// Returns a bigger MATRIX with a new column and row in the matrix in order // to split the blob at the given (ind,ind) diagonal location. // Entries are relocated to the new MATRIX using the transformation defined // by MATRIX_COORD::MapForSplit. // Transfers the pointer data to the new MATRIX and deletes *this. MATRIX* MATRIX::ConsumeAndMakeBigger(int ind) { int dim = dimension(); int band_width = bandwidth(); // Check to see if bandwidth needs expanding. for (int col = ind; col >= 0 && col > ind - band_width; --col) { if (array_[col * band_width + band_width - 1] != empty_) { ++band_width; break; } } MATRIX* result = new MATRIX(dim + 1, band_width); for (int col = 0; col < dim; ++col) { for (int row = col; row < dim && row < col + bandwidth(); ++row) { MATRIX_COORD coord(col, row); coord.MapForSplit(ind); BLOB_CHOICE_LIST* choices = get(col, row); if (choices != NULL) { // Correct matrix location on each choice. BLOB_CHOICE_IT bc_it(choices); for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) { BLOB_CHOICE* choice = bc_it.data(); choice->set_matrix_cell(coord.col, coord.row); } ASSERT_HOST(coord.Valid(*result)); result->put(coord.col, coord.row, choices); } } } delete this; return result; }
void Wordrec::ProcessSegSearchPainPoint( float pain_point_priority, const MATRIX_COORD &pain_point, const char* pain_point_type, GenericVector<SegSearchPending>* pending, WERD_RES *word_res, LMPainPoints *pain_points, BlamerBundle *blamer_bundle) { if (segsearch_debug_level > 0) { tprintf("Classifying pain point %s priority=%.4f, col=%d, row=%d\n", pain_point_type, pain_point_priority, pain_point.col, pain_point.row); } ASSERT_HOST(pain_points != NULL); MATRIX *ratings = word_res->ratings; // Classify blob [pain_point.col pain_point.row] if (!pain_point.Valid(*ratings)) { ratings->IncreaseBandSize(pain_point.row + 1 - pain_point.col); } ASSERT_HOST(pain_point.Valid(*ratings)); BLOB_CHOICE_LIST *classified = classify_piece(word_res->seam_array, pain_point.col, pain_point.row, pain_point_type, word_res->chopped_word, blamer_bundle); BLOB_CHOICE_LIST *lst = ratings->get(pain_point.col, pain_point.row); if (lst == NULL) { ratings->put(pain_point.col, pain_point.row, classified); } else { // We can not delete old BLOB_CHOICEs, since they might contain // ViterbiStateEntries that are parents of other "active" entries. // Thus if the matrix cell already contains classifications we add // the new ones to the beginning of the list. BLOB_CHOICE_IT it(lst); it.add_list_before(classified); delete classified; // safe to delete, since empty after add_list_before() classified = NULL; } if (segsearch_debug_level > 0) { print_ratings_list("Updated ratings matrix with a new entry:", ratings->get(pain_point.col, pain_point.row), getDict().getUnicharset()); ratings->print(getDict().getUnicharset()); } // Insert initial "pain points" to join the newly classified blob // with its left and right neighbors. if (classified != NULL && !classified->empty()) { if (pain_point.col > 0) { pain_points->GeneratePainPoint( pain_point.col - 1, pain_point.row, LM_PPTYPE_SHAPE, 0.0, true, segsearch_max_char_wh_ratio, word_res); } if (pain_point.row + 1 < ratings->dimension()) { pain_points->GeneratePainPoint( pain_point.col, pain_point.row + 1, LM_PPTYPE_SHAPE, 0.0, true, segsearch_max_char_wh_ratio, word_res); } } (*pending)[pain_point.col].SetBlobClassified(pain_point.row); }
// Makes and returns a deep copy of *this, including all the BLOB_CHOICEs // on the lists, but not any LanguageModelState that may be attached to the // BLOB_CHOICEs. MATRIX* MATRIX::DeepCopy() const { int dim = dimension(); int band_width = bandwidth(); MATRIX* result = new MATRIX(dim, band_width); for (int col = 0; col < dim; ++col) { for (int row = col; row < dim && row < col + band_width; ++row) { BLOB_CHOICE_LIST* choices = get(col, row); if (choices != NULL) { BLOB_CHOICE_LIST* copy_choices = new BLOB_CHOICE_LIST; copy_choices->deep_copy(choices, &BLOB_CHOICE::deep_copy); result->put(col, row, copy_choices); } } } return result; }
