// -------------------------------------------------------------------------------- // constructor given a Namelist, its dimension determines the SRI dimension. SRI::SRI(const Namelist& nl) throw() { if(nl.size() <= 0) return; R = Matrix<double>(nl.size(),nl.size(),0.0); Z = Vector<double>(nl.size(),0.0); names = nl; }
//------------------------------------------------------------------------------------ // constructor given a Namelist, its dimension determines the SRI dimension. SRIleastSquares::SRIleastSquares(const Namelist& NL) throw() { defaults(); if(NL.size() <= 0) return; R = Matrix<double>(NL.size(),NL.size(),0.0); Z = Vector<double>(NL.size(),0.0); names = NL; }
// are two Namelists exactly identical, even considering permutations? bool identical(const Namelist& N1, const Namelist& N2) { try { if(N1.size() != N2.size()) return false; if(N1.size() == 0) return true; for(unsigned int i=0; i<N1.size(); i++) { if(N1.labels[i] != N2.labels[i]) return false; } return true; } catch(Exception& e) { GPSTK_RETHROW(e); } }
// are two Namelists identical, ignoring a permutation? bool operator==(const Namelist& N1, const Namelist& N2) { try { if(N1.size() != N2.size()) return false; if(N1.size() == 0) return true; for(unsigned int i=0; i<N1.size(); i++) { unsigned int match=0; for(unsigned int j=0; j<N2.size(); j++) if(N1.labels[i] == N2.labels[j]) match++; if(match != 1) return false; // if > 1, N2 is invalid } return true; } catch(Exception& e) { GPSTK_RETHROW(e); } }
// -------------------------------------------------------------------------------- // explicit constructor - throw if the dimensions are inconsistent. SRI::SRI(const Matrix<double>& r, const Vector<double>& z, const Namelist& nl) throw(MatrixException) { if(r.rows() != r.cols() || r.rows() != z.size() || r.rows() != nl.size()) { MatrixException me("Invalid dimensions in explicit SRI constructor:\n R is " + asString<int>(r.rows()) + "x" + asString<int>(r.cols()) + ", Z has length " + asString<int>(z.size()) + " and NL has length " + asString<int>(nl.size()) ); GPSTK_THROW(me); } if(r.rows() <= 0) return; R = r; Z = z; names = nl; }
//------------------------------------------------------------------------------------ // explicit constructor - throw if the dimensions are inconsistent. SRIleastSquares::SRIleastSquares(const Matrix<double>& Rin, const Vector<double>& Zin, const Namelist& NLin) throw(MatrixException) { defaults(); if(Rin.rows() != Rin.cols() || Rin.rows() != Zin.size() || Rin.rows() != NLin.size()) { MatrixException me("Invalid input dimensions: R is " + asString<int>(Rin.rows()) + "x" + asString<int>(Rin.cols()) + ", Z has length " + asString<int>(Zin.size()) + ", and NL has length " + asString<int>(NLin.size()) ); GPSTK_THROW(me); } R = Rin; Z = Zin; names = NLin; }
// -------------------------------------------------------------------------------- // Split this SRI (call it S) into two others, S1 and Sleft, where S1 has // a Namelist identical to the input Namelist (NL); set *this = S1 at the // end. NL must be a non-empty subset of names, and (names ^ NL) also must // be non-empty; throw MatrixException if this is not true. The second // output SRI, Sleft, will have the same names as S, but perhaps permuted. // // The routine works by first permuting S so that its Namelist if of the // form {N2,NL}, where N2 = (names ^ NL); this is possible only if NL is // a non-trivial subset of names. Then, the rows of S (rows of R and elements // of Z) naturally separate into the two component SRIs, with zeros in the // elements of the first SRI which correspond to N2, and those in Sleft // which correspond to NL. // // Example: S.name = A B C D E F G and NL = D E F G. // (Obviously, S may be permuted into such an order whenever this is needed.) // Note that here the R,Z pair is written in a format reminiscent of the // set of equations implied by R*X=Z, i.e. 1A+2B+3C+4D+5E+6F+7G=a, etc. // // S (R Z) = S1 + Sleft // with names NL names // A B C D E F G . . . D E F G A B C D E F G // - - - - - - - - - - - - - - - - - - - - - - - - // 1 2 3 4 5 6 7 a = . . . . . . . . + 1 2 3 4 5 6 7 a // 8 9 1 2 3 4 b . . . . . . . 8 9 1 2 3 4 b // 5 6 7 8 9 c . . . . . . 