int main(int argc, char **argv)
{

	OptionParser op;
  op.addOption("verbose", OPT_BOOL, "", "enable verbose output", 'v');
  op.addOption("passes", OPT_INT, "10", "specify number of passes", 'n');
  op.addOption("size", OPT_INT, "1", "specify problem size", 's');
  op.addOption("target", OPT_INT, "0", "specify MIC target device number", 't');
  
  // If benchmark has any specific options, add those
  addBenchmarkSpecOptions(op);
  
  if (!op.parse(argc, argv))
  {
     op.usage();
     return -1;
  }

  ResultDatabase resultDB;
  // Run the test
  RunBenchmark(op, resultDB);

  // Print out results to stdout
  resultDB.DumpDetailed(cout);

	return 0;
}
Example #2
0
int t1only_main(int argc, char *argv[], int nb_pars, OptionParser & options){
  
  if (argc - nb_pars < 4)
    {
      cerr<<"too few arguments"<<endl;
      options.usage(); return -1;
    }
  
  int count_arg = nb_pars;
  
  const string inputt1(argv[count_arg]);
  count_arg++;
  const string mesh(argv[count_arg]);
  count_arg++;
  const string matrix(argv[count_arg]);
  count_arg++;
  const string outputstr(argv[count_arg]);


  //load the mesh
  Mesh m;
  m.load(mesh);

  //load the matrix
  trMatrix M;
  ifstream f(matrix.c_str());
  if (f.is_open())
    {
      f>>M.m11>>M.m12>>M.m13>>M.m14>>M.m21>>M.m22>>M.m23>>M.m24>>M.m31>>M.m32>>M.m33>>M.m34>>M.m41>>M.m42>>M.m43>>M.m44;
      f.close();
    }
Example #3
0
 void operator() (const Option& option, const string& opt, const string& val, const OptionParser& parser) {
   counter++;
   cout << "--- MyCallback --- " << counter << ". time called" << endl;
   cout << "--- MyCallback --- option.action(): " << option.action() << endl;
   cout << "--- MyCallback --- opt: " << opt << endl;
   cout << "--- MyCallback --- val: " << val << endl;
   cout << "--- MyCallback --- parser.usage(): " << parser.usage() << endl;
   cout << endl;
 }
Example #4
0
int
main(int argc, char** argv)
{
  OptionParser options;
  options.executable("lucb")
  .program(DUNE_SHORT_NAME)
  .copyright(DUNE_COPYRIGHT)
  .email(DUNE_CONTACT)
  .version(getFullVersion())
  .date(getCompileDate())
  .arch(DUNE_SYSTEM_NAME)
  .description("Utility to update firmware of LUCL based devices.")
  .add("-d", "--sys-device",
       "System device", "DEVICE")
  .add("-b", "--baud-rate",
       "Baud rate", "BAUD")
  .add("-i", "--i2c-address",
       "I2C slave address", "I2C_ADDR")
  .add("-f", "--file",
       "iHEX file", "IHEX_FILE");

  // Parse command line arguments.
  if (!options.parse(argc, argv))
  {
    if (options.bad())
      std::cerr << "ERROR: " << options.error() << std::endl;
    options.usage();
    return 1;
  }

  // Get iHEX file.
  std::string ihex = options.value("--file");
  if (ihex.empty())
  {
    std::cerr << "ERROR: you must specify one iHEX file." << std::endl;
    return 1;
  }

  // Get system device.
  std::string sys_dev = options.value("--sys-device");
  if (sys_dev.empty())
  {
    std::cerr << "ERROR: you must specify one system device." << std::endl;
    return 1;
  }

  // Get specified baud rate.
  int baud = 0;
  castLexical(options.value("--baud-rate"), baud);

  // Get I2C address (if any).
  bool is_i2c = false;
  uint8_t i2c_addr = 0;
  if (castLexical(options.value("--i2c-address"), i2c_addr))
  {
    if ((i2c_addr < 0x03) || (i2c_addr > 0x77))
    {
      std::cerr << "ERROR: I2C device address is out of range (0x03 - 0x77)" << std::endl;
      return 1;
    }

    is_i2c = true;
  }

  LUCL::Protocol proto;

  if (is_i2c)
    proto.setI2C(sys_dev, i2c_addr);
  else
    proto.setUART(sys_dev);

  try
  {
    LUCL::BootLoader boot(proto, true, baud);
    boot.flash(ihex);
  }
  catch (std::exception& e)
  {
    std::cerr << "ERROR: " << e.what() << std::endl;
  }

  return 0;
}
Example #5
0
int
main(int argc, char** argv)
{
  OptionParser options;
  options.executable(argv[0])
  .program(DUNE_SHORT_NAME)
  .copyright(DUNE_COPYRIGHT)
  .email("Renato Caldas <*****@*****.**>")
  .version(getFullVersion())
  .date(getCompileDate())
  .arch(DUNE_SYSTEM_NAME)
  .description("Utility to update firmware of LUCL based devices.")
  .add("-d", "--sys-device",
       "System device", "DEVICE")
  .add("-i", "--i2c-address",
       "I2C slave address", "I2C_ADDR")
  .add("-c", "--command",
       "LUCL command", "CMD")
  .add("-p", "--data-payload",
       "LUCL data", "DATA0[,DATA1 ...]");

  // Parse command line arguments.
  if (!options.parse(argc, argv))
  {
    if (options.bad())
      std::cerr << "ERROR: " << options.error() << std::endl;
    options.usage();
    return 1;
  }