/********************************************************************** * record_piece_ratings * * Save the choices for all the pieces that have been classified into * a matrix that can be used to look them up later. A two dimensional * matrix is created. The indices correspond to the starting and * ending initial piece number. **********************************************************************/ MATRIX *Wordrec::record_piece_ratings(TBLOB *blobs) { inT16 num_blobs = count_blobs(blobs); TBOX *bounds = record_blob_bounds(blobs); MATRIX *ratings = new MATRIX(num_blobs); for (int x = 0; x < num_blobs; x++) { for (int y = x; y < num_blobs; y++) { TBOX piecebox = bounds_of_piece(bounds, x, y); BLOB_CHOICE_LIST *choices = blob_match_table.get_match_by_box(piecebox); if (choices != NULL) { ratings->put(x, y, choices); } } } if (merge_fragments_in_matrix) merge_fragments(ratings, num_blobs); delete []bounds; return ratings; }
void Wordrec::SegSearch(CHUNKS_RECORD *chunks_record, WERD_CHOICE *best_choice, BLOB_CHOICE_LIST_VECTOR *best_char_choices, WERD_CHOICE *raw_choice, STATE *output_best_state) { int row, col = 0; if (segsearch_debug_level > 0) { tprintf("Starting SegSearch on ratings matrix:\n"); chunks_record->ratings->print(getDict().getUnicharset()); } // Start with a fresh best_choice since rating adjustments // used by the chopper and the new segmentation search are not compatible. best_choice->set_rating(WERD_CHOICE::kBadRating); // Clear best choice accumulator (that is used for adaption), so that // choices adjusted by chopper do not interfere with the results from the // segmentation search. getDict().ClearBestChoiceAccum(); MATRIX *ratings = chunks_record->ratings; // Priority queue containing pain points generated by the language model // The priority is set by the language model components, adjustments like // seam cost and width priority are factored into the priority. HEAP *pain_points = MakeHeap(segsearch_max_pain_points); // best_path_by_column records the lowest cost path found so far for each // column of the chunks_record->ratings matrix over all the rows. BestPathByColumn *best_path_by_column = new BestPathByColumn[ratings->dimension()]; for (col = 0; col < ratings->dimension(); ++col) { best_path_by_column[col].avg_cost = WERD_CHOICE::kBadRating; best_path_by_column[col].best_vse = NULL; } language_model_->InitForWord(prev_word_best_choice_, &denorm_, assume_fixed_pitch_char_segment, best_choice->certainty(), segsearch_max_char_wh_ratio, pain_points, chunks_record); MATRIX_COORD *pain_point; float pain_point_priority; BestChoiceBundle best_choice_bundle( output_best_state, best_choice, raw_choice, best_char_choices); // pending[i] stores a list of the parent/child pair of BLOB_CHOICE_LISTs, // where i is the column of the child. Initially all the classified entries // in the ratings matrix from column 0 (with parent NULL) are inserted into // pending[0]. As the language model state is updated, new child/parent // pairs are inserted into the lists. Next, the entries in pending[1] are // considered, and so on. It is important that during the update the // children are considered in the non-decreasing order of their column, since // this guarantess that all the parents would be up to date before an update // of a child is done. SEG_SEARCH_PENDING_LIST *pending = new SEG_SEARCH_PENDING_LIST[ratings->dimension()]; // Search for the ratings matrix for the initial best path. for (row = 0; row < ratings->dimension(); ++row) { if (ratings->get(0, row) != NOT_CLASSIFIED) { pending[0].add_sorted( SEG_SEARCH_PENDING::compare, true, new SEG_SEARCH_PENDING(row, NULL, LanguageModel::kAllChangedFlag)); } } UpdateSegSearchNodes(0, &pending, &best_path_by_column, chunks_record, pain_points, &best_choice_bundle); // Keep trying to find a better path by fixing the "pain points". int num_futile_classifications = 0; while (!