Example #1
0
void
MisesMat :: giveFirstPKStressVector_3d(FloatArray &answer,
                                       GaussPoint *gp,
                                       const FloatArray &totalDefGradOOFEM,
                                       TimeStep *tStep)
{
    MisesMatStatus *status = static_cast< MisesMatStatus * >( this->giveStatus(gp) );

    double kappa, dKappa, yieldValue, mi;
    FloatMatrix F, oldF, invOldF;
    FloatArray s;
    F.beMatrixForm(totalDefGradOOFEM); //(method assumes full 3D)

    kappa = status->giveCumulativePlasticStrain();
    oldF.beMatrixForm( status->giveFVector() );
    invOldF.beInverseOf(oldF);
    //relative deformation radient
    FloatMatrix f;
    f.beProductOf(F, invOldF);
    //compute elastic predictor
    FloatMatrix trialLeftCauchyGreen, help;

    f.times( 1./cbrt(f.giveDeterminant()) );

    help.beProductOf(f, status->giveTempLeftCauchyGreen());
    trialLeftCauchyGreen.beProductTOf(help, f);
    FloatMatrix E;
    E.beTProductOf(F, F);
    E.at(1, 1) -= 1.0;
    E.at(2, 2) -= 1.0;
    E.at(3, 3) -= 1.0;
    E.times(0.5);

    FloatArray e;
    e.beSymVectorFormOfStrain(E);

    FloatArray leftCauchyGreen;
    FloatArray leftCauchyGreenDev;
    double leftCauchyGreenVol;

    leftCauchyGreen.beSymVectorFormOfStrain(trialLeftCauchyGreen);

    leftCauchyGreenVol = computeDeviatoricVolumetricSplit(leftCauchyGreenDev, leftCauchyGreen);
    FloatArray trialStressDev;
    applyDeviatoricElasticStiffness(trialStressDev, leftCauchyGreenDev, G / 2.);
    s = trialStressDev;

    //check for plastic loading
    double trialS = computeStressNorm(trialStressDev);
    double sigmaY = sig0 + H * kappa;
    //yieldValue = sqrt(3./2.)*trialS-sigmaY;
    yieldValue = trialS - sqrt(2. / 3.) * sigmaY;


    //store deviatoric trial stress(reused by algorithmic stiffness)
    status->letTrialStressDevBe(trialStressDev);
    //the return-mapping algorithm
    double J = F.giveDeterminant();
    mi = leftCauchyGreenVol * G;
    if ( yieldValue > 0 ) {
        //dKappa =sqrt(3./2.)* yieldValue/(H + 3.*mi);
        //kappa = kappa + dKappa;
        //trialStressDev.times(1-sqrt(6.)*mi*dKappa/trialS);
        dKappa = ( yieldValue / ( 2 * mi ) ) / ( 1 + H / ( 3 * mi ) );
        FloatArray n = trialStressDev;
        n.times(2 * mi * dKappa / trialS);
        ////return map
        s.beDifferenceOf(trialStressDev, n);
        kappa += sqrt(2. / 3.) * dKappa;


        //update of intermediate configuration
        trialLeftCauchyGreen.beMatrixForm(s);
        trialLeftCauchyGreen.times(1.0 / G);
        trialLeftCauchyGreen.at(1, 1) += leftCauchyGreenVol;
        trialLeftCauchyGreen.at(2, 2) += leftCauchyGreenVol;
        trialLeftCauchyGreen.at(2, 2) += leftCauchyGreenVol;
        trialLeftCauchyGreen.times(J * J);
    }

    //addition of the elastic mean stress
    FloatMatrix kirchhoffStress;
    kirchhoffStress.beMatrixForm(s);
    kirchhoffStress.at(1, 1) += 1. / 2. *  K * ( J * J - 1 );
    kirchhoffStress.at(2, 2) += 1. / 2. *  K * ( J * J - 1 );
    kirchhoffStress.at(3, 3) += 1. / 2. *  K * ( J * J - 1 );


    FloatMatrix iF, Ep(3, 3), S;
    FloatArray vF, vS, ep;

