Example #1
0
TEST(Matrix, InitializerList)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}};

  EXPECT_EQ(2, A(0, 1));
  EXPECT_EQ(2, A.height());
  EXPECT_EQ(3, A.width());
}
Example #2
0
TEST(Matrix, ColSwap)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{2, 1, 3}, {5, 4, 6}, {8, 7, 9}};
  EXPECT_EQ(B, A.col_swap(0, 1));

  MatrixQ C = A;
  EXPECT_EQ(C, A.col_swap(0, 0));
}
Example #3
0
TEST(Matrix, RowSwap)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{1, 2, 3}, {7, 8, 9}, {4, 5, 6}};
  EXPECT_EQ(B, A.row_swap(1, 2));

  MatrixQ C = A;
  EXPECT_EQ(C, A.row_swap(2, 2));
}
Example #4
0
GroupWithMorphisms compute_image(const std::size_t p, const MatrixQ& f,
                                 const AbelianGroup& X, const AbelianGroup& Y)
{
  MatrixQRefList to_X;
  MatrixQList from_X = {MatrixQ::identity(f.width())};
  GroupWithMorphisms K = compute_kernel(p, f, X, Y, to_X, ref(from_X));

  MatrixQList to_X_2 = {MatrixQ::identity(f.width())};
  MatrixQList from_X_2 = {f};
  GroupWithMorphisms img =
      compute_cokernel(p, f, Y, ref(to_X_2), ref(from_X_2));

  return img;
}
Example #5
0
bool morphism_equal(std::size_t p, const MatrixQ& f, const MatrixQ& g,
                    const AbelianGroup& Y)
{
  for (std::size_t i = 0; i < f.height(); i++) {
    for (std::size_t j = 0; j < f.width(); j++) {
      if (f(i, j) != g(i, j)) {
        if (i >= Y.tor_rank() ||
            static_cast<std::size_t>(p_val_q(p, f(i, j) - g(i, j))) < Y(i)) {
          return false;
        }
      }
    }
  }
  return true;
}
Example #6
0
GroupWithMorphisms compute_cokernel(const std::size_t p, const MatrixQ& f,
                                    const AbelianGroup& Y,
                                    const MatrixQRefList& to_Y_ref,
                                    const MatrixQRefList& from_Y_ref)
{
  MatrixQ f_rel_Y(f.height(), f.width() + Y.tor_rank());
  f_rel_Y(0, 0, f.height(), f.width()) = f;
  f_rel_Y(0, f.width(), Y.tor_rank(), Y.tor_rank()) = Y.torsion_matrix(p);

  MatrixQList to_Y_copy = deref(to_Y_ref);
  MatrixQList from_Y_copy = deref(from_Y_ref);

  MatrixQRefList to_X;
  MatrixQRefList from_X;
  MatrixQRefList to_Y_copy_ref = ref(to_Y_copy);
  MatrixQRefList from_Y_copy_ref = ref(from_Y_copy);

  smith_reduce_p(p, f_rel_Y, to_X, from_X, to_Y_copy_ref, from_Y_copy_ref);

  std::size_t rank_diff = 0;
  std::size_t torsion_rank = 0;

  for (std::size_t i = 0; i < std::min(f_rel_Y.height(), f_rel_Y.width());
       ++i) {
    if (f_rel_Y(i, i) == 1)
      ++rank_diff;
    else if (f_rel_Y(i, i) != 0)
      ++torsion_rank;
    else
      break;
  }

  GroupWithMorphisms C(f_rel_Y.height() - rank_diff - torsion_rank,
                       torsion_rank);
  for (std::size_t i = rank_diff; i < rank_diff + torsion_rank; ++i)
    C.group(i - rank_diff) =
        static_cast<std::size_t>(p_val_q(p, f_rel_Y(i, i)));

  for (MatrixQ& g_to_Y : to_Y_copy)
    C.maps_to.emplace_back(
        g_to_Y(rank_diff, 0, g_to_Y.height() - rank_diff, g_to_Y.width()));

  for (MatrixQ& g_from_Y : from_Y_copy)
    C.maps_from.emplace_back(g_from_Y(0, rank_diff, g_from_Y.height(),
                                      g_from_Y.width() - rank_diff));

  return C;
}
Example #7
0
// lifts a map from f:F -> Y over the map map: X -> Y. We only need relations
// for Y.
// Remark 1: does NOT catch if such a lift doesn't exist!
// Remark 2: If the map X -> Y is injective, then for a map A -> Y the lift F_A
// -> X of the map
//           F_A -> Y induces a well-defined map A -> X.
//           In general, the problem whether there IS such a lift, and how to
//           compute it,
//           will involve additional work.
MatrixQ lift_from_free(const mod_t p, const MatrixQ& f, const MatrixQ& map,
                       const AbelianGroup& Y)
{