  // Get system device.
  std::string sys_dev = options.value("--sys-device");
  if (sys_dev.empty())
  {
    std::cerr << "ERROR: you must specify one system device." << std::endl;
    return 1;
  }

  // Get I2C address (if any).
  bool is_i2c = false;
  uint8_t i2c_addr = 0;
  if (castLexical(options.value("--i2c-address"), i2c_addr))
  {
    if ((i2c_addr < 0x03) || (i2c_addr > 0x77))
    {
      std::cerr << "ERROR: I2C device address is out of range (0x03 - 0x77)" << std::endl;
      return 1;
    }

    is_i2c = true;
  }

  // Open the device
  LUCL::Protocol proto;

  if (is_i2c)
    proto.setI2C(sys_dev, i2c_addr);
  else
    proto.setUART(sys_dev);

  try
  {
    proto.open();
  }
  catch (std::exception& e)
  {
    std::cerr << "ERROR: " << e.what() << std::endl;
    return 1;
  }

  // Check for the command token
  std::string command = options.value("--command");
  if (command.empty())
  {
    std::cerr << "ERROR: reading from stdio not supported yet." << std::endl;
    return 1;
  }

  // Get the data payload
  std::string data_str = options.value("--data-payload");
  std::vector<uint8_t> data_lst;
  if (!castLexical(data_str, data_lst))
  {
    std::cerr << "ERROR: failed to parse the data payload argument." << std::endl;
    return 1;
  }

  // Build and send the packet
  if (command.compare("Info") == 0)
  {
    std::cerr << "Requesting device information" << std::endl;
    try
    {
      proto.requestVersion();
    }
    catch (std::exception& e)
    {
      std::cerr << "ERROR: " << e.what() << std::endl;
      return 1;
    }
  }
  else if (command.compare("Reset") == 0)
  {
    std::cerr << "Requesting reset" << std::endl;
    try
    {
      proto.requestReset();
    }
    catch (std::exception& e)
    {
      std::cerr << "ERROR: " << e.what() << std::endl;
      return 1;
    }
  }
  else
  {
    // Command string not recognized, attempt to interpret it as an integer
    int cmd;
    if (!castLexical(command, cmd))
    {
      std::cerr << "ERROR: bad command \"" << command << "\"" << std::endl;
      return 1;
    }

    // Print the command and the data in a parseable format
    std::cout << "Sending packet CMD " << cmd << " DATA";
    for (unsigned i = 0; i < data_lst.size(); i++)
    {
      std::cout << " 0x" << std::hex << (int)data_lst[i];
    }
    std::cout << std::endl;

    try
    {
      proto.sendCommand(cmd, (uint8_t*)(&data_lst[0]), (int)data_lst.size());
    }
    catch (std::exception& e)
    {
      std::cerr << "ERROR: " << e.what() << std::endl;
      return 1;
    }
  }

  // Handle the results
  handleReply(proto);

  return 0;
}
Example #6
0
File: main.cpp Project: ManavA/shoc
// ****************************************************************************
// Method:  main()
//
// Purpose:
//   serial and parallel main for OpenCL level0 benchmarks
//
// Arguments:
//   argc, argv
//
// Programmer:  SHOC Team
// Creation:    The Epoch
//
// Modifications:
//   Jeremy Meredith, Tue Jan 12 15:09:33 EST 2010
//   Changed the way device selection works.  It now defaults to the device
//   index corresponding to the process's rank within a node if no devices
//   are specified on the command command line, and otherwise, round-robins
//   the list of devices among the tasks.
//
//   Gabriel Marin, Tue Jun 01 15:38 EST 2010
//   Check that we have valid (not NULL) context and queue objects before
//   running the benchmarks. Errors inside CreateContextFromSingleDevice or
//   CreateCommandQueueForContextAndDevice were not propagated out to the main
//   program.
//
//   Jeremy Meredith, Wed Nov 10 14:20:47 EST 2010
//   Split timing reports into detailed and summary.  For serial code, we
//   report all trial values, and for parallel, skip the per-process vals.
//   Also detect and print outliers from parallel runs.
//
// ****************************************************************************
int main(int argc, char *argv[])
{
    int ret = 0;

    try
    {
#ifdef PARALLEL
        int rank, size;
        MPI_Init(&argc,&argv);
        MPI_Comm_size(MPI_COMM_WORLD, &size);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        cout << "MPI Task "<< rank << "/" << size - 1 << " starting....\n";
#endif

        OptionParser op;

        //Add shared options to the parser
        op.addOption("platform", OPT_INT, "0", "specify OpenCL platform to use",
                'p');
        op.addOption("device", OPT_VECINT, "", "specify device(s) to run on", 'd');
        op.addOption("passes", OPT_INT, "10", "specify number of passes", 'n');
        op.addOption("size", OPT_VECINT, "1", "specify problem size", 's');
        op.addOption("infoDevices", OPT_BOOL, "",
                "show info for available platforms and devices", 'i');
        op.addOption("verbose", OPT_BOOL, "", "enable verbose output", 'v');
        op.addOption("quiet", OPT_BOOL, "", "write minimum necessary to standard output", 'q');

        addBenchmarkSpecOptions(op);

        if (!op.parse(argc, argv))
        {
#ifdef PARALLEL
            if (rank == 0)
                op.usage();
            MPI_Finalize();
#else
            op.usage();
#endif
            return (op.HelpRequested() ? 0 : 1 );
        }

        if (op.getOptionBool("infoDevices"))
        {
#define DEBUG_DEVICE_CONTAINER 0
#ifdef PARALLEL
            // execute following code only if I am the process of lowest
            // rank on this node
            NodeInfo NI;
            int mynoderank = NI.nodeRank();
            if (mynoderank==0)
            {
                int nlrrank, nlrsize;
                MPI_Comm nlrcomm = NI.getNLRComm();
                MPI_Comm_size(nlrcomm, &nlrsize);
                MPI_Comm_rank(nlrcomm, &nlrrank);

