BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_visual_debug) { String save_path; if (image_path.begins_with("res://")) { save_path = image_path; } else { if (get_filename() != "") { save_path = get_filename().get_base_dir(); } else if (get_owner() && get_owner()->get_filename() != "") { save_path = get_owner()->get_filename().get_base_dir(); } if (save_path == "") { return BAKE_ERROR_NO_SAVE_PATH; } if (image_path != "") { save_path.plus_file(image_path); } } { //check for valid save path DirAccessRef d = DirAccess::open(save_path); if (!d) { ERR_PRINTS("Invalid Save Path: " + save_path); return BAKE_ERROR_NO_SAVE_PATH; } } Ref<BakedLightmapData> new_light_data; new_light_data.instance(); VoxelLightBaker baker; int bake_subdiv; int capture_subdiv; AABB bake_bounds; { bake_bounds = AABB(-extents, extents * 2.0); int subdiv = nearest_power_of_2_templated(int(bake_bounds.get_longest_axis_size() / bake_cell_size)); bake_bounds.size[bake_bounds.get_longest_axis_size()] = subdiv * bake_cell_size; bake_subdiv = nearest_shift(subdiv) + 1; capture_subdiv = bake_subdiv; float css = bake_cell_size; while (css < capture_cell_size && capture_subdiv > 2) { capture_subdiv--; css *= 2.0; } } baker.begin_bake(bake_subdiv, bake_bounds); List<PlotMesh> mesh_list; List<PlotLight> light_list; _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), mesh_list, light_list); if (bake_begin_function) { bake_begin_function(mesh_list.size() + light_list.size() + 1 + mesh_list.size() * 100); } int step = 0; int pmc = 0; for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { if (bake_step_function) { bake_step_function(step++, RTR("Plotting Meshes: ") + " (" + itos(pmc + 1) + "/" + itos(mesh_list.size()) + ")"); } pmc++; baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material); } pmc = 0; baker.begin_bake_light(VoxelLightBaker::BakeQuality(bake_quality), VoxelLightBaker::BakeMode(bake_mode), propagation, energy); for (List<PlotLight>::Element *E = light_list.front(); E; E = E->next()) { if (bake_step_function) { bake_step_function(step++, RTR("Plotting Lights:") + " (" + itos(pmc + 1) + "/" + itos(light_list.size()) + ")"); } pmc++; PlotLight pl = E->get(); switch (pl.light->get_light_type()) { case VS::LIGHT_DIRECTIONAL: { baker.plot_light_directional(-pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_bake_mode() == Light::BAKE_ALL); } break; case VS::LIGHT_OMNI: { baker.plot_light_omni(pl.local_xform.origin, pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL); } break; case VS::LIGHT_SPOT: { baker.plot_light_spot(pl.local_xform.origin, pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_param(Light::PARAM_SPOT_ANGLE), pl.light->get_param(Light::PARAM_SPOT_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL); } break; } } /*if (bake_step_function) { bake_step_function(pmc++, RTR("Finishing Plot")); }*/ baker.end_bake(); Set<String> used_mesh_names; pmc = 0; for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { String mesh_name = E->get().mesh->get_name(); if (mesh_name == "" || mesh_name.find(":") != -1 || mesh_name.find("/") != -1) { mesh_name = "LightMap"; } if (used_mesh_names.has(mesh_name)) { int idx = 2; String base = mesh_name; while (true) { mesh_name = base + itos(idx); if (!used_mesh_names.has(mesh_name)) break; idx++; } } used_mesh_names.insert(mesh_name); pmc++; VoxelLightBaker::LightMapData lm; Error err; if (bake_step_function) { BakeTimeData btd; btd.text = RTR("Lighting Meshes: ") + mesh_name + " (" + itos(pmc) + "/" + itos(mesh_list.size()) + ")"; btd.pass = step; btd.last_step = 0; err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm, _bake_time, &btd); if (err != OK) { bake_end_function(); if (err == ERR_SKIP) return BAKE_ERROR_USER_ABORTED; return BAKE_ERROR_CANT_CREATE_IMAGE; } step += 100; } else { err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm); } if (err == OK) { Ref<Image> image; image.instance(); uint32_t tex_flags = Texture::FLAGS_DEFAULT; if (hdr) { //just save a regular image PoolVector<uint8_t> data; int s = lm.light.size(); data.resize(lm.light.size() * 2); { PoolVector<uint8_t>::Write