  MatrixQ rel_y_map(map.height(), Y.tor_rank() + map.width());

  rel_y_map(Y.free_rank(), 0, Y.tor_rank(), Y.tor_rank()) = Y.torsion_matrix(p);

  rel_y_map(0, Y.tor_rank(), map.height(), map.width()) = map;

  MatrixQ proj(map.width(), Y.tor_rank() + map.width());
  proj(0, Y.tor_rank(), map.width(), map.width()) =
      MatrixQ::identity(map.width());

  MatrixQ f_copy(f);

  MatrixQRefList to_X_dummy;
  MatrixQRefList from_Y_dummy;
  MatrixQRefList from_X_ref;
  MatrixQRefList to_Y_ref;

  from_X_ref.emplace_back(proj);
  to_Y_ref.emplace_back(f_copy);

  smith_reduce_p(p, rel_y_map, to_X_dummy, from_X_ref, to_Y_ref, from_Y_dummy);

  MatrixQ lift(rel_y_map.width(), f.width());

  dim_t d_max = 0;
  while (d_max < rel_y_map.height() && d_max < rel_y_map.width() &&
         rel_y_map(d_max, d_max) != 0) {
    d_max++;
  }

  for (dim_t i = 0; i < d_max; i++) {
    for (dim_t j = 0; j < f.width(); j++) {
      lift(i, j) = f_copy(i, j) / rel_y_map(i, i);
    }
  }

  return proj * lift;
}
Example #8
0
JNIEXPORT void JNICALL Java_matrixqhelperlib_JNIMatrixQHelper_multiplyByVectorInC
  (JNIEnv *env, jclass myself, jlong handle, jdouble timeScale, jdoubleArray inputVector, jdoubleArray outputVector)
{
    MatrixQ* value = reinterpret_cast<MatrixQ*>(handle);

    int inputLength = env->GetArrayLength(inputVector);
    int outputLength = env->GetArrayLength(outputVector);

    if (inputLength != outputLength)
    {
        std::cout<<"The sizes of the passed in vectors were not equal."<<std::endl;
        abort();
    }

    JDoubleConverter convertedInputVector(env,inputVector);
    Eigen::Map<Eigen::VectorXd> mappedInputVector(convertedInputVector,inputLength);

    JDoubleConverter convertedOutputVector(env,outputVector);
    Eigen::Map<Eigen::VectorXd> mappedOutputVector(convertedOutputVector,inputLength);


    mappedOutputVector = value->multiplyByVector(timeScale,mappedInputVector);
}
Example #9
0
GroupWithMorphisms compute_image(const mod_t p, const MatrixQ& f,
                                 const AbelianGroup& X, const AbelianGroup& Y)
{
  MatrixQRefList to_X_dummy;
  MatrixQList from_X = {MatrixQ::identity(f.width())};
  GroupWithMorphisms K = compute_kernel(p, f, X, Y, to_X_dummy, ref(from_X));

  MatrixQList to_X_2 =  {MatrixQ::identity(X.rank())};
  MatrixQList from_X_2 = {f,MatrixQ::identity(X.rank())};//hacky, since id:X->X doesn't vanish on K.
                                                         //but due to the implementation, the columns of this will contain
                                                         //representatives in X for the generators of img.
  GroupWithMorphisms img =
      compute_cokernel(p, K.maps_from[0], X, ref(to_X_2), ref(from_X_2));

  return img;
}
Example #10
0
GroupWithMorphisms compute_kernel(const std::size_t p, const MatrixQ& f,
                                  const AbelianGroup& X, const AbelianGroup& Y,
                                  const MatrixQRefList& to_X_ref,
                                  const MatrixQRefList& from_X_ref)
{
  MatrixQ f_rel_Y(f.height(), f.width() + Y.tor_rank());
  f_rel_Y(0, 0, f.height(), f.width()) = f;
  f_rel_Y(0, f.width(), Y.tor_rank(), Y.tor_rank()) = Y.torsion_matrix(p);

  MatrixQ rel_x_lift(f.width() + Y.tor_rank(), X.tor_rank());
  rel_x_lift(0, 0, X.tor_rank(), X.tor_rank()) = X.torsion_matrix(p);
  // rel_x_lift(f.width(), 0, Y.tor_rank(), X.tor_rank()) = -lift of f\circ
  // rel_x over rel_Y.
  //      Can be computed by multiplying the columns of f with the orders of X,
  //      and dividing the rows by the orders of Y.