                OpenCLNodePlatformContainer ndc1;
                OpenCLMultiNodeContainer localMnc(ndc1);
                localMnc.doMerge (nlrrank, nlrsize, nlrcomm);
                if (rank==0)  // I am the global rank 0, print all configurations
                    localMnc.Print (cout);
            }
#else
            OpenCLNodePlatformContainer ndc1;
            ndc1.Print (cout);
#if DEBUG_DEVICE_CONTAINER
            OpenCLMultiNodeContainer mnc1(ndc1), mnc2;
            mnc1.Print (cout);
            ostringstream oss;
            mnc1.writeObject (oss);
            std::string temp(oss.str());
            cout << "Serialized MultiNodeContainer:\n" << temp;
            istringstream iss(temp);
            mnc2.readObject (iss);
            cout << "Unserialized object2:\n";
            mnc2.Print (cout);
            mnc1.merge (mnc2);
            cout << "==============\nObject1 after merging 1:\n";
            mnc1.Print (cout);
            mnc1.merge (mnc2);
            cout << "==============\nObject1 after merging 2:\n";
            mnc1.Print (cout);
#endif  // DEBUG
#endif  // PARALLEL
            return (0);
        }

        bool verbose = op.getOptionBool("verbose");

        // The device option supports specifying more than one device
        // for now, just choose the first one.
        int platform = op.getOptionInt("platform");

#ifdef PARALLEL
        NodeInfo ni;
        int myNodeRank = ni.nodeRank();
        if (verbose)
        cout << "Global rank "<<rank<<" is local rank "<<myNodeRank << endl;
#else
        int myNodeRank = 0;
#endif

        // If they haven't specified any devices, assume they
        // want the process with in-node rank N to use device N
        int deviceIdx = myNodeRank;

        // If they have, then round-robin the list of devices
        // among the processes on a node.
        vector<long long> deviceVec = op.getOptionVecInt("device");
        if (deviceVec.size() > 0)
        {
        int len = deviceVec.size();
            deviceIdx = deviceVec[myNodeRank % len];
        }

        // Check for an erroneous device
        if (deviceIdx >= GetNumOclDevices(platform)) {
            cerr << "Warning: device index: " << deviceIdx
                 << " out of range, defaulting to device 0.\n";
            deviceIdx = 0;
        }

        // Initialization
        if (verbose) cout << ">> initializing\n";
        cl_device_id devID = ListDevicesAndGetDevice(platform, deviceIdx);
        cl_int clErr;
        cl_context ctx = clCreateContext( NULL,     // properties
                                            1,      // number of devices
                                            &devID, // device
                                            NULL,   // notification function
                                            NULL,
                                            &clErr );
        CL_CHECK_ERROR(clErr);
        cl_command_queue queue = clCreateCommandQueue( ctx,
                                                        devID,
                                                        CL_QUEUE_PROFILING_ENABLE,
                                                        &clErr );
        CL_CHECK_ERROR(clErr);
        ResultDatabase resultDB;

        // Run the benchmark
        RunBenchmark(devID, ctx, queue, resultDB, op);

        clReleaseCommandQueue( queue );
        clReleaseContext( ctx );


#ifndef PARALLEL
        resultDB.DumpDetailed(cout);
#else
        ParallelResultDatabase pardb;
        pardb.MergeSerialDatabases(resultDB,MPI_COMM_WORLD);
        if (rank==0)
        {
            pardb.DumpSummary(cout);
            pardb.DumpOutliers(cout);
        }
#endif
    }
    catch( std::exception& e )
    {
        std::cerr << e.what() << std::endl;
        ret = 1;
    }
    catch( ... )
    {
        std::cerr << "unrecognized exception caught" << std::endl;
        ret = 1;
    }

#ifdef PARALLEL
    MPI_Finalize();
#endif

    return ret;
}
Example #7
0
int main(int argc, char *argv[])
{
    int numdev=0, totalnumdev=0, numtasks, mympirank, dest, source, rc,
        mypair=0, count, tag=2, mynoderank,myclusterrank,nodenprocs;
    int *grp1, *grp2;
    int mygrprank,grpnumtasks;
    MPI_Group orig_group,bmgrp;
    MPI_Comm bmcomm,nlrcomm;
    ResultDatabase resultDB,resultDBWU,resultDB1;
    OptionParser op;
    ParallelResultDatabase pardb, pardb1;
    bool amGPUTask = false;
    volatile unsigned long long *mpidone;
    int i,shmid;

    /* Allocate System V shared memory */

    MPI_Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
    MPI_Comm_rank(MPI_COMM_WORLD, &mympirank);
    MPI_Comm_group(MPI_COMM_WORLD, &orig_group);


