static void insert_cavity_vertex(MutableTriangleTopology& mesh, RawField<const Perturbed2,VertexId> X, RawField<bool,VertexId> marked, const VertexId u, const VertexId v, const VertexId w) { #ifndef NDEBUG { const auto vw = mesh.halfedge(v); assert(mesh.is_boundary(vw) && mesh.dst(vw)==w); } #endif mesh.add_face(vec(u,v,w)); const auto vw = mesh.prev(mesh.reverse(mesh.halfedge(u))); assert(mesh.vertices(vw)==vec(v,w)); insert_cavity_vertex_helper(mesh,X,marked,vw); }
GEODE_NEVER_INLINE static void add_constraint_edges(MutableTriangleTopology& mesh, RawField<const EV,VertexId> X, RawArray<const Vector<int,2>> edges, const bool validate) { if (!edges.size()) return; IntervalScope scope; Hashtable<Vector<VertexId,2>> constrained; Array<VertexId> left_cavity, right_cavity; // List of vertices for both cavities const auto random = new_<Random>(key+7); for (int i=0;i<edges.size();i++) { // Randomly choose an edge to ensure optimal time complexity const auto edge = edges[int(random_permute(edges.size(),key+5,i))].sorted(); auto v0 = VertexId(edge.x), v1 = VertexId(edge.y); const auto vs = vec(v0,v1); GEODE_ASSERT(mesh.valid(v0) && mesh.valid(v1)); { // Check if the edge already exists in the triangulation. To ensure optimal complexity, // we loop around both vertices interleaved so that our time is O(min(degree(v0),degree(v1))). const auto s0 = mesh.halfedge(v0), s1 = mesh.halfedge(v1); { auto e0 = s0, e1 = s1; do { if (mesh.dst(e0)==v1 || mesh.dst(e1)==v0) goto success; // The edge already exists, so there's nothing to be done. e0 = mesh.left(e0); e1 = mesh.left(e1); } while (e0!=s0 && e1!=s1); } // Find a triangle touching v0 or v1 containing part of the v0-v1 segment. // As above, we loop around both vertices interleaved. auto e0 = s0; { auto e1 = s1; if (mesh.is_boundary(e0)) e0 = mesh.left(e0); if (mesh.is_boundary(e1)) e1 = mesh.left(e1); const auto x0 = Perturbed2(v0.id,X[v0]), x1 = Perturbed2(v1.id,X[v1]); const auto e0d = mesh.dst(e0), e1d = mesh.dst(e1); bool e0o = triangle_oriented(x0,Perturbed2(e0d.id,X[e0d]),x1), e1o = triangle_oriented(x1,Perturbed2(e1d.id,X[e1d]),x0); for (;;) { // No need to check for an end condition, since we're guaranteed to terminate const auto n0 = mesh.left(e0), n1 = mesh.left(e1); const auto n0d = mesh.dst(n0), n1d = mesh.dst(n1); const bool n0o = triangle_oriented(x0,Perturbed2(n0d.id,X[n0d]),x1), n1o = triangle_oriented(x1,Perturbed2(n1d.id,X[n1d]),x0); if (e0o && !n0o) break; if (e1o && !n1o) { // Swap v0 with v1 and e0 with e1 so that our ray starts at v0 swap(v0,v1); swap(e0,e1); break; } e0 = n0; e1 = n1; e0o = n0o; e1o = n1o; } } // If we only need to walk one step, the retriangulation is a single edge flip auto cut = mesh.reverse(mesh.next(e0)); if (mesh.dst(mesh.next(cut))==v1) { if (constrained.contains(vec(mesh.src(cut),mesh.dst(cut)).sorted())) throw DelaunayConstraintConflict(vec(v0.id,v1.id),vec(mesh.src(cut).id,mesh.dst(cut).id)); cut = mesh.flip_edge(cut); goto success; } // Walk from v0 to v1, collecting the two cavities. const auto x0 = Perturbed2(v0.id,X[v0]), x1 = Perturbed2(v1.id,X[v1]); right_cavity.copy(vec(v0,mesh.dst(cut))); left_cavity .copy(vec(v0,mesh.src(cut))); mesh.erase(mesh.face(e0)); for (;;) { if (constrained.contains(vec(mesh.src(cut),mesh.dst(cut)).sorted())) throw DelaunayConstraintConflict(vec(v0.id,v1.id),vec(mesh.src(cut).id,mesh.dst(cut).id)); const