w = data.write(); PoolVector<float>::Read r = lm.light.read(); uint16_t *hfw = (uint16_t *)w.ptr(); for (int i = 0; i < s; i++) { hfw[i] = Math::make_half_float(r[i]); } } image->create(lm.width, lm.height, false, Image::FORMAT_RGBH, data); } else { //just save a regular image PoolVector<uint8_t> data; int s = lm.light.size(); data.resize(lm.light.size()); { PoolVector<uint8_t>::Write w = data.write(); PoolVector<float>::Read r = lm.light.read(); for (int i = 0; i < s; i += 3) { Color c(r[i + 0], r[i + 1], r[i + 2]); c = c.to_srgb(); w[i + 0] = CLAMP(c.r * 255, 0, 255); w[i + 1] = CLAMP(c.g * 255, 0, 255); w[i + 2] = CLAMP(c.b * 255, 0, 255); } } image->create(lm.width, lm.height, false, Image::FORMAT_RGB8, data); //This texture is saved to SRGB for two reasons: // 1) first is so it looks better when doing the LINEAR->SRGB conversion (more accurate) // 2) So it can be used in the GLES2 backend, which does not support linkear workflow tex_flags |= Texture::FLAG_CONVERT_TO_LINEAR; } Ref<ImageTexture> tex; String image_path = save_path.plus_file(mesh_name + ".tex"); bool set_path = true; if (ResourceCache::has(image_path)) { tex = Ref<Resource>((Resource *)ResourceCache::get(image_path)); set_path = false; } if (!tex.is_valid()) { tex.instance(); } tex->create_from_image(image, tex_flags); err = ResourceSaver::save(image_path, tex, ResourceSaver::FLAG_CHANGE_PATH); if (err != OK) { if (bake_end_function) { bake_end_function(); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_CANT_CREATE_IMAGE); } if (set_path) { tex->set_path(image_path); } new_light_data->add_user(E->get().path, tex, E->get().instance_idx); } } AABB bounds = AABB(-extents, extents * 2); new_light_data->set_cell_subdiv(capture_subdiv); new_light_data->set_bounds(bounds); new_light_data->set_octree(baker.create_capture_octree(capture_subdiv)); { float bake_bound_size = bake_bounds.get_longest_axis_size(); Transform to_bounds; to_bounds.basis.scale(Vector3(bake_bound_size, bake_bound_size, bake_bound_size)); to_bounds.origin = bounds.position; Transform to_grid; to_grid.basis.scale(Vector3(1 << (capture_subdiv - 1), 1 << (capture_subdiv - 1), 1 << (capture_subdiv - 1))); Transform to_cell_space = to_grid * to_bounds.affine_inverse(); new_light_data->set_cell_space_transform(to_cell_space); } if (bake_end_function) { bake_end_function(); } //create the data for visual server if (p_create_visual_debug) { MultiMeshInstance *mmi = memnew(MultiMeshInstance); mmi->set_multimesh(baker.create_debug_multimesh(VoxelLightBaker::DEBUG_LIGHT)); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root() == this) { mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } #else mmi->set_owner(get_owner()); #endif } set_light_data(new_light_data); return BAKE_ERROR_OK; }
void GIProbe::_create_debug_mesh(Baker *p_baker) { Ref<MultiMesh> mm; mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count)); mm->set_instance_count(p_baker->leaf_voxel_count); Ref<Mesh> mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector<Vector3> vertices; PoolVector<Color> colors; int vtx_idx=0; #define ADD_VTX(m_idx);\ vertices.push_back( face_points[m_idx] );\ colors.push_back( Color(1,1,1,1) );\ vtx_idx++;\ for (int i=0;i<6;i++) { Vector3 face_points[4]; for (int j=0;j<4;j++) { float v[3]; v[0]=1.0; v[1]=1-2*((j>>1)&1); v[2]=v[1]*(1-2*(j&1)); for (int k=0;k<3;k++) { if (i<3) face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); else face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX]=vertices; arr[Mesh::ARRAY_COLOR]=colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); } { Ref<FixedSpatialMaterial> fsm; fsm.instance(); fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); fsm->set_albedo(Color(1,1,1,1)); mesh->surface_set_material(0,fsm); } mm->set_mesh(mesh); int idx=0; _debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker); MultiMeshInstance *mmi = memnew( MultiMeshInstance ); mmi->set_multimesh(mm); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root()==this){ mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } #else mmi->set_owner(get_owner()); #endif }