double Distance( const Conic& c1, const Conic& c2, double circle_radius ) { const Matrix3d Q = c1.Dual * c2.C; // const double dsq = 3 - trace(Q)* pow(determinant(Q),-1.0/3.0); const double dsq = 3 - Q.trace()* 1.0 / cbrt(Q.determinant()); return sqrt(dsq) * circle_radius; }
double angle_mismatch(const Matrix3d& Q, const Matrix3d& R) { //std::cout << "Q\n" << Q << "\nR\n" << R << std::endl; Matrix3d S = Q.transpose()*R; //std::cout << "S\n: " << S << std::endl; double thecos = (S.trace()-1.0)/2.0; thecos = std::max( std::min ( thecos, 1.0), -1.0); //std::cout << "thecos: " << thecos << " leads to angle: " << acos(thecos) << " * " << ( S(1,2) < 0.0 ? -1.0 : 1.0) << std::endl; return (acos(thecos) * ( S(1,2) < 0.0 ? -1.0 : 1.0)); }
Matrix3d skewlog(Matrix3d M){ Matrix3d skew; double val = (M.trace() - 1.f)/2.f; if(val > 1.f) val = 1.f; else if (val < -1.f) val = -1.f; double theta = acos(val); if(theta == 0.f) skew << 0,0,0,0,0,0,0,0,0; else skew << (M-M.transpose())/(2.f*sin(theta))*theta; return skew; }
Vector3d logarithm_map_so3(Matrix3d R){ Matrix3d Id3 = Matrix3d::Identity(); Vector3d w; Matrix3d V = Matrix3d::Identity(), w_hat = Matrix3d::Zero(); w << 0.f, 0.f, 0.f; double cosine = (R.trace() - 1.f)/2.f; if(cosine > 1.f) cosine = 1.f; else if (cosine < -1.f) cosine = -1.f; double sine = sqrt(1.0-cosine*cosine); if(sine > 1.f) sine = 1.f; else if (sine < -1.f) sine = -1.f; double theta = acos(cosine); if( theta > 0.000001 ){ w_hat << theta*(R-R.transpose()) / (2.f*sine); w = skewcoords(w_hat); } return w; }
/* * deviator of a tensor */ static Matrix3d Deviator(Matrix3d M) { Matrix3d eye; eye.setIdentity(); eye *= M.trace() / 3.0; return M - eye; }
void DecomposeEssentialUsingHorn90(double _E[9], double _R1[9], double _R2[9], double _t1[3], double _t2[3]) { //from : http://people.csail.mit.edu/bkph/articles/Essential.pdf #ifdef USE_EIGEN using namespace Eigen; Matrix3d E = Map<Matrix<double,3,3,RowMajor> >(_E); Matrix3d EEt = E * E.transpose(); Vector3d e0e1 = E.col(0).cross(E.col(1)),e1e2 = E.col(1).cross(E.col(2)),e2e0 = E.col(2).cross(E.col(0)); Vector3d b1,b2; #if 1 //Method 1 Matrix3d bbt = 0.5 * EEt.trace() * Matrix3d::Identity() - EEt; //Horn90 (12) Vector3d bbt_diag = bbt.diagonal(); if (bbt_diag(0) > bbt_diag(1) && bbt_diag(0) > bbt_diag(2)) { b1 = bbt.row(0) / sqrt(bbt_diag(0)); b2 = -b1; } else if (bbt_diag(1) > bbt_diag(0) && bbt_diag(1) > bbt_diag(2)) { b1 = bbt.row(1) / sqrt(bbt_diag(1)); b2 = -b1; } else { b1 = bbt.row(2) / sqrt(bbt_diag(2)); b2 = -b1; } #else //Method 2 if (e0e1.norm() > e1e2.norm() && e0e1.norm() > e2e0.norm()) { b1 = e0e1.normalized() * sqrt(0.5 * EEt.trace()); //Horn90 (18) b2 = -b1; } else if (e1e2.norm() > e0e1.norm() && e1e2.norm() > e2e0.norm()) { b1 = e1e2.normalized() * sqrt(0.5 * EEt.trace()); //Horn90 (18) b2 = -b1; } else { b1 = e2e0.normalized() * sqrt(0.5 * EEt.trace()); //Horn90 (18) b2 = -b1; } #endif //Horn90 (19) Matrix3d cofactors; cofactors.col(0) = e1e2; cofactors.col(1) = e2e0; cofactors.col(2) = e0e1; cofactors.transposeInPlace(); //B = [b]_x , see Horn90 (6) and http://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication Matrix3d B1; B1 << 0,-b1(2),b1(1), b1(2),0,-b1(0), -b1(1),b1(0),0; Matrix3d B2; B2 << 0,-b2(2),b2(1), b2(2),0,-b2(0), -b2(1),b2(0),0; Map<Matrix<double,3,3,RowMajor> > R1(_R1),R2(_R2); //Horn90 (24) R1 = (cofactors.transpose() - B1*E) / b1.dot(b1); R2 = (cofactors.transpose() - B2*E) / b2.dot(b2); Map<Vector3d> t1(_t1),t2(_t2); t1 = b1; t2 = b2; cout << "Horn90 provided " << endl << R1 << endl << "and" << endl << R2 << endl; #endif }
double BODY::Angle2BD(BODY* bd2) { Matrix3d ar = bd2->A0.transpose()*A0; double Ctheta = 0.5*(ar.trace() - 1); return acos(Ctheta); }