auto n = mesh.reverse(mesh.next(cut)), p = mesh.reverse(mesh.prev(cut)); const auto v = mesh.src(n); mesh.erase(mesh.face(cut)); if (v == v1) { left_cavity.append(v); right_cavity.append(v); break; } else if (triangle_oriented(x0,x1,Perturbed2(v.id,X[v]))) { left_cavity.append(v); cut = n; } else { right_cavity.append(v); cut = p; } } // Retriangulate both cavities left_cavity.reverse(); cavity_delaunay(mesh,X,left_cavity,random), cavity_delaunay(mesh,X,right_cavity,random); } success: constrained.set(vs); } // If desired, check that the final mesh is constrained Delaunay if (validate) assert_delaunay("constrained delaunay validate: ",mesh,X,constrained); }
// Retriangulate a cavity formed when a constraint edge is inserted, following Shewchuck and Brown. // The cavity is defined by a counterclockwise list of vertices v[0] to v[m-1] as in Shewchuck and Brown, Figure 5. static void cavity_delaunay(MutableTriangleTopology& parent_mesh, RawField<const EV,VertexId> X, RawArray<const VertexId> cavity, Random& random) { // Since the algorithm generates meshes which may be inconsistent with the outer mesh, and the cavity // array may have duplicate vertices, we use a temporary mesh and then copy the triangles over when done. // In the temporary, vertices are indexed consecutively from 0 to m-1. const int m = cavity.size(); assert(m >= 3); const auto mesh = new_<MutableTriangleTopology>(); Field<Perturbed2,VertexId> Xc(m,uninit); for (const int i : range(m)) Xc.flat[i] = Perturbed2(cavity[i].id,X[cavity[i]]); mesh->add_vertices(m); const auto xs = Xc.flat[0], xe = Xc.flat[m-1]; // Set up data structures for prev, next, pi in the paper const Field<VertexId,VertexId> prev(m,uninit), next(m,uninit); for (int i=0;i<m-1;i++) { next.flat[i] = VertexId(i+1); prev.flat[i+1] = VertexId(i); } const Array<VertexId> pi_(m-2,uninit); for (int i=1;i<=m-2;i++) pi_[i-1] = VertexId(i); #define PI(i) pi_[(i)-1] // Randomly shuffle [1,m-2], subject to vertices closer to xs-xe than both their neighbors occurring later for (int i=m-2;i>=2;i--) { int j; for (;;) { j = random.uniform<int>(0,i)+1; const auto pj = PI(j); if (!( segment_directions_oriented(xe,xs,Xc[pj],Xc[prev[pj]]) && segment_directions_oriented(xe,xs,Xc[pj],Xc[next[pj]]))) break; } swap(PI(i),PI(j)); // Remove PI(i) from the list const auto pi = PI(i); next[prev[pi]] = next[pi]; prev[next[pi]] = prev[pi]; } // Add the first triangle mesh->add_face(vec(VertexId(0),PI(1),VertexId(m-1))); // Add remaining triangles, flipping to ensure Delaunay const Field<bool,VertexId> marked(m); Array<HalfedgeId> fan; bool used_chew = false; for (int i=2;i<m-1;i++) { const auto pi = PI(i); insert_cavity_vertex(mesh,Xc,marked,pi,next[pi],prev[pi]); if (marked[pi]) { used_chew = true; marked[pi] = false; // Retriangulate the fans of triangles that have all three vertices marked auto e = mesh->reverse(mesh->halfedge(pi)); auto v = mesh->src(e); bool mv = marked[v]; marked[v] = false; fan.clear(); do { const auto h = mesh->prev(e); e = mesh->reverse(mesh->next(e)); v = mesh->src(e); const bool mv2 = marked[v]; marked[v] = false; if (mv) { if (mv2) fan.append(h); if (!mv2 || mesh->is_boundary(e)) { chew_fan(mesh,Xc,pi,fan,random); fan.clear(); } } mv = mv2; } while (!mesh->is_boundary(e)); } } #undef PI // If we ran Chew's algorithm, validate the output. I haven't tested this // case enough to be confident of its correctness. if (used_chew) assert_delaunay("Failure in extreme special case. If this triggers, please email [email protected]: ", mesh,Xc,Tuple<>(),false,false); // Copy triangles from temporary mesh to real mesh for (const auto f : mesh->faces()) { const auto v = mesh->vertices(f); parent_mesh.add_face(vec(cavity[v.x.id],cavity[v.y.id],cavity[v.z.id])); } }