  for (std::size_t i = 0; i < Y.tor_rank(); ++i) {
    for (std::size_t j = 0; j < X.tor_rank(); ++j) {
      long order_diff = static_cast<long>(X(j) - Y(i));
      rel_x_lift(f.width() + i, j) = -f(i, j) * p_pow_q(p, order_diff);
    }
  }

  // build to_X_rel_Y, from_X_rel_Y.
  MatrixQList to_X_rel_Y;
  for (MatrixQ& g_to_X : to_X_ref) {
    to_X_rel_Y.emplace_back(f.width() + Y.tor_rank(), g_to_X.width());
    to_X_rel_Y.back()(0, 0, f.width(), g_to_X.width()) = g_to_X;

    MatrixQ fg = f * g_to_X;
    for (std::size_t i = 0; i < Y.tor_rank(); ++i) {
      for (std::size_t j = 0; j < g_to_X.width(); ++j) {
        to_X_rel_Y.back()(f.width() + i, j) = -fg(i, j) / p_pow_z(p, Y(i));
      }
    }
  }

  MatrixQList from_X_rel_Y;
  for (MatrixQ& g_from_X : from_X_ref) {
    from_X_rel_Y.emplace_back(g_from_X.height(), f.width() + Y.tor_rank());
    from_X_rel_Y.back()(0, 0, g_from_X.height(), f.width()) = g_from_X;
  }

  MatrixQRefList to_X_rel_Y_ref = ref(to_X_rel_Y);
  MatrixQRefList from_X_rel_Y_ref = ref(from_X_rel_Y);

  to_X_rel_Y_ref.emplace_back(rel_x_lift);

  MatrixQRefList to_Y;
  MatrixQRefList from_Y;
  smith_reduce_p(p, f_rel_Y, to_X_rel_Y_ref, from_X_rel_Y_ref, to_Y, from_Y);

  std::size_t rank_diff;
  for (rank_diff = 0; rank_diff < std::min(f_rel_Y.height(), f_rel_Y.width());
       ++rank_diff) {
    if (f_rel_Y(rank_diff, rank_diff) == 0) break;
  }

  // next, restrict attention to the entries corresponding to zero columns of
  // f_rel_Y:
  // for rel_x_lift as well as the entries of to_X_rel_Y, take the submatrices
  // formed
  // by the corresponding rows. For from_X_rel_Y, take the submatrices formed
  // by
  // the corresponding columns.
  MatrixQ rel_K = rel_x_lift(rank_diff, 0, rel_x_lift.height() - rank_diff,
                             rel_x_lift.width());
  MatrixQList to_free_K;
  for (MatrixQ& g_to_X_rel_Y : to_X_rel_Y) {
    to_free_K.emplace_back(g_to_X_rel_Y(
        rank_diff, 0, g_to_X_rel_Y.height() - rank_diff, g_to_X_rel_Y.width()));
  }
  MatrixQList from_free_K;

  for (MatrixQ& g_from_X_rel_Y : from_X_rel_Y) {
    from_free_K.emplace_back(
        g_from_X_rel_Y(0, rank_diff, g_from_X_rel_Y.height(),
                       g_from_X_rel_Y.width() - rank_diff));
  }

  MatrixQRefList to_free_K_ref = ref(to_free_K);
  MatrixQRefList from_free_K_ref = ref(from_free_K);

  AbelianGroup free_K(rel_K.height(), 0);
  // then, compute the cokernel of the new rel_x_lift with the respective
  // to_Y, from_Y.
  return compute_cokernel(p, rel_K, free_K, to_free_K_ref, from_free_K_ref);
}
Example #11
0
bool morphism_zero(std::size_t p, const MatrixQ& f, const AbelianGroup& Y)
{
  MatrixQ g(f.height(), f.width());

  return morphism_equal(p, f, g, Y);
}
Example #12
0
TEST(Matrix, ColMul)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{1_mpq / 2, 2, 3}, {2, 5, 6}, {7 / 2_mpq, 8, 9}};
  EXPECT_EQ(B, A.col_mul(0, 1 / 2_mpq));
}
Example #13
0
TEST(Matrix, ColAdd)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{-1, 2, 3}, {-1, 5, 6}, {-1, 8, 9}};
  EXPECT_EQ(B, A.col_add(1, 0, -1_mpq));
}
Example #14
0
TEST(Matrix, RowMul)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{1_mpq / 2, 1_mpq, 3_mpq / 2}, {4, 5, 6}, {7, 8, 9}};
  EXPECT_EQ(B, A.row_mul(0, 1 / 2_mpq));
}
Example #15
0
TEST(Matrix, RowAdd)
{
  MatrixQ A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  MatrixQ B = {{1, 2, 3}, {4, 5, 6}, {9, 12, 15}};
  EXPECT_EQ(B, A.row_add(0, 2, 2_mpq));
}