5 6 7 8 9 c // 1 2 3 4 d 1 2 3 4 d . . . . d // 5 6 7 e 5 6 7 e . . . e // 8 9 f 8 9 f . . f // 1 g 1 g . g // // where "." denotes a zero. The split is simply separating the linear // equations which make up R*X=Z into two groups; because of the ordering, // one of the groups of equations (S1) depends only on a particular subset // of the elements of the state vector, i.e. the elements labelled by the // Namelist NL. // // The equation shown here is an information equation; if the two SRIs S1 // and Sleft were merged again, none of the information would be lost. // Note that S1 has no dependence on A B C (hence the .'s), and therefore // its size can be reduced. However S2 still depends on the full names // Namelist. Sleft is necessarily singular, but S1 is not. // // Note that the SRI contains information about both the solution and // the covariance, i.e. state and noise, and therefore one must be very careful // in interpreting the results of split and merge (operator+=). [Be especially // careful about the idea that a merge might be reversible with a split() or // vice-versa - strictly this is never possible unless the Namelists are // mutually exclusive - two separate problems.] // // For example, suppose two different SRI's, which have some elements in common, // are merged. The combined SRI will have more information (it can't have less) // about the common elements, and therefore the solution will be 'better' // (assuming the underlying model equations for those elements are identical). // However the noises will also be combined, and the results you get might be // surprising. Also, note that if you then split the combined SRI again, the // solution won't change but the noises will be very different; in particular // the new split part will take all the information with it, so the common states // will have lower noise than they did in the original SRI. // See the test program tsri.cpp // void SRI::split(const Namelist& NL, SRI& Sleft) throw(MatrixException,VectorException) { try { Sleft = SRI(0); unsigned int n,m; n = NL.size(); m = names.size(); if(n >= m) { MatrixException me("split: Input Namelist must be a subset of this one"); GPSTK_THROW(me); } unsigned int i,j; // copy names and permute it so that its end matches NL Namelist N0(names); for(i=1; i<=n; i++) { // loop (backwards) over names in NL for(j=1; j<=m; j++) { // search (backwards) in NO for a match if(NL.labels[n-i] == N0.labels[m-j]) { // if found a match N0.swap(m-i,m-j); // then move matching name to end break; // and go on to next name in NL } } if(j > m) { MatrixException me("split: Input Namelist is not non-trivial subset"); GPSTK_THROW(me); } } // copy *this into Sleft, then do the permutation Sleft = *this; Sleft.permute(N0); // copy parts of Sleft into S1, and then zero out those parts of Sleft SRI S1(NL); S1.R = Matrix<double>(Sleft.R,m-n,m-n,n,n); //S1.Z = Vector<double>(Sleft.Z,m-n,n); S1.Z.resize(n); for(i=0; i<n; i++) S1.Z(i) = Sleft.Z(m-n+i); for(i=m-n; i<m; i++) Sleft.zeroOne(i); *this = S1; } catch(MatrixException& me) { GPSTK_RETHROW(me); } catch(VectorException& ve) { GPSTK_RETHROW(ve); } }
//------------------------------------------------------------------------------------ // called by Estimation() - inside the data loop, inside the iteration loop // Input is Namelist DNL, the double difference data Namelist (DataNL) // Output is MCov, the measurement covariance matrix for this data (MeasCov). // Let: // d = vector of one-way data (one site, one satellite) // sd = vector of single difference data (two sites, one satellite) // dd = vector of double difference data (two sites, two satellites) // DD and SD are matricies with elements 0,1,-1 which transform d to sd to dd: // sd = SD * d // dd = DD * sd // dd = DD * SD * d // The covariance matrix will be MC = (DD*SD)*transpose(DD*SD) // = DD*SD*transpose(SD)*transpose(DD) // If the one-way data has a measurement covariance, then fill the vector d with // them; then MC = DD*SD* d * transpose(SD)*transpose(DD). // Building DD and SD is just a matter of lists: // loop through the dd namelist, keeping lists of: // one-way data (site-satellite pairs) (d) // single