Example #1
0
std::string SpatialReference::getVertical() const
{
    std::string tmp("");

    OGRSpatialReference* poSRS =
        (OGRSpatialReference*)OSRNewSpatialReference(m_wkt.c_str());
    char *pszWKT = NULL;

    OGR_SRSNode* node = poSRS->GetAttrNode("VERT_CS");
    if (node && poSRS)
    {
        node->exportToWkt(&pszWKT);
        tmp = pszWKT;
        CPLFree(pszWKT);
        OSRDestroySpatialReference(poSRS);
    }

    return tmp;
}
/** Apply a vertical shift grid to a source (DEM typically) dataset.
 * 
 * hGridDataset will typically use WGS84 as horizontal datum (but this is
 * not a requirement) and its values are the values to add to go from geoid
 * elevations to WGS84 ellipsoidal heights.
 * 
 * hGridDataset will be on-the-fly reprojected and resampled to the projection
 * and resolution of hSrcDataset, using bilinear resampling by default.
 * 
 * Both hSrcDataset and hGridDataset must be single band datasets, and have
 * a valid geotransform and projection.
 *
 * On success, a reference will be taken on hSrcDataset and hGridDataset.
 * Reference counting semantics on the source and grid datasets should be
 * honoured. That is, don't just GDALClose() it, unless it was opened with
 * GDALOpenShared(), but rather use GDALReleaseDataset() if wanting to
 * immediately release the reference(s) and make the returned dataset the
 * owner of them.
 *
 * Valid use cases:
 * 
 * \code
 * hSrcDataset = GDALOpen(...)
 * hGridDataset = GDALOpen(...)
 * hDstDataset = GDALApplyVerticalShiftGrid(hSrcDataset, hGridDataset, ...)
 * GDALReleaseDataset(hSrcDataset);
 * GDALReleaseDataset(hGridDataset);
 * if( hDstDataset )
 * {
 *     // Do things with hDstDataset 
 *     GDALClose(hDstDataset) // will close hSrcDataset and hGridDataset
 * }
 * \endcode

 *
 * @param hSrcDataset source (DEM) dataset. Must not be NULL.
 * @param hGridDataset vertical grid shift dataset. Must not be NULL.
 * @param bInverse if set to FALSE, hGridDataset values will be added to
 *                 hSrcDataset. If set to TRUE, they will be subtracted.
 * @param dfSrcUnitToMeter the factor to convert values from hSrcDataset to
 *                         meters (1.0 if source values are in meter).
 * @param dfDstUnitToMeter the factor to convert shifted values from meter
 *                          (1.0 if output values must be in meter).
 * @param papszOptions list of options, or NULL. Supported options are:
 * <ul>
 * <li>RESAMPLING=NEAREST/BILINEAR/CUBIC. Defaults to BILINEAR.</li>
 * <li>MAX_ERROR=val. Maximum error measured in input pixels that is allowed in
 * approximating the transformation (0.0 for exact calculations). Defaults
 * to 0.125</li>
 * <li>DATATYPE=Byte/UInt16/Int16/Float32/Float64. Output data type. If not
 * specified will be the same as the one of hSrcDataset.
 * <li>ERROR_ON_MISSING_VERT_SHIFT=YES/NO. Whether a missing/nodata value in
 * hGridDataset should cause I/O requests to fail. Default is NO (in which case
 * 0 will be used)
 * <li>SRC_SRS=srs_def. Override projection on hSrcDataset;
 * </ul>
 *
 * @return a new dataset corresponding to hSrcDataset adjusted with
 * hGridDataset, or NULL. If not NULL, it must be closed with GDALClose().
 *
 * @since GDAL 2.2
 */
GDALDatasetH GDALApplyVerticalShiftGrid( GDALDatasetH hSrcDataset,
                                         GDALDatasetH hGridDataset,
                                         int bInverse,
                                         double dfSrcUnitToMeter,
                                         double dfDstUnitToMeter,
                                         const char* const* papszOptions )
{
    VALIDATE_POINTER1( hSrcDataset, "GDALApplyVerticalShiftGrid", nullptr );
    VALIDATE_POINTER1( hGridDataset, "GDALApplyVerticalShiftGrid", nullptr );

    double adfSrcGT[6];
    if( GDALGetGeoTransform(hSrcDataset, adfSrcGT) != CE_None )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Source dataset has no geotransform.");
        return nullptr;
    }
    const char* pszSrcProjection = CSLFetchNameValueDef(papszOptions,
                                            "SRC_SRS",
                                            GDALGetProjectionRef(hSrcDataset));
    if( pszSrcProjection == nullptr || pszSrcProjection[0] == '\0' )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Source dataset has no projection.");
        return nullptr;
    }
    if(  GDALGetRasterCount(hSrcDataset) != 1 )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Only single band source dataset is supported.");
        return nullptr;
    }

    double adfGridGT[6];
    if( GDALGetGeoTransform(hGridDataset, adfGridGT) != CE_None )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Grid dataset has no geotransform.");
        return nullptr;
    }
    const char* pszGridProjection = GDALGetProjectionRef(hGridDataset);
    if( pszGridProjection == nullptr || pszGridProjection[0] == '\0' )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Grid dataset has no projection.");
        return nullptr;
    }
    if(  GDALGetRasterCount(hGridDataset) != 1 )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Only single band grid dataset is supported.");
        return nullptr;
    }