    //transform Kirchhoff stress into Second Piola - Kirchhoff stress
    iF.beInverseOf(F);
    help.beProductOf(iF, kirchhoffStress);
    S.beProductTOf(help, iF);

    this->computeGLPlasticStrain(F, Ep, trialLeftCauchyGreen, J);

    ep.beSymVectorFormOfStrain(Ep);
    vS.beSymVectorForm(S);
    vF.beVectorForm(F);
    answer.beVectorForm(kirchhoffStress);

    status->setTrialStressVol(mi);
    status->letTempLeftCauchyGreenBe(trialLeftCauchyGreen);
    status->setTempCumulativePlasticStrain(kappa);
    status->letTempStressVectorBe(answer);
    status->letTempStrainVectorBe(e);
    status->letTempPlasticStrainBe(ep);
    status->letTempPVectorBe(answer);
    status->letTempFVectorBe(vF);
}
Example #2
0
void
MisesMat :: performPlasticityReturn(GaussPoint *gp, const FloatArray &totalStrain)
{
    MisesMatStatus *status = static_cast< MisesMatStatus * >( this->giveStatus(gp) );
    double kappa;
    FloatArray plStrain;
    FloatArray fullStress;
    // get the initial plastic strain and initial kappa from the status
    plStrain = status->givePlasticStrain();
    kappa = status->giveCumulativePlasticStrain();

    // === radial return algorithm ===
    if ( totalStrain.giveSize() == 1 ) {
        LinearElasticMaterial *lmat = this->giveLinearElasticMaterial();
        double E = lmat->give('E', gp);
        /*trial stress*/
        fullStress.resize(6);
        fullStress.at(1) = E * ( totalStrain.at(1) - plStrain.at(1) );
        double trialS = fabs(fullStress.at(1));
        /*yield function*/
        double yieldValue = trialS - (sig0 + H * kappa);
        // === radial return algorithm ===
        if ( yieldValue > 0 ) {
            double dKappa = yieldValue / ( H + E );
            kappa += dKappa;
            plStrain.at(1) += dKappa * signum( fullStress.at(1) );
            plStrain.at(2) -= 0.5 * dKappa * signum( fullStress.at(1) );
            plStrain.at(3) -= 0.5 * dKappa * signum( fullStress.at(1) );
            fullStress.at(1) -= dKappa * E * signum( fullStress.at(1) );
        }
    } else {
        // elastic predictor
        FloatArray elStrain = totalStrain;
        elStrain.subtract(plStrain);
        FloatArray elStrainDev;
        double elStrainVol;
        elStrainVol = computeDeviatoricVolumetricSplit(elStrainDev, elStrain);
        FloatArray trialStressDev;
        applyDeviatoricElasticStiffness(trialStressDev, elStrainDev, G);
        /**************************************************************/
        double trialStressVol = 3 * K * elStrainVol;
        /**************************************************************/

        // store the deviatoric and trial stress (reused by algorithmic stiffness)
        status->letTrialStressDevBe(trialStressDev);
        status->setTrialStressVol(trialStressVol);
        // check the yield condition at the trial state
        double trialS = computeStressNorm(trialStressDev);
        double yieldValue = sqrt(3./2.) * trialS - (sig0 + H * kappa);
        if ( yieldValue > 0. ) {
            // increment of cumulative plastic strain
            double dKappa = yieldValue / ( H + 3. * G );
            kappa += dKappa;
            FloatArray dPlStrain;
            // the following line is equivalent to multiplication by scaling matrix P
            applyDeviatoricElasticCompliance(dPlStrain, trialStressDev, 0.5);
            // increment of plastic strain
            plStrain.add(sqrt(3. / 2.) * dKappa / trialS, dPlStrain);
            // scaling of deviatoric trial stress
            trialStressDev.times(1. - sqrt(6.) * G * dKappa / trialS);
        }

        // assemble the stress from the elastically computed volumetric part
        // and scaled deviatoric part

        computeDeviatoricVolumetricSum(fullStress, trialStressDev, trialStressVol);
    }