    //Add shared options to the parser
    op.addOption("device", OPT_VECINT, "0", "specify device(s) to run on",
		    'd');
    op.addOption("verbose", OPT_BOOL, "", "enable verbose output", 'v');
    op.addOption("quiet", OPT_BOOL, "",
		    "write minimum necessary to standard output", 'q');
    op.addOption("passes", OPT_INT, "10", "specify number of passes", 'z');
    op.addOption("size", OPT_VECINT, "1", "specify problem size", 's');
    op.addOption("time", OPT_INT, "5", "specify running time in miuntes", 't');
    op.addOption("outputFile", OPT_STRING, "output.txt", "specify output file",
       'o');
    op.addOption("infoDevices", OPT_BOOL, "", "show summary info for available devices",
       'i');
    op.addOption("fullInfoDevices", OPT_BOOL, "", "show full info for available devices");
    op.addOption("MPIminmsg", OPT_INT, "0", "specify minimum MPI message size");
    op.addOption("MPImaxmsg", OPT_INT, "16384",
                    "specify maximum MPI message size");
    op.addOption("MPIiter", OPT_INT, "1000",
                    "specify number of MPI benchmark iterations for each size");
    op.addOption("platform", OPT_INT, "0", "specify platform for device selection", 'y');

    if (!op.parse(argc, argv))
    {
        if (mympirank == 0)
            op.usage();
        MPI_Finalize();
        return 0;
    }

    int npasses = op.getOptionInt("passes");

    //our simple mapping
    NodeInfo NI;
    mynoderank = NI.nodeRank();         // rank of my process within the node
    myclusterrank = NI.clusterRank();   // cluster (essentially, node) id
    MPI_Comm smpcomm = NI.getSMPComm();

    if(mynoderank==0){
        shmid = shmget(IPC_PRIVATE,
                 sizeof(unsigned long long),
                 (IPC_CREAT | 0600));
    }

    MPI_Bcast(&shmid, 1, MPI_INT, 0, NI.getSMPComm());

    mpidone = ((volatile unsigned long long*) shmat(shmid, 0, 0));
    if (mynoderank == 0)
        shmctl(shmid, IPC_RMID, 0);
    *mpidone = 0;

    nlrcomm = NI.getNLRComm(); // communcator of all the lowest rank processes
                               // on all the nodes
    int numnodes = NI.numNodes();
    if ( numnodes%2!=0 )
    {
        if(mympirank==0)
            printf("\nThis test needs an even number of nodes\n");
        MPI_Finalize();
	exit(0);
    }
    int nodealr = NI.nodeALR();

    nodenprocs=NI.nodeNprocs();

    // determine how many GPU devices we are to use
    int devsPerNode = op.getOptionVecInt( "device" ).size();
    //cout<<mympirank<<":numgpus="<<devsPerNode<<endl;

    // if there are as many or more devices as the nprocs, only use half of
    // the nproc
    if ( devsPerNode >= nodenprocs ) devsPerNode = nodenprocs/2;

    numdev = (mynoderank == 0) ? devsPerNode : 0;
    MPI_Allreduce(&numdev, &totalnumdev, 1, MPI_INT, MPI_SUM,
                    MPI_COMM_WORLD);
    numdev = devsPerNode;

    // determine whether I am to be a GPU or a comm task
    if( mynoderank < numdev )
    {
        amGPUTask = true;
    }

    //Divide tasks into two distinct groups based upon noderank
    grp1=(int *)calloc(totalnumdev, sizeof(int));
    grp2=(int *)calloc((numtasks-totalnumdev),sizeof(int));
    if (grp1==NULL || grp2==NULL)
    {
        printf("\n%d:calloc failed in %s",mympirank,__FUNCTION__);
        exit(1);
    }


    /*compute the groups*/
    int beginoffset[2]={0,0};
    if(mynoderank == 0)
    {
        int tmp[2];
	tmp[0]=numdev;
	tmp[1]=nodenprocs-numdev;
        if (mympirank ==0)
            MPI_Send(tmp, 2*sizeof(int), MPI_CHAR, 1, 112, nlrcomm);
        else
        {
            MPI_Status reqstat;
	    MPI_Recv(beginoffset, 2*sizeof(int), MPI_CHAR, myclusterrank-1,
			    112, nlrcomm ,&reqstat);
            if (myclusterrank < numnodes-1)
            {
                beginoffset[0]+=numdev;
                beginoffset[1]+=(nodenprocs-numdev);
		MPI_Send(beginoffset,2*sizeof(int), MPI_CHAR, myclusterrank+1,
				112, nlrcomm);
		beginoffset[0]-=numdev;
		beginoffset[1]-=(nodenprocs-numdev);
            }
        }
    }
    MPI_Bcast(beginoffset,2,MPI_INT,0,smpcomm);

    if ( amGPUTask )
    {
        // I am to do GPU work
        grp1[beginoffset[0]+mynoderank]=mympirank;
        grpnumtasks=totalnumdev;
    }
    else
    {
        // I am to do MPI communication work
        grp2[beginoffset[1]+(mynoderank-numdev)]=mympirank;
        grpnumtasks=numtasks-totalnumdev;
    }

    MPI_Allreduce(MPI_IN_PLACE, grp1, totalnumdev, MPI_INT, MPI_SUM,
                    MPI_COMM_WORLD);
    MPI_Allreduce(MPI_IN_PLACE, grp2, (numtasks-totalnumdev), MPI_INT,
                            MPI_SUM, MPI_COMM_WORLD);

    if ( amGPUTask )
    {
        // I am to do GPU work, so will be part of GPU communicator
        MPI_Group_incl(orig_group, totalnumdev, grp1, &bmgrp);
    }
    else
    {
        // I am to do MPI communication work, so will be part of MPI
        // messaging traffic communicator
        MPI_Group_incl(orig_group, (numtasks-totalnumdev), grp2,
                        &bmgrp);
    }

