ExprResult Sema::ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg Args) { // Determine whether we are inside a method or not. ObjCMethodDecl *Method = tryCaptureObjCSelf(); if (!Method) { Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); return ExprError(); } ObjCInterfaceDecl *Class = Method->getClassInterface(); if (!Class) { Diag(SuperLoc, diag::error_no_super_class_message) << Method->getDeclName(); return ExprError(); } ObjCInterfaceDecl *Super = Class->getSuperClass(); if (!Super) { // The current class does not have a superclass. Diag(SuperLoc, diag::error_root_class_cannot_use_super) << Class->getIdentifier(); return ExprError(); } // We are in a method whose class has a superclass, so 'super' // is acting as a keyword. if (Method->isInstanceMethod()) { // Since we are in an instance method, this is an instance // message to the superclass instance. QualType SuperTy = Context.getObjCInterfaceType(Super); SuperTy = Context.getObjCObjectPointerType(SuperTy); return BuildInstanceMessage(0, SuperTy, SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); } // Since we are in a class method, this is a class message to // the superclass. return BuildClassMessage(/*ReceiverTypeInfo=*/0, Context.getObjCInterfaceType(Super), SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); }
static bool ClassImplementsAllMethodsAndProperties(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl, const ObjCInterfaceDecl *IDecl, ObjCProtocolDecl *Protocol) { // In auto-synthesis, protocol properties are not synthesized. So, // a conforming protocol must have its required properties declared // in class interface. bool HasAtleastOneRequiredProperty = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) for (ObjCProtocolDecl::prop_iterator P = PDecl->prop_begin(), E = PDecl->prop_end(); P != E; ++P) { ObjCPropertyDecl *Property = *P; if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional) continue; HasAtleastOneRequiredProperty = true; DeclContext::lookup_const_result R = IDecl->lookup(Property->getDeclName()); if (R.size() == 0) { // Relax the rule and look into class's implementation for a synthesize // or dynamic declaration. Class is implementing a property coming from // another protocol. This still makes the target protocol as conforming. if (!ImpDecl->FindPropertyImplDecl( Property->getDeclName().getAsIdentifierInfo())) return false; } else if (ObjCPropertyDecl *ClassProperty = dyn_cast<ObjCPropertyDecl>(R[0])) { if ((ClassProperty->getPropertyAttributes() != Property->getPropertyAttributes()) || !Ctx.hasSameType(ClassProperty->getType(), Property->getType())) return false; } else return false; } // At this point, all required properties in this protocol conform to those // declared in the class. // Check that class implements the required methods of the protocol too. bool HasAtleastOneRequiredMethod = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) { if (PDecl->meth_begin() == PDecl->meth_end()) return HasAtleastOneRequiredProperty; for (ObjCContainerDecl::method_iterator M = PDecl->meth_begin(), MEnd = PDecl->meth_end(); M != MEnd; ++M) { ObjCMethodDecl *MD = (*M); if (MD->isImplicit()) continue; if (MD->getImplementationControl() == ObjCMethodDecl::Optional) continue; DeclContext::lookup_const_result R = ImpDecl->lookup(MD->getDeclName()); if (R.size() == 0) return false; bool match = false; HasAtleastOneRequiredMethod = true; for (unsigned I = 0, N = R.size(); I != N; ++I) if (ObjCMethodDecl *ImpMD = dyn_cast<ObjCMethodDecl>(R[0])) if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) { match = true; break; } if (!match) return false; } } if (HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod) return true; return false; }