differences (site-site-satellite sets) (sd) // and you have a list of double differences (DNL) // void BuildStochasticModel(int count, Namelist& DNL, Matrix<double>& MCov) throw(Exception) { try { unsigned int m=DNL.size(); if(m==0) return; int i,j,in,jn,kn; string site1,site2; GSatID sat1,sat2; vector<double> d; // weights of one-way data vector<OWid> ld; // labels of d vector<SDid> sd; for(i=0; i<DNL.size(); i++) { // break the label into site1,site2,sat1,sat2 DecomposeName(DNL.getName(i), site1, site2, sat1, sat2); if(index(ld,OWid(site1,sat1)) == -1) ld.push_back(OWid(site1,sat1)); if(index(ld,OWid(site1,sat2)) == -1) ld.push_back(OWid(site1,sat2)); if(index(ld,OWid(site2,sat1)) == -1) ld.push_back(OWid(site2,sat1)); if(index(ld,OWid(site2,sat2)) == -1) ld.push_back(OWid(site2,sat2)); if(index(sd,SDid(site1,site2,sat1)) == -1) sd.push_back(SDid(site1,site2,sat1)); if(index(sd,SDid(site1,site2,sat2)) == -1) sd.push_back(SDid(site1,site2,sat2)); } // fill d with the weights d = vector<double>(ld.size()); for(i=0; i<ld.size(); i++) d[i] = StochasticWeight(ld[i], count); // temp //format f113s(11,3,2); //oflog << "DDs are (" << DNL.size() << "):\n" << setw(20) << DNL << endl; //oflog << "SDs are: (" << sd.size() << ")" << fixed << endl; //for(i=0; i<sd.size(); i++) oflog << " / " << sd[i]; //oflog << endl; //oflog << "OWs are: (" << ld.size() << ")" << endl; //for(i=0; i<ld.size(); i++) oflog << " / " << ld[i]; //oflog << endl; //oflog << "OW wts are: (" << d.size() << ")" << endl; //for(i=0; i<d.size(); i++) oflog << " " << f113s << d[i]; //oflog << endl; Matrix<double> SD(sd.size(),ld.size(),0.0); Matrix<double> DD(m,sd.size(),0.0); // TD need to account for signs here ... sd[.] may be site2,site1,sat1 ... for(in=0; in<DNL.size(); in++) { DecomposeName(DNL.getName(in), site1, site2, sat1, sat2); jn = index(sd,SDid(site1,site2,sat1)); // site1-site2, sat1 DD(in,jn) = 1; kn = index(ld,OWid(site1,sat1)); // site1, sat1 SD(jn,kn) = d[kn]; kn = index(ld,OWid(site2,sat1)); // site2, sat1 SD(jn,kn) = -d[kn]; jn = index(sd,SDid(site1,site2,sat2)); // site1-site2, sat2 DD(in,jn) = -1; kn = index(ld,OWid(site1,sat2)); // site1, sat2 SD(jn,kn) = d[kn]; kn = index(ld,OWid(site2,sat2)); // site2, sat2 SD(jn,kn) = -d[kn]; } //oflog << " SD is\n" << fixed << setw(3) << SD << endl; //oflog << " DD is\n" << fixed << setw(3) << DD << endl; Matrix<double> T; T = DD * SD; MCov = T * transpose(T); static bool once=true; if(once) { oflog << "Measurement covariance (model " << CI.StochasticModel << ") is\n" << scientific << setw(8) << setprecision(3) << MCov << endl; once = false; } } catch(Exception& e) { GPSTK_RETHROW(e); } catch(exception& e) { Exception E("std except: "+string(e.what())); GPSTK_THROW(E); } catch(...) { Exception e("Unknown exception"); GPSTK_THROW(e); } }
// -------------------------------------------------------------------------------- // Vector version of stateFix with several states given in a Namelist. void SRI::stateFix(const Namelist& dropNL, const Vector<double>& values_in) throw(MatrixException,VectorException) { try { if(dropNL.size() != values_in.size()) { VectorException e("Input has inconsistent lengths"); GPSTK_THROW(e); } /* // build a vector of indexes to keep int i,j; vector<int> indexes; for(i=0; i<names.size(); i++) { j = dropNL.index(names.getName(i)); // index in dropNL, this state if(j == -1) indexes.push_back(i);// not found in dropNL, so keep } const int n=indexes.size(); // new dimension if(n == 0) { Exception e("Cannot drop all states"); GPSTK_THROW(e); } Vector<double> X,newX(n); Matrix<double> C,newC(n,n); Namelist newNL; double big,small; getStateAndCovariance(X,C,&small,&big); for(i=0; i<n; i++) { newX(i) = X(indexes[i]); for(j=0; j<n; j++) newC(i,j) = C(indexes[i],indexes[j]); newNL += names.getName(indexes[i]); } R = Matrix<double>(inverseUT(upperCholesky(newC))); Z = Vector<double>(R*newX); names = newNL; */ size_t i,j,k; // create a vector of indexes and corresponding values vector<int> indx; vector<double> value; for(i=0; i<dropNL.size(); i++) { int in = names.index(dropNL.getName(i)); // in must be allowed to be -1 if(in > -1) { indx.push_back(in); value.push_back(values_in(i)); } //else