    MPI_Comm_create(MPI_COMM_WORLD, bmgrp, &bmcomm);
    MPI_Comm_rank(bmcomm, &mygrprank);
    NodeInfo *GRPNI = new NodeInfo(bmcomm);
    int mygrpnoderank=GRPNI->nodeRank();
    int grpnodealr = GRPNI->nodeALR();
    int grpnodenprocs = GRPNI->nodeNprocs();
    MPI_Comm grpnlrcomm = GRPNI->getNLRComm();
    //note that clusterrank and number of nodes don't change for this child
    //group/comm


    //form node-random pairs (see README) among communication tasks
    if( amGPUTask )
    {
        //setup GPU in GPU tasks
        GPUSetup(op, mympirank, mynoderank);
    }
    else
    {
        int * pairlist = new int[numnodes];
        for (i=0;i<numnodes;i++) pairlist[i]=0;

        if ( mygrpnoderank==0 )
        {
            pairlist[myclusterrank]=grpnodealr;
            MPI_Allreduce(MPI_IN_PLACE,pairlist,numnodes,MPI_INT,MPI_SUM,
                          grpnlrcomm);
            mypair = RandomPairs(myclusterrank, numnodes, grpnlrcomm);
            mypair = pairlist[mypair];
        }
        for (i=0;i<numnodes;i++) pairlist[i]=0;
        if ( mygrpnoderank==0 )
            pairlist[myclusterrank]=mypair;
        MPI_Allreduce(MPI_IN_PLACE,pairlist,numnodes,MPI_INT,MPI_SUM,
                      bmcomm);
        mypair = pairlist[myclusterrank]+mygrpnoderank;
    }

    // ensure we are all synchronized before starting test
    MPI_Barrier(MPI_COMM_WORLD);

    //warmup run
    if ( amGPUTask )
    {
        GPUDriver(op, resultDBWU);
    }
    //first, individual runs for device benchmark
    for(i=0;i<npasses;i++){
        if ( amGPUTask )
        {
            GPUDriver(op, resultDB);
        }
    }
    MPI_Barrier(MPI_COMM_WORLD);

    //warmup run
    if ( !amGPUTask )
    {
        MPITest(op, resultDBWU, grpnumtasks, mygrprank, mypair, bmcomm);
    }
    //next, individual run for MPI Benchmark
    for(i=0;i<npasses;i++){
        if ( !amGPUTask )
        {
            MPITest(op, resultDB, grpnumtasks, mygrprank, mypair, bmcomm);
        }
    }
    MPI_Barrier(MPI_COMM_WORLD);

    //merge and print
    pardb.MergeSerialDatabases(resultDB, bmcomm);
    if (mympirank==0)
        cout<<endl<<"*****************************Sequential GPU and MPI runs****************************"<<endl;
    DumpInSequence(pardb, mygrprank, mympirank);

    // Simultaneous runs for observing impact of contention
    MPI_Barrier(MPI_COMM_WORLD);
    if ( amGPUTask )
    {
        do {
            if (mympirank == 0 ) cout<<".";
            GPUDriver(op, resultDB1);flush(cout);
        } while(*mpidone==0);
        if (mympirank == 0 ) cout<<"*"<<endl;
    }
    else
    {
        for ( i=0;i<npasses;i++ )
        {
            MPITest(op, resultDB1, grpnumtasks, mygrprank, mypair, bmcomm);
        }
        *mpidone=1;
    }
    MPI_Barrier(MPI_COMM_WORLD);

    //merge and print
    pardb1.MergeSerialDatabases(resultDB1,bmcomm);
    if (mympirank==0)
        cout<<endl<<"*****************************Simultaneous GPU and MPI runs****************************"<<endl;
    DumpInSequence(pardb1, mygrprank, mympirank);

    //print summary
    if ( !amGPUTask && mygrprank==0)
    {
        vector<ResultDatabase::Result> prelatency  = pardb.GetResultsForTest("MPI Latency(mean)");
        vector<ResultDatabase::Result> postlatency = pardb1.GetResultsForTest("MPI Latency(mean)");
        cout<<endl<<"Summarized Mean(Mean) MPI Baseline Latency vs. Latency with Contention";
        cout<<endl<<"MSG SIZE(B)\t";
        int msgsize=0;
        for (i=0; i<prelatency.size(); i++)
        {
            cout<<msgsize<<"\t";
            msgsize = (msgsize ? msgsize * 2 : msgsize + 1);
        }

        cout << endl <<"BASELATENCY\t";
        for (i=0; i<prelatency.size(); i++)
            cout<<setiosflags(ios::fixed) << setprecision(2)<<prelatency[i].GetMean() << "\t";

        cout << endl <<"CONTLATENCY\t";
        for (i=0; i<postlatency.size(); i++)
            cout<<setiosflags(ios::fixed) << setprecision(2)<<postlatency[i].GetMean() << "\t";
        flush(cout);
        cout<<endl;
    }
    MPI_Barrier(MPI_COMM_WORLD);