// Delaunay retriangulate a triangle fan static void chew_fan(MutableTriangleTopology& parent_mesh, RawField<const Perturbed2,VertexId> X, const VertexId u, RawArray<HalfedgeId> fan, Random& random) { chew_fan_count_ += 1; #ifndef NDEBUG for (const auto e : fan) assert(parent_mesh.opposite(e)==u); for (int i=0;i<fan.size()-1;i++) GEODE_ASSERT(parent_mesh.src(fan[i])==parent_mesh.dst(fan[i+1])); #endif const int n = fan.size(); if (n < 2) return; chew_fan_count_ += 1024*n; // Collect vertices const Field<VertexId,VertexId> vertices(n+2,uninit); vertices.flat[0] = u; vertices.flat[1] = parent_mesh.src(fan[n-1]); for (int i=0;i<n;i++) vertices.flat[i+2] = parent_mesh.dst(fan[n-1-i]); // Delete original vertices for (const auto e : fan) parent_mesh.erase(parent_mesh.face(e)); // Make the vertices into a doubly linked list const Field<VertexId,VertexId> prev(n+2,uninit), next(n+2,uninit); prev.flat[0].id = n+1; next.flat[n+1].id = 0; for (int i=0;i<n+1;i++) { prev.flat[i+1].id = i; next.flat[i].id = i+1; } // Randomly shuffle the vertices, then pulling elements off the linked list in reverse order of our final shuffle. const Array<VertexId> pi(n+2,uninit); for (int i=0;i<n+2;i++) pi[i].id = i; random.shuffle(pi); for (int i=n+1;i>=0;i--) { const auto j = pi[i]; prev[next[j]] = prev[j]; next[prev[j]] = next[j]; } // Make a new singleton mesh const auto mesh = new_<MutableTriangleTopology>(); mesh->add_vertices(n+2); small_sort(pi[0],pi[1],pi[2]); mesh->add_face(vec(pi[0],pi[1],pi[2])); // Insert remaining vertices Array<HalfedgeId> work; for (int i=3;i<n+2;i++) { const auto j = pi[i]; const auto f = mesh->add_face(vec(j,next[j],prev[j])); work.append(mesh->reverse(mesh->opposite(f,j))); while (work.size()) { auto e = work.pop(); if ( !mesh->is_boundary(e) && incircle(X[vertices[mesh->src(e)]], X[vertices[mesh->dst(e)]], X[vertices[mesh->opposite(e)]], X[vertices[mesh->opposite(mesh->reverse(e))]])) { work.append(mesh->reverse(mesh->next(e))); work.append(mesh->reverse(mesh->prev(e))); e = mesh->unsafe_flip_edge(e); } } } // Copy triangles back to parent for (const auto f : mesh->faces()) { const auto vs = mesh->vertices(f); parent_mesh.add_face(vec(vertices[vs.x],vertices[vs.y],vertices[vs.z])); } }
// InsertVertex in the paper static void insert_cavity_vertex_helper(MutableTriangleTopology& mesh, RawField<const Perturbed2,VertexId> X, RawField<bool,VertexId> marked, const HalfedgeId vw) { // If wv is a boundary edge, or we're already Delaunay and properly oriented, we're done const auto wv = mesh.reverse(vw); if (mesh.is_boundary(wv)) return; const auto u = mesh.opposite(vw), v = mesh.src(vw), w = mesh.dst(vw), x = mesh.opposite(wv); const auto Xu = X[u], Xv = X[v], Xw = X[w], Xx = X[x]; const bool in = incircle(Xu,Xv,Xw,Xx); if (!in && triangle_oriented(Xu,Xv,Xw)) return; // Flip edge and recurse const auto xu = mesh.flip_edge(wv); assert(mesh.vertices(xu)==vec(x,u)); const auto vx = mesh.prev(xu), xw = mesh.next(mesh.reverse(xu)); // Grab this now before the recursive call changes uvx insert_cavity_vertex_helper(mesh,X,marked,vx), insert_cavity_vertex_helper(mesh,X,marked,xw); if (!in) marked[u] = marked[v] = marked[w] = marked[x] = true; }