nothing happens } const unsigned int m = indx.size(); const unsigned int n = R.rows(); if(m == 0) return; if(m == n) { *this = SRI(0); return; } // move the X(in) terms to the data vector on the RHS for(k=0; k<m; k++) for(i=0; i<indx[k]; i++) Z(i) -= R(i,indx[k])*value[k]; // first remove the rows in indx bool skip; Vector<double> Ztmp(n-m,0.0); Matrix<double> Rtmp(n-m,n,0.0); for(i=0,k=0; i<n; i++) { skip = false; for(j=0; j<m; j++) if((int)i == indx[j]) { skip=true; break; } if(skip) continue; // skip row to be dropped Ztmp(k) = Z(i); for(j=i; j<n; j++) Rtmp(k,j) = R(i,j); k++; } // Z is now done Z = Ztmp; // now remove columns in indx R = Matrix<double>(n-m,n-m,0.0); for(j=0,k=0; j<n; j++) { skip = false; for(i=0; i<m; i++) if((int)j == indx[i]) { skip=true; break; } if(skip) continue; // skip col to be dropped for(i=0; i<=j; i++) R(i,k) = Rtmp(i,j); k++; } // remove the names for(k=0; k<dropNL.size(); k++) { std::string name(dropNL.getName(k)); names -= name; } } catch(MatrixException& me) { GPSTK_RETHROW(me); } catch(VectorException& ve) { GPSTK_RETHROW(ve); } }
//------------------------------------------------------------------------------------ // Read all the files on the command line, they should contain covariance and state // with labels. Merge all these SRIs and output the final covariance and state. int main(int argc, char **argv) { try { bool verbose=false; int i,n,N,nfile,nline,nword; string line,word; Matrix<double> cov; Vector<double> state; Namelist name; SRI S; if(argc <= 1) { cout << "Prgm mergeSRI combines solution and covariance results from " << "different sources\n into a single result. Each file named on the " << "command line consists of lines,\n one per row of the covariance " << "matrix, of the form\n label(i) cov(i,0) cov(i,1) ... cov(i,n) " << "solution(i)\n where there are n lines in the file (i.e. the " << "covariance matrix is square)\n and labels are used consistently " << "among all the results in all the files.\n Results are output as " << "a single combined namelist, covariance and solution.\n"; return 0; } nfile = 0; for(i=1; i<argc; i++) { if(string(argv[i]) == string("-v") || string(argv[i]) == string("--verbose")) { verbose = true; continue; } ifstream ifs(argv[i]); if(!ifs) { cout << "Could not open file " << argv[i] << endl; continue; } if(verbose) cout << "Opened file " << argv[i] << endl; // read the file N = nline = 0; // N is the dimension of cov and state and name while(!ifs.eof() && ifs.good()) { getline(ifs,line); StringUtils::stripTrailing(line,'\r'); if(ifs.bad()) break; StringUtils::stripLeading(line); if(line.empty()) break; n = StringUtils::numWords(line); if(N == 0) { N = n-2; cov = Matrix<double>(N,N,0.0); state = Vector<double>(N,0.0); name.clear(); } else if(n-2 != N) { cerr << "Warning - dimensions are wrong in file " << argv[i] << " : " << n-2 << " != " << N << endl; } nword = 0; while(1) { word = StringUtils::stripFirstWord(line); if(word.empty()) break; if(nword == 0) { name += word; } else if(nword < N+1) { cov(nline,nword-1) = StringUtils::asDouble(word); } else if(nword == N+1) { state(nline) = StringUtils::asDouble(word); } nword++; }; nline++; if(nline > N) break; } ifs.close(); if(N <= 0 || name.size() <= 0) { cout << "Empty file - ignore : " << argv[i] << endl; continue; } name.resize(N); cout << "Add file " << argv[i] << " : state names " << name << endl; if(verbose) { LabeledVector Lstate(name,state); Lstate.fixed().setw(16).setprecision(6); cout << "State" << endl << Lstate << endl; LabeledMatrix Lcov(name,cov); Lcov.scientific().setw(16).setprecision(6); cout << "Covariance" << endl << Lcov << endl; } SRI S1(name); S1.addAPriori(cov,state); S += S1; nfile++; } if(nfile <= 0) { cout << "No files!\n"; return 0; } double small,big; S.getStateAndCovariance(state,cov,&small,&big); cout << endl; LabeledVector Ls(name,state); Ls.fixed().setw(16).setprecision(6); cout << "Final state" << endl << Ls << endl; LabeledMatrix Lc(name,cov); Lc.scientific().setw(16).setprecision(6); cout << endl << "Final covariance" << endl << Lc << endl; } catch(MatrixException& me) { cerr << "Exception: " << me << endl; return -1; } return 0; }