    if ( amGPUTask && mympirank==0)
    {
        vector<ResultDatabase::Result> prespeed  = pardb.GetResultsForTest("DownloadSpeed(mean)");
        vector<ResultDatabase::Result> postspeed = pardb1.GetResultsForTest("DownloadSpeed(mean)");
        cout<<endl<<"Summarized Mean(Mean) GPU Baseline Download Speed vs. Download Speed with Contention";
        cout<<endl<<"MSG SIZE(KB)\t";
        int msgsize=1;
        for (i=0; i<prespeed.size(); ++i)
        {
            cout<<msgsize<<"\t";
            msgsize = (msgsize ? msgsize * 2 : msgsize + 1);
        }
        cout << endl <<"BASESPEED\t";
        for (i=0; i<prespeed.size(); ++i)
            cout<<setiosflags(ios::fixed) << setprecision(4)<<prespeed[i].GetMean() << "\t";

        cout << endl <<"CONTSPEED\t";
        for (i=0; i<postspeed.size(); ++i)
            cout<<setiosflags(ios::fixed) << setprecision(4)<<postspeed[i].GetMean() << "\t";
         cout<<endl;
    }

    if ( amGPUTask && mympirank==0)
    {
        vector<ResultDatabase::Result> pregpulat  = pardb.GetResultsForTest("DownloadLatencyEstimate(mean)");
        vector<ResultDatabase::Result> postgpulat = pardb1.GetResultsForTest("DownloadLatencyEstimate(mean)");
        cout<<endl<<"Summarized Mean(Mean) GPU Baseline Download Latency vs. Download Latency with Contention";
        cout<<endl<<"MSG SIZE\t";
        for (i=0; i<pregpulat.size(); ++i)
        {
            cout<<pregpulat[i].atts<<"\t";
        }
        cout << endl <<"BASEGPULAT\t";
        for (i=0; i<pregpulat.size(); ++i)
            cout<<setiosflags(ios::fixed) << setprecision(7)<<pregpulat[i].GetMean() << "\t";

        cout << endl <<"CONTGPULAT\t";
        for (i=0; i<postgpulat.size(); ++i)
            cout<<setiosflags(ios::fixed) << setprecision(7)<<postgpulat[i].GetMean() << "\t";
         cout<<endl;
    }
    //cleanup GPU
    if( amGPUTask )
    {
        GPUCleanup(op);
    }

    MPI_Finalize();

}
int main ( int argc, char **argv )
{

        string appName ( argv[0] );
        string appExample ( "partitionConfigFile outputBaseName [ options] \
			    \n\nDetails:\n\
			    \tthis program reads a series of connectivity pattern files, and trains a connectomic profile for each ROI\n\
			    \tpartitionConfigFile contains the names of output from the pipeline.\n\
			    \tgrpProfile is the output for resultant profiles, written in arma format\n" );
        Option<bool> helpOpt ( string ( "-h" ),false,string ( "display this help information. " ),false,no_argument );
        Option<int> modeOpt ( "--mode",3,"the mode of engergy functions, e.g., L1COEFFS(0), L2ERROR(1), PENALTY(2), SPARSITY(3), L2ERROR2(4), PENALTY2(5), default: 3", false, requires_argument );
        Option<int> modeDOpt ( "--modeD",3,"the constraints on dictionary:  L2(0),  L1L2(1), L1L2FL(2), L1L2MU(3), default: 3",false,requires_argument );
        Option<int> modePOpt ( "--modeP",0,"the method to minimization:  AUTO(0), PARAM1(1), PARAM2(2), PARAM3(3), default: 0",false,requires_argument );
        Option<float> lambdaOpt ( "--lamda",1," lambda, default: 1", false,requires_argument );
        Option<float> lambda2Opt ( "--lamda2", 0.15, "lambda2, default: 0", false,requires_argument );
        Option<float> gamma1Opt ( "--gamma1",0.4,"gamma1, default:0.4",false,requires_argument );
        Option<float> gamma2Opt ( "--gamma2",0,"gamma2, default:0",false,requires_argument );
        Option<bool> posAlphaOpt ( "--posAlpha",true,"where or not constrain alpha to be positive, default: true",false,no_argument );
        Option<bool> posDOpt ( "--posD",false,"whether or not constrain Dictionary to be positive, default: false",false,no_argument );
        Option<int> iterOpt ( "--iter", 300,"the number of iteration, default: 300",false,requires_argument );
        Option<bool> verboseOpt ( "-v",false,"verbose or not,default, false",false,no_argument );
        Option<int> numDicOpt ( "-K",5,"the number of dic elems, default: 5",false,requires_argument );
        Option<int> batchSizeOpt ( "-b",30,"the number of batch, default: 30", false,requires_argument );
        Option<string> aplibFullNameOpt ( "--aplib","/home/kli/bin/apclusterunix64.so","the full path name of ap lib;", false,requires_argument );
        Option<float> prefrenceOpt ( "-p",0,"the prefrence of ap clustering, if not set, will use mean similarity.", false,requires_argument );
        Option<string> leftPartCenterSphereOpt ( "--leftParts","lh.resx.200.CentersonSphere.vtk","the name of left part centers at reg space, default: lh.parts.200.CentersonSphere.vtk",false,requires_argument );
        Option<string> rightPartCenterSphereOpt ( "--rightParts","rh.resx.200.CentersonSphere.vtk","the name of right part centers at reg space, default: rh.parts.200.CentersonSphere.vtk",false,requires_argument );
        Option<string> leftLabelMatchAtSubjOpt ( "--leftMatch","labelMatch.lh.resx.200.tmplAtSubj", "the name of left label match for tmpl at subject space, default: labelMatch.lh.resx.200.tmplAtSubj", false,requires_argument );
        Option<string> rightLabelMatchAtSubjOpt ( "--rightMatch","labelMatch.rh.resx.200.tmplAtSubj", "the name of right label match for tmpl at subject space, default: labelMatch.rh.resx.200.tmplAtSubj", false,requires_argument );
        Option<string> subjDirsListOpt ( "-L","","the list of allReg directory for subjects, no default, must be set", true, requires_argument );