(language_model_->AcceptableChoiceFound() || num_futile_classifications >= segsearch_max_futile_classifications)) { // Get the next valid "pain point". int pop; while (true) { pop = HeapPop(pain_points, &pain_point_priority, &pain_point); if (pop == EMPTY) break; if (pain_point->Valid(*ratings) && ratings->get(pain_point->col, pain_point->row) == NOT_CLASSIFIED) { break; } else { delete pain_point; } } if (pop == EMPTY) { if (segsearch_debug_level > 0) tprintf("Pain points queue is empty\n"); break; } if (segsearch_debug_level > 0) { tprintf("Classifying pain point priority=%.4f, col=%d, row=%d\n", pain_point_priority, pain_point->col, pain_point->row); } BLOB_CHOICE_LIST *classified = classify_piece( chunks_record->chunks, chunks_record->splits, pain_point->col, pain_point->row); ratings->put(pain_point->col, pain_point->row, classified); if (segsearch_debug_level > 0) { print_ratings_list("Updated ratings matrix with a new entry:", ratings->get(pain_point->col, pain_point->row), getDict().getUnicharset()); chunks_record->ratings->print(getDict().getUnicharset()); } // Insert initial "pain points" to join the newly classified blob // with its left and right neighbors. if (!classified->empty()) { float worst_piece_cert; bool fragmented; if (pain_point->col > 0) { language_model_->GetWorstPieceCertainty( pain_point->col-1, pain_point->row, chunks_record->ratings, &worst_piece_cert, &fragmented); language_model_->GeneratePainPoint( pain_point->col-1, pain_point->row, false, LanguageModel::kInitialPainPointPriorityAdjustment, worst_piece_cert, fragmented, best_choice->certainty(), segsearch_max_char_wh_ratio, NULL, NULL, chunks_record, pain_points); } if (pain_point->row+1 < ratings->dimension()) { language_model_->GetWorstPieceCertainty( pain_point->col, pain_point->row+1, chunks_record->ratings, &worst_piece_cert, &fragmented); language_model_->GeneratePainPoint( pain_point->col, pain_point->row+1, true, LanguageModel::kInitialPainPointPriorityAdjustment, worst_piece_cert, fragmented, best_choice->certainty(), segsearch_max_char_wh_ratio, NULL, NULL, chunks_record, pain_points); } } // Record a pending entry with the pain_point and each of its parents. int parent_row = pain_point->col - 1; if (parent_row < 0) { // this node has no parents pending[pain_point->col].add_sorted( SEG_SEARCH_PENDING::compare, true, new SEG_SEARCH_PENDING(pain_point->row, NULL, LanguageModel::kAllChangedFlag)); } else { for (int parent_col = 0; parent_col < pain_point->col; ++parent_col) { if (ratings->get(parent_col, parent_row) != NOT_CLASSIFIED) { pending[pain_point->col].add_sorted( SEG_SEARCH_PENDING::compare, true, new SEG_SEARCH_PENDING(pain_point->row, ratings->get(parent_col, parent_row), LanguageModel::kAllChangedFlag)); } } } UpdateSegSearchNodes(pain_point->col, &pending, &best_path_by_column, chunks_record, pain_points, &best_choice_bundle); if (!best_choice_bundle.updated) ++num_futile_classifications; if (segsearch_debug_level > 0) { tprintf("num_futile_classifications %d\n", num_futile_classifications); } // Clean up best_choice_bundle.updated = false; delete pain_point; // done using this pain point } if (segsearch_debug_level > 0) { tprintf("Done with SegSearch (AcceptableChoiceFound: %d\n", language_model_->AcceptableChoiceFound()); } // Clean up. FreeHeapData(pain_points, MATRIX_COORD::Delete); delete[] best_path_by_column; delete[] pending; for (row = 0; row < ratings->dimension(); ++row) { for (col = 0; col <= row; ++col) { BLOB_CHOICE_LIST *rating = ratings->get(col, row); if (rating != NOT_CLASSIFIED) language_model_->DeleteState(rating); } } }