    GDALDataType eDT = GDALGetRasterDataType(GDALGetRasterBand(hSrcDataset,1));
    const char* pszDataType = CSLFetchNameValue(papszOptions, "DATATYPE");
    if( pszDataType )
        eDT = GDALGetDataTypeByName(pszDataType);
    if( eDT == GDT_Unknown )
    {
        CPLError(CE_Failure, CPLE_NotSupported,
                 "Invalid DATATYPE=%s", pszDataType);
        return nullptr;
    }

    const int nSrcXSize = GDALGetRasterXSize(hSrcDataset);
    const int nSrcYSize = GDALGetRasterYSize(hSrcDataset);

    OGRSpatialReference oSRS;
    CPLString osSrcProjection(pszSrcProjection);
    oSRS.SetFromUserInput(osSrcProjection);
    if( oSRS.IsCompound() )
    {
        OGR_SRSNode* poNode = oSRS.GetRoot()->GetChild(1);
        if( poNode != nullptr )
        {
            char* pszWKT = nullptr;
            poNode->exportToWkt(&pszWKT);
            osSrcProjection = pszWKT;
            CPLFree(pszWKT);
        }
    }

    void* hTransform = GDALCreateGenImgProjTransformer3( pszGridProjection,
                                                         adfGridGT,
                                                         osSrcProjection,
                                                         adfSrcGT );
    if( hTransform == nullptr )
        return nullptr;
    GDALWarpOptions* psWO = GDALCreateWarpOptions();
    psWO->hSrcDS = hGridDataset;
    psWO->eResampleAlg = GRA_Bilinear;
    const char* pszResampling = CSLFetchNameValue(papszOptions, "RESAMPLING");
    if( pszResampling )
    {
        if( EQUAL(pszResampling, "NEAREST") )
            psWO->eResampleAlg = GRA_NearestNeighbour;
        else if( EQUAL(pszResampling, "BILINEAR") )
            psWO->eResampleAlg = GRA_Bilinear;
        else if( EQUAL(pszResampling, "CUBIC") )
            psWO->eResampleAlg = GRA_Cubic;
    }
    psWO->eWorkingDataType = GDT_Float32;
    int bHasNoData = FALSE;
    const double dfSrcNoData = GDALGetRasterNoDataValue(
        GDALGetRasterBand(hGridDataset, 1), &bHasNoData );
    if( bHasNoData )
    {
        psWO->padfSrcNoDataReal =
                static_cast<double*>(CPLMalloc(sizeof(double)));
        psWO->padfSrcNoDataReal[0] = dfSrcNoData;
    }

    psWO->padfDstNoDataReal = static_cast<double*>(CPLMalloc(sizeof(double)));
    const bool bErrorOnMissingShift = CPLFetchBool( papszOptions,
                                              "ERROR_ON_MISSING_VERT_SHIFT",
                                              false );
    psWO->padfDstNoDataReal[0] = 
        (bErrorOnMissingShift) ? -std::numeric_limits<float>::infinity() : 0.0;
    psWO->papszWarpOptions = CSLSetNameValue(psWO->papszWarpOptions,
                                                 "INIT_DEST",
                                                 "NO_DATA");

    psWO->pfnTransformer = GDALGenImgProjTransform;
    psWO->pTransformerArg = hTransform;
    const double dfMaxError = CPLAtof(CSLFetchNameValueDef(papszOptions,
                                                           "MAX_ERROR",
                                                           "0.125"));
    if( dfMaxError > 0.0 )
    {
        psWO->pTransformerArg =
            GDALCreateApproxTransformer( psWO->pfnTransformer,
                                         psWO->pTransformerArg,
                                         dfMaxError );
        psWO->pfnTransformer = GDALApproxTransform;
        GDALApproxTransformerOwnsSubtransformer(psWO->pTransformerArg, TRUE);
    }
    psWO->nBandCount = 1;
    psWO->panSrcBands = static_cast<int *>(CPLMalloc(sizeof(int)));
    psWO->panSrcBands[0] = 1;
    psWO->panDstBands = static_cast<int *>(CPLMalloc(sizeof(int)));
    psWO->panDstBands[0] = 1;

    VRTWarpedDataset* poReprojectedGrid =
                new VRTWarpedDataset(nSrcXSize, nSrcYSize);
    // This takes a reference on hGridDataset
    CPLErr eErr = poReprojectedGrid->Initialize(psWO);
    CPLAssert(eErr == CE_None);
    CPL_IGNORE_RET_VAL(eErr);
    GDALDestroyWarpOptions(psWO);
    poReprojectedGrid->SetGeoTransform(adfSrcGT);
    poReprojectedGrid->AddBand(GDT_Float32, nullptr);

    GDALApplyVSGDataset* poOutDS = new GDALApplyVSGDataset(
        reinterpret_cast<GDALDataset*>(hSrcDataset),
        poReprojectedGrid,
        eDT,
        CPL_TO_BOOL(bInverse),
        dfSrcUnitToMeter,
        dfDstUnitToMeter,
        // Undocumented option. For testing only
        atoi(CSLFetchNameValueDef(papszOptions, "BLOCKSIZE", "256")) );

    poReprojectedGrid->ReleaseRef();

    if( !poOutDS->IsInitOK() )
    {
        delete poOutDS;
        return nullptr;
    }
    poOutDS->SetDescription( GDALGetDescription( hSrcDataset ) );
    return reinterpret_cast<GDALDatasetH>(poOutDS);
}