        OptionParser cmdParser ( appName,appName+"\t"+appExample );
        cmdParser.add ( helpOpt );
        cmdParser.add ( verboseOpt );
        cmdParser.add ( numDicOpt );
        cmdParser.add ( batchSizeOpt );
        cmdParser.add ( prefrenceOpt );
        cmdParser.add ( modeOpt );
        cmdParser.add ( modePOpt );
        cmdParser.add ( modeDOpt );
        cmdParser.add ( lambdaOpt );
        cmdParser.add ( lambda2Opt );
        cmdParser.add ( gamma2Opt );
        cmdParser.add ( gamma1Opt );
        cmdParser.add ( posDOpt );
        cmdParser.add ( posAlphaOpt );
        cmdParser.add ( iterOpt );
        cmdParser.add ( aplibFullNameOpt );
        cmdParser.add ( leftLabelMatchAtSubjOpt );
        cmdParser.add ( rightLabelMatchAtSubjOpt );
        cmdParser.add ( leftPartCenterSphereOpt );
        cmdParser.add ( rightPartCenterSphereOpt );
        cmdParser.add ( subjDirsListOpt );

        cmdParser.parse_command_line ( argc,argv,2 );

        if ( 3 > argc || cmdParser.check_compulsory_arguments ( true ) == false ) {
                cmdParser.usage();
                exit ( EXIT_FAILURE );
        }


        //set up parameters for dic learning;
        ParamDictLearn<float> parameters;
        parameters.mode = SPAMS::constraint_type ( modeOpt.value() );
        parameters.posAlpha = posAlphaOpt.value();
        parameters.lambda= lambdaOpt.value();
        parameters.modeD=SPAMS::constraint_type_D ( modeDOpt.value() );
        parameters.gamma1=gamma1Opt.value();
        parameters.modeParam=SPAMS::mode_compute ( modePOpt.value() );
        parameters.gamma2 = gamma2Opt.value(); // for modeD=2;
        parameters.iter=iterOpt.value();
        parameters.verbose=verboseOpt.value();
	
	
	//setup input connectivity files; 
	vector<string> allConfigNames; 
	KML::ReadNameList(argv[1],allConfigNames);
 

        CfMRIDicccol objfMRIDicccol;
	objfMRIDicccol.SetConnectivityFileName(allConfigNames[8]);
	  objfMRIDicccol.SetNames4TmplLabelMatchAtSubj ( allConfigNames[6],allConfigNames[7]);
        objfMRIDicccol.SetNames4PartitionCenterSurfAtRegSpace ( allConfigNames[10],allConfigNames[11] );
	
        objfMRIDicccol.SetData ( subjDirsListOpt.value() );
        objfMRIDicccol.SetParamDicLearn ( parameters );
        objfMRIDicccol.SetTrainer ( numDicOpt.value(),batchSizeOpt.value(),-1 );
		
        objfMRIDicccol.LearnProfileAndCoordModels();
        objfMRIDicccol.SaveProfileAndCoordModels ( argv[2] );


        //now clustering profiles;
        list<int> v1,v2;
        list<float> sims;
        float meanSim = objfMRIDicccol.ComputeSims4Profiles ( v1,v2,sims,string ( argv[2] ) +".cluster.sims" );
        CAPClustering apc;
        apc.SetNPoints ( objfMRIDicccol.GetNROIs() );
        apc.SetAplibName ( aplibFullNameOpt.value() );
        apc.SetMaxIteration ( 4000 );
        apc.SetPreference ( prefrenceOpt.set() ? prefrenceOpt.value() : meanSim );
        apc.Clustering ( v1,v2,sims );
        std::vector< int > idx=apc.GetClusterResultIdx();
        std::vector< int > centers=apc.GetCenters();
        ivec armaIdx ( &idx[0],idx.size() );
        armaIdx.save ( string ( argv[2] ) +".cluster.idx" );


        return 0;
} //end of main function;
Example #9
0
int
main(int argc, char** argv)
{
  OptionParser options;
  options.executable("dune-test-tail")
  .program(DUNE_SHORT_NAME)
  .copyright(DUNE_COPYRIGHT)
  .email(DUNE_CONTACT)
  .version(getFullVersion())
  .date(getCompileDate())
  .arch(DUNE_SYSTEM_NAME)
  .add("-i", "--address",
       "Vehicle's IP address", "ADDRESS")
  .add("-w", "--wait",
       "Wait DELAY seconds before starting test", "DELAY")
  .add("-d", "--duration",
       "Test duration in seconds", "DURATION")
  .add("-s", "--speed",
       "Speed in percentage", "SPEED")
  .add("-t", "--angle",
       "Angle in degrees", "ANGLE");

  // Parse command line arguments.
  if (!options.parse(argc, argv))
  {
    if (options.bad())
      std::cerr << "ERROR: " << options.error() << std::endl;
    options.usage();
    return 1;
  }

