int main() { Random::Set(0.46875); Normal Z; cout << Z.Next() << endl; return 0; }
void test1(int n) { Normal nn; Uniform uniform; cout << "Print 20 N(0,1) random numbers - should be the same as in sample output" << endl; { Format F; F.FormatType(Format::DEC_FIGS); F.Precision(12); F.Width(15); for (int i=0; i<20; i++) cout << F << nn.Next() << endl; } cout << endl; cout << "Print histograms of data from a variety distributions" << endl; cout << "Histograms should be close to those in sample output" << endl; cout << "s. mean and s. var should be close to p. mean and s. mean" << endl << endl; { Constant c(5.0); Histogram(&c, n); } { Uniform u; Histogram(&u, n); } { SumRandom sr=uniform(3)-1.5; Histogram(&sr, n); } { SumRandom sr=uniform-uniform; Histogram(&sr, n); } { Normal normal; Histogram(&normal, n); } { Cauchy cauchy; Histogram(&cauchy, n); } { AsymGenX normal10(NORMAL10, 10.0); Histogram(&normal10, n); } cout << "Mean and variance should be 10.0 and 4.0" << endl; { AsymGenX uniform2(UNIF,0.5); Histogram(&uniform2, n); } cout << "Mean and variance should be 0.5 and 0.083333" << endl; { SymGenX triang(TRIANG); Histogram(&triang, n); } cout << "Mean and variance should be 0 and 0.16667" << endl; { Poisson p(0.25); Histogram(&p, n); } { Poisson p(10.0); Histogram(&p, n); } { Poisson p(16.0); Histogram(&p, n); } { Binomial b(18,0.3); Histogram(&b, n); } { Binomial b(19,0.3); Histogram(&b, n); } { Binomial b(20,0.3); Histogram(&b, n); } { Binomial b(58,0.3); Histogram(&b, n); } { Binomial b(59,0.3); Histogram(&b, n); } { Binomial b(60,0.3); Histogram(&b, n); } { Binomial b(18,0.05); Histogram(&b, n); } { Binomial b(19,0.05); Histogram(&b, n); } { Binomial b(20,0.05); Histogram(&b, n); } { Binomial b(98,0.01); Histogram(&b, n); } { Binomial b(99,0.01); Histogram(&b, n); } { Binomial b(100,0.01); Histogram(&b, n); } { Binomial b(18,0.95); Histogram(&b, n); } { Binomial b(19,0.95); Histogram(&b, n); } { Binomial b(20,0.95); Histogram(&b, n); } { Binomial b(98,0.99); Histogram(&b, n); } { Binomial b(99,0.99); Histogram(&b, n); } { Binomial b(100,0.99); Histogram(&b, n); } { NegativeBinomial nb(100,6.0); Histogram(&nb, n); } { NegativeBinomial nb(11,9.0); Histogram(&nb, n); } { NegativeBinomial nb(11,1.9); Histogram(&nb, n); } { NegativeBinomial nb(11,0.10); Histogram(&nb, n); } { NegativeBinomial nb(1.5,1.9); Histogram(&nb, n); } { NegativeBinomial nb(1.0,1.9); Histogram(&nb, n); } { NegativeBinomial nb(0.3,19); Histogram(&nb, n); } { NegativeBinomial nb(0.3,1.9); Histogram(&nb, n); } { NegativeBinomial nb(0.3,0.05); Histogram(&nb, n); } { NegativeBinomial nb(100.8,0.18); Histogram(&nb, n); } { ChiSq c(1,2.0); Histogram(&c, n); } { ChiSq c(2,2.0); Histogram(&c, n); } { ChiSq c(3,2.0); Histogram(&c, n); } { ChiSq c(4,2.0); Histogram(&c, n); } { ChiSq c(1 ); Histogram(&c, n); } { ChiSq c(2 ); Histogram(&c, n); } { ChiSq c(3 ); Histogram(&c, n); } { ChiSq c(4 ); Histogram(&c, n); } { Gamma g1(1.0); Histogram(&g1, n); } { Gamma g2(0.5); Histogram(&g2, n); } { Gamma g3(1.01); Histogram(&g3, n); } { Gamma g4(2.0); Histogram(&g4, n); } { Pareto p1(0.5); Histogram(&p1, n); } { Pareto p2(1.5); Histogram(&p2, n); } { Pareto p3(2.5); Histogram(&p3, n); } { Pareto p4(4.5); Histogram(&p4, n); } Real probs[]={.1,.3,.05,.11,.05,.04,.05,.05,.1,.15}; Real val[]={2,3,4,6,8,12,16,24,32,48}; { DiscreteGen discrete(10,probs); Histogram(&discrete, n); } { DiscreteGen discrete(10,probs,val); Histogram(&discrete, n); } }
void test3(int n) { cout << endl; // Do chi-squared tests to discrete data cout << "ChiSquared tests for discrete data" << endl; cout << "chisq should be less than 95% point in most cases" << endl; cout << " and 99% point in almost all cases" << endl << endl; { Real p[] = { 0.05, 0.10, 0.05, 0.5, 0.01, 0.01, 0.03, 0.20, 0.05 }; TestDiscreteGen(9, p, n); } { Real p[] = { 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.00625, 0.2 }; TestDiscreteGen(9, p, n); } TestNegativeBinomial(200.3, 0.05, n); TestNegativeBinomial(150.3, 0.15, n); TestNegativeBinomial(100.8, 0.18, n); TestNegativeBinomial(100.8, 