFactory::
createPreconditioner(const LinearOperator<double>& K) const
{
  Tabs tab;

  LinearOperator<double> F = K.getBlock(0,0);
//  F.setName("F");
  LinearOperator<double> FInv = inverse(F, FSolver_);
//  FInv.setName("FInv");
  LinearOperator<double> Bt = K.getBlock(0,1);
//  Bt.setName("Bt");


  LinearOperator<double> Fp = FpProb_.getOperator();

  LinearOperator<double> Mp = MpProb_.getOperator();
//  Mp.setName("Mp");

  LinearOperator<double> MpInv = inverse(Mp, MpSolver_);
//  MpInv.setName("MpInv");

  LinearOperator<double> Ap = ApProb_.getOperator();
//  Ap.setName("Ap");

  LinearOperator<double> ApInv = inverse(Ap, ApSolver_);
//  ApInv.setName("ApInv");


  VectorSpace<double> pDomain = Bt.domain();
  VectorSpace<double> uDomain = F.domain();

  LinearOperator<double> Iu = identityOperator(uDomain);
//  Iu.setName("Iu");
  LinearOperator<double> Ip = identityOperator(pDomain);
//  Ip.setName("Ip");

  LinearOperator<double> XInv = MpInv * Fp * ApInv;

  VectorSpace<double> rowSpace = K.range();
  VectorSpace<double> colSpace = K.domain();
   
  LinearOperator<double> Q1 = makeBlockOperator(colSpace, rowSpace);
//  Q1.setName("Q1");
  LinearOperator<double> Q2 = makeBlockOperator(colSpace, rowSpace);
  // Q2.setName("Q2");
  LinearOperator<double> Q3 = makeBlockOperator(colSpace, rowSpace);
  //Q3.setName("Q3");
   
  Q1.setBlock(0, 0, FInv);
  Q1.setBlock(1, 1, Ip);
  Q1.endBlockFill();
   
  Q2.setBlock(0, 0, Iu);
  Q2.setBlock(0, 1, -1.0*Bt);
  Q2.setBlock(1, 1, Ip);
  Q2.endBlockFill();
   
  Q3.setBlock(0, 0, Iu);
  Q3.setBlock(1, 1, -1.0*XInv);
  Q3.endBlockFill();
   
  LinearOperator<double> P1 = Q2 * Q3;
  LinearOperator<double> PInv = Q1 * P1;

  return new GenericRightPreconditioner<double>(PInv);
}