// positions are assumed to be at default location Ref<MutableTriangleTopology> improve_mesh(MutableTriangleTopology const &mesh, real min_quality, real max_distance, real max_silhouette_distance, real min_normal_dot, int max_iter, real min_relevant_area, real min_quality_improvement) { FieldId<Vector<real,3>,VertexId> posid(vertex_position_id); Ref<MutableTriangleTopology> copy = mesh.copy(); improve_mesh_inplace(copy, copy->field(posid), ImproveOptions(min_quality, max_distance, max_silhouette_distance, min_normal_dot, max_iter, min_relevant_area, min_quality_improvement)); return copy; }
void decimate_inplace(MutableTriangleTopology& mesh, RawField<TV,VertexId> X, const T distance, const T max_angle, const int min_vertices, const T boundary_distance) { if (mesh.n_vertices() <= min_vertices) return; const T area = sqr(distance); const T sign_sqr_min_cos = sign_sqr(max_angle > .99*pi ? -1 : cos(max_angle)); // Finds the best edge to collapse v along. Returns (q(e),dst(e)). const auto best_collapse = [&mesh,X](const VertexId v) { Quadric q = compute_quadric(mesh,X,v); // Find the best edge, ignoring normal constraints T min_q = inf; HalfedgeId min_e; for (const auto e : mesh.outgoing(v)) { const T qx = q(X[mesh.dst(e)]); if (min_q > qx) { min_q = qx; min_e = e; } } return tuple(min_q,mesh.dst(min_e)); }; // Initialize quadrics and heap Heap heap(mesh.n_vertices_); for (const auto v : mesh.vertices()) { const auto qe = best_collapse(v); if (qe.x <= area) heap.inv_heap[v] = heap.heap.append(tuple(v,qe.x,qe.y)); } heap.make(); // Update the quadric information for a vertex const auto update = [&heap,best_collapse,area](const VertexId v) { const auto qe = best_collapse(v); if (qe.x <= area) heap.set(v,qe.x,qe.y); else heap.erase(v); }; // Repeatedly collapse the best vertex while (heap.size()) { const auto v = heap.pop(); // Do these vertices still exist? if (mesh.valid(v.x) && mesh.valid(v.y)) { const auto e = mesh.halfedge(v.x,v.y); // Is the collapse invalid? if (e.valid() && mesh.is_collapse_safe(e)) { const auto vs = mesh.src(e), vd = mesh.dst(e); const auto xs = X[vs], xd = X[vd]; // Are we moving a boundary vertex too far from its two boundary lines? { const auto b = mesh.halfedge(vs); if (mesh.is_boundary(b)) { const auto x0 = X[mesh.dst(b)], x1 = X[mesh.src(mesh.prev(b))]; if ( line_point_distance(simplex(xs,x0),xd) > boundary_distance || line_point_distance(simplex(xs,x1),xd) > boundary_distance) goto bad; } } // Do the normals change too much? if (sign_sqr_min_cos > -1) for (const auto ee : mesh.outgoing(vs)) if (e!=ee && !mesh.is_boundary(ee)) { const auto v2 = mesh.opposite(ee); if (v2 != vd) { const auto x1 = X[mesh.dst(ee)], x2 = X[v2]; const auto n0 = cross(x2-x1,xs-x1), n1 = cross(x2-x1,xd-x1); if (sign_sqr(dot(n0,n1)) < sign_sqr_min_cos*sqr_magnitude(n0)*sqr_magnitude(n1)) goto bad; } } // Collapse vs onto vd, then update the heap mesh.unsafe_collapse(e); if (mesh.n_vertices() <= min_vertices) break; update(vd); for (const auto e : mesh.outgoing(vd)) update(mesh.dst(e)); } } bad:; } }