    // store the effective stress in status
    status->letTempEffectiveStressBe(fullStress);
    // store the plastic strain and cumulative plastic strain
    status->letTempPlasticStrainBe(plStrain);
    status->setTempCumulativePlasticStrain(kappa);
}
Example #3
0
// returns the stress vector in 3d stress space
// computed from the previous plastic strain and current total strain
void
MisesMat :: performPlasticityReturn(GaussPoint *gp, const FloatArray &totalStrain)
{
    double kappa, yieldValue, dKappa;
    FloatArray reducedStress;
    FloatArray strain, plStrain;
    MaterialMode mode = gp->giveMaterialMode();
    MisesMatStatus *status = static_cast< MisesMatStatus * >( this->giveStatus(gp) );
    StressVector fullStress(mode);
    this->initTempStatus(gp);
    this->initGpForNewStep(gp);
    // get the initial plastic strain and initial kappa from the status
    status->givePlasticStrain(plStrain);
    kappa = status->giveCumulativePlasticStrain();

    // === radial return algorithm ===
    if ( mode == _1dMat ) {
        LinearElasticMaterial *lmat = this->giveLinearElasticMaterial();
        double E = lmat->give('E', gp);
        /*trial stress*/
        fullStress.at(1) = E * ( totalStrain.at(1) - plStrain.at(1) );
        double sigmaY = sig0 + H * kappa;
        double trialS = fullStress.at(1);
        trialS = fabs(trialS);
        /*yield function*/
        yieldValue = trialS - sigmaY;
        // === radial return algorithm ===
        if ( yieldValue > 0 ) {
            dKappa = yieldValue / ( H + E );
            kappa += dKappa;
            fullStress.at(1) = fullStress.at(1) - dKappa *E *signum( fullStress.at(1) );
            plStrain.at(1) = plStrain.at(1) + dKappa *signum( fullStress.at(1) );
        }
    } else if ( ( mode == _PlaneStrain ) || ( mode == _3dMat ) ) {
        // elastic predictor
        StrainVector elStrain(totalStrain, mode);
        elStrain.subtract(plStrain);
        StrainVector elStrainDev(mode);
        double elStrainVol;
        elStrain.computeDeviatoricVolumetricSplit(elStrainDev, elStrainVol);
        StressVector trialStressDev(mode);
        elStrainDev.applyDeviatoricElasticStiffness(trialStressDev, G);
        /**************************************************************/
        double trialStressVol;
        trialStressVol = 3 * K * elStrainVol;
        /**************************************************************/

        // store the deviatoric and trial stress (reused by algorithmic stiffness)
        status->letTrialStressDevBe(trialStressDev);
        status->setTrialStressVol(trialStressVol);
        // check the yield condition at the trial state
        double trialS = trialStressDev.computeStressNorm();
        double sigmaY = sig0 + H * kappa;
        yieldValue = sqrt(3. / 2.) * trialS - sigmaY;
        if ( yieldValue > 0. ) {
            // increment of cumulative plastic strain
            dKappa = yieldValue / ( H + 3. * G );
            kappa += dKappa;
            StrainVector dPlStrain(mode);
            // the following line is equivalent to multiplication by scaling matrix P
            trialStressDev.applyDeviatoricElasticCompliance(dPlStrain, 0.5);
            // increment of plastic strain
            dPlStrain.times(sqrt(3. / 2.) * dKappa / trialS);
            plStrain.add(dPlStrain);
            // scaling of deviatoric trial stress
            trialStressDev.times(1. - sqrt(6.) * G * dKappa / trialS);
        }

        // assemble the stress from the elastically computed volumetric part
        // and scaled deviatoric part

        double stressVol = 3. * K * elStrainVol;
        trialStressDev.computeDeviatoricVolumetricSum(fullStress, stressVol);
    }

    // store the effective stress in status
    status->letTempEffectiveStressBe(fullStress);
    // store the plastic strain and cumulative plastic strain
    status->letTempPlasticStrainBe(plStrain);
    status->setTempCumulativePlasticStrain(kappa);
}