1.22, n); TestNegativeBinomial(100.8, 9.0, n); TestNegativeBinomial(10.5, 0.18, n); TestNegativeBinomial(10.5, 1.22, n); TestNegativeBinomial(10.5, 9.0, n); TestNegativeBinomial(0.35, 0.18, n); TestNegativeBinomial(0.35, 1.22, n); TestNegativeBinomial(0.35, 9.0, n); TestBinomial(100, 0.45, n); TestBinomial(100, 0.25, n); TestBinomial(100, 0.02, n); TestBinomial(100, 0.01, n); TestBinomial(49, 0.60, n); TestBinomial(21, 0.70, n); TestBinomial(10, 0.90, n); TestBinomial(10, 0.25, n); TestBinomial(10, 0.10, n); TestPoisson(0.75, n); TestPoisson(4.3, n); TestPoisson(10, n); TestPoisson(100, n); Real* data = new Real[n]; if (!data) Throw(Bad_alloc()); // Apply KS test to a variety of continuous distributions // - use cdf transform to convert to uniform cout << endl; cout << "Kolmogorov-Smirnoff tests for continuous distributions" << endl; cout << "25%, 5%, 1%, .1% upper points are 1.019, 1.358, 1.628, 1.950" << endl; cout << "5% lower point is 0.520" << endl; cout << "Values should be mostly less than 5% upper point" << endl; cout << " and less than 1% point almost always" << endl << endl; { ChiSq X(1, 1.44); for (int i = 0; i < n; i++) { Real x = sqrt(X.Next()); data[i] = NormalDF(x - 1.2) - NormalDF(-x - 1.2); } cout << X.Name() << ": " << KS(data, n) << endl; } { ChiSq X(4); for (int i = 0; i < n; i++) { Real x = 0.5 * X.Next(); data[i] = (1+x)*exp(-x); } cout << X.Name() << ": " << KS(data, n) << endl; } { ChiSq X(2); for (int i = 0; i < n; i++) data[i] = exp(-0.5 * X.Next()); cout << X.Name() << ": " << KS(data, n) << endl; } { Pareto X(0.5); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 1.0 / sqrt(x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Pareto X(1.5); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 1.0 / (x * sqrt(x)); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal X; for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = NormalDF(x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal N; SumRandom X = 10 + 5 * N; for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = NormalDF((x-10)/5); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal N; Cauchy C; MixedRandom X = N(0.9) + C(0.1); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 0.9*NormalDF(x)+0.1*(atan(x)/3.141592654 + 0.5); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal N; MixedRandom X = N(0.9) + (10*N)(0.1); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 0.9*NormalDF(x)+0.1*NormalDF(x/10); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal X0; SumRandom X = X0 * 0.6 + X0 * 0.8; for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = NormalDF(x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Normal X1; MixedRandom X = X1(0.2) + (X1 * 2.5 + 1.1)(0.35) + (X1 + 2.3)(0.45); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 0.20 * NormalDF(x) + 0.35 * NormalDF((x - 1.1) / 2.5) + 0.45 * NormalDF(x - 2.3); } cout << X.Name() << ": " << KS(data, n) << endl; } { Gamma X(0.5); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = 2.0 * NormalDF(-sqrt(2 * x)); } cout << X.Name() << ": " << KS(data, n) << endl; } { Gamma X(3); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Gamma X1(0.85); Gamma X2(2.15); SumRandom X = X1 + X2; for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Gamma X1(0.75); Gamma X2(0.25); SumRandom X = X1 + X2; for (int i = 0; i < n; i++) data[i] = exp(-X.Next()); cout << X.Name() << ": " << KS(data, n) << endl; } { Gamma X(2); for (int i = 0; i < n; i++) { Real x = X.Next(); data[i] = (1+x)*exp(-x); } cout << X.Name() << ": " << KS(data, n) << endl; } { Exponential X; for (int i = 0; i < n; i++) data[i] = exp(-X.Next()); cout << X.Name() << ": " << KS(data, n) << endl; } { Cauchy X; for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5; cout << X.Name() << ": " << KS(data, n) << endl; } { Cauchy X0; SumRandom X = X0 * 0.3 + X0 * 0.7; for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5; cout << X.Name() << ": " << KS(data, n) << endl; } { Uniform X; for (int i = 0; i < n; i++) data[i] = X.Next(); cout << X.Name() << ": " << KS(data, n) << endl; } delete [] data; }