static Real norm_inf (const MultiFab& res, bool local = false) { Real restot = res.norm0(0, true); if ( !local ) ParallelDescriptor::ReduceRealMax(restot); return restot; }
void solve_with_HPGMG(MultiFab& soln, MultiFab& gphi, Real a, Real b, MultiFab& alpha, PArray<MultiFab>& beta, MultiFab& beta_cc, MultiFab& rhs, const BoxArray& bs, const Geometry& geom, int n_cell) { BndryData bd(bs, 1, geom); set_boundary(bd, rhs, 0); ABecLaplacian abec_operator(bd, dx); abec_operator.setScalars(a, b); abec_operator.setCoefficients(alpha, beta); int minCoarseDim; if (domain_boundary_condition == BC_PERIODIC) { minCoarseDim = 2; // avoid problems with black box calculation of D^{-1} for poisson with periodic BC's on a 1^3 grid } else { minCoarseDim = 1; // assumes you can drop order on the boundaries } level_type level_h; mg_type MG_h; int numVectors = 12; int my_rank = 0, num_ranks = 1; #ifdef BL_USE_MPI MPI_Comm_size (MPI_COMM_WORLD, &num_ranks); MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); #endif /* BL_USE_MPI */ const double h0 = dx[0]; // Create the geometric structure of the HPGMG grid using the RHS MultiFab as // a template. This doesn't copy any actual data. CreateHPGMGLevel(&level_h, rhs, n_cell, max_grid_size, my_rank, num_ranks, domain_boundary_condition, numVectors, h0); // Set up the coefficients for the linear operator L. SetupHPGMGCoefficients(a, b, alpha, beta_cc, &level_h); // Now that the HPGMG grid is built, populate it with RHS data. ConvertToHPGMGLevel(rhs, n_cell, max_grid_size, &level_h, VECTOR_F); #ifdef USE_HELMHOLTZ if (ParallelDescriptor::IOProcessor()) { std::cout << "Creating Helmholtz (a=" << a << ", b=" << b << ") test problem" << std::endl;; } #else if (ParallelDescriptor::IOProcessor()) { std::cout << "Creating Poisson (a=" << a << ", b=" << b << ") test problem" << std::endl;; } #endif /* USE_HELMHOLTZ */ if (level_h.boundary_condition.type == BC_PERIODIC) { double average_value_of_f = mean (&level_h, VECTOR_F); if (average_value_of_f != 0.0) { if (ParallelDescriptor::IOProcessor()) { std::cerr << "WARNING: Periodic boundary conditions, but f does not sum to zero... mean(f)=" << average_value_of_f << std::endl; } //shift_vector(&level_h,VECTOR_F,VECTOR_F,-average_value_of_f); } } //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - rebuild_operator(&level_h,NULL,a,b); // i.e. calculate Dinv and lambda_max MGBuild(&MG_h,&level_h,a,b,minCoarseDim,ParallelDescriptor::Communicator()); // build the Multigrid Hierarchy //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if (ParallelDescriptor::IOProcessor()) std::cout << std::endl << std::endl << "===== STARTING SOLVE =====" << std::endl << std::flush; MGResetTimers (&MG_h); zero_vector (MG_h.levels[0], VECTOR_U); #ifdef USE_FCYCLES FMGSolve (&MG_h, 0, VECTOR_U, VECTOR_F, a, b, tolerance_abs, tolerance_rel); #else MGSolve (&MG_h, 0, VECTOR_U, VECTOR_F, a, b, tolerance_abs, tolerance_rel); #endif /* USE_FCYCLES */ MGPrintTiming (&MG_h, 0); // don't include the error check in the timing results //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if (ParallelDescriptor::IOProcessor()) std::cout << std::endl << std::endl << "===== Performing Richardson error analysis ==========================" << std::endl; // solve A^h u^h = f^h // solve A^2h u^2h = f^2h // solve A^4h u^4h = f^4h // error analysis... MGResetTimers(&MG_h); const double dtol = tolerance_abs; const double rtol = tolerance_rel; int l;for(l=0;l<3;l++){ if(l>0)restriction(MG_h.levels[l],VECTOR_F,MG_h.levels[l-1],VECTOR_F,RESTRICT_CELL); zero_vector(MG_h.levels[l],VECTOR_U); #ifdef USE_FCYCLES FMGSolve(&MG_h,l,VECTOR_U,VECTOR_F,a,b,dtol,rtol); #else MGSolve(&MG_h,l,VECTOR_U,VECTOR_F,a,b,dtol,rtol); #endif } richardson_error(&MG_h,0,VECTOR_U); // Now convert solution from HPGMG back to rhs MultiFab. ConvertFromHPGMGLevel(soln, &level_h, VECTOR_U); const double norm_from_HPGMG = norm(&level_h, VECTOR_U); const double mean_from_HPGMG = mean(&level_h, VECTOR_U); const Real norm0 = soln.norm0(); const Real norm2 = soln.norm2(); if (ParallelDescriptor::IOProcessor()) { std::cout << "mean from HPGMG: " << mean_from_HPGMG << std::endl; std::cout << "norm from HPGMG: " << norm_from_HPGMG << std::endl; std::cout << "norm0 of RHS copied to MF: " << norm0 << std::endl; std::cout << "norm2 of RHS copied to MF: " << norm2 << std::endl; } // Write the MF to disk for comparison with the in-house solver if (plot_soln) { writePlotFile("SOLN-HPGMG", soln, geom); } //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MGDestroy(&MG_h); destroy_level(&level_h); //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PArray<MultiFab> grad_phi(BL_SPACEDIM, PArrayManage); for (int n = 0; n < BL_SPACEDIM; ++n) grad_phi.set(n, new MultiFab(BoxArray(soln.boxArray()).surroundingNodes(n), 1, 0)); #if (BL_SPACEDIM == 2) abec_operator.compFlux(grad_phi[0],grad_phi[1],soln); #elif (BL_SPACEDIM == 3) abec_operator.compFlux(grad_phi[0],grad_phi[1],grad_phi[2],soln); #endif // Average edge-centered gradients to cell centers. BoxLib::average_face_to_cellcenter(gphi, grad_phi, geom); }
static Real norm_inf (const MultiFab& res, bool local = false) { return res.norm0(0,0,local); }