  // Set destination address.
  if (options.value("--address") == "")
    g_addr = "127.0.0.1";
  else
    g_addr = options.value("--address").c_str();

  // Set start delay.
  double sdelay = 0;
  if (options.value("--wait") == "")
    sdelay = 0;
  else
    sdelay = castLexical<double>(options.value("--wait"));

  // Set duration.
  double duration = 0;
  if (options.value("--duration") == "")
    duration = 0;
  else
    duration = castLexical<double>(options.value("--duration"));

  // Set speed.
  double speed = 0;
  if (options.value("--speed") == "")
    speed = 0;
  else
  {
    speed = castLexical<double>(options.value("--speed"));
    speed /= 100.0;
  }

  // Set Angle
  double angle = 0;
  if (options.value("--angle") == "")
    angle = 0;
  else
    angle = castLexical<double>(options.value("--angle"));

  // POSIX implementation.
#if defined(DUNE_SYS_HAS_SIGACTION)
  struct sigaction actions;
  std::memset(&actions, 0, sizeof(actions));
  sigemptyset(&actions.sa_mask);
  actions.sa_flags = 0;
  actions.sa_handler = handleTerminate;
  sigaction(SIGALRM, &actions, 0);
  sigaction(SIGHUP, &actions, 0);
  sigaction(SIGINT, &actions, 0);
  sigaction(SIGQUIT, &actions, 0);
  sigaction(SIGTERM, &actions, 0);
  sigaction(SIGCHLD, &actions, 0);
  sigaction(SIGCONT, &actions, 0);
#endif

  setThrust(0);
  Delay::wait(sdelay);

  setLog("mcrt_endurance");
  Delay::wait(2.0);

  double deadline = Clock::get() + duration;
  setThrust(speed);

  while ((Clock::get() < deadline) && !g_stop)
  {
    setFin(0, -angle);
    setFin(1, -angle);
    setFin(2, -angle);
    setFin(3, -angle);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);

    setFin(0, angle);
    setFin(1, angle);
    setFin(2, angle);
    setFin(3, angle);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);

    if (!g_stop)
      Delay::wait(1.0);
  }

  // Change log.
  Delay::wait(2.0);
  setLog("idle");

  onTerminate();

  return 0;
}
Example #10
0
// ****************************************************************************
// Function: main
//
// Purpose:
//   The main function takes care of initialization (device and MPI),  then
//   performs the benchmark and prints results.
//
// Arguments:
//
//
// Programmer: Jeremy Meredith
// Creation:
//
// Modifications:
//   Jeremy Meredith, Wed Nov 10 14:20:47 EST 2010
//   Split timing reports into detailed and summary.  For serial code, we
//   report all trial values, and for parallel, skip the per-process vals.
//   Also detect and print outliers from parallel runs.
//
// ****************************************************************************
int main(int argc, char *argv[])
{
    int ret = 0;
    bool noprompt = false;

    try
    {
#ifdef PARALLEL
        int rank, size;
        MPI_Init(&argc,&argv);
        MPI_Comm_size(MPI_COMM_WORLD, &size);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        cerr << "MPI Task " << rank << "/" << size - 1 << " starting....\n";
#endif

        // Get args
        OptionParser op;
       
        //Add shared options to the parser
        op.addOption("device", OPT_VECINT, "0",
                "specify device(s) to run on", 'd');
        op.addOption("verbose", OPT_BOOL, "", "enable verbose output", 'v');
        op.addOption("passes", OPT_INT, "10", "specify number of passes", 'n');
        op.addOption("size", OPT_INT, "1", "specify problem size", 's');
        op.addOption("infoDevices", OPT_BOOL, "",
                "show info for available platforms and devices", 'i');
        op.addOption("quiet", OPT_BOOL, "", "write minimum necessary to standard output", 'q');
#ifdef _WIN32
        op.addOption("noprompt", OPT_BOOL, "", "don't wait for prompt at program exit");
#endif

        addBenchmarkSpecOptions(op);

        if (!op.parse(argc, argv))
        {
#ifdef PARALLEL
            if (rank == 0)
                op.usage();
            MPI_Finalize();
#else
            op.usage();
#endif
            return (op.HelpRequested() ? 0 : 1);
        }
        
        bool verbose = op.getOptionBool("verbose");
        bool infoDev = op.getOptionBool("infoDevices");
#ifdef _WIN32
        noprompt = op.getOptionBool("noprompt");
#endif

        int device;
#ifdef PARALLEL
        NodeInfo ni;
        int myNodeRank = ni.nodeRank();
        vector<long long> deviceVec = op.getOptionVecInt("device");
        if (myNodeRank >= deviceVec.size()) {
            // Default is for task i to test device i
            device = myNodeRank;
        } else {
            device = deviceVec[myNodeRank];
        }
#else
        device = op.getOptionVecInt("device")[0];
#endif
        int deviceCount;
        cudaGetDeviceCount(&deviceCount);
        if (device >= deviceCount) {
            cerr << "Warning: device index: " << device <<
            " out of range, defaulting to device 0.\n";
            device = 0;
        }

        // Initialization
        EnumerateDevicesAndChoose(device, infoDev);
        if( infoDev )
        {
            return 0;
        }
        ResultDatabase resultDB;

        // Run the benchmark
        RunBenchmark(resultDB, op);

#ifndef PARALLEL
        resultDB.DumpDetailed(cout);
#else
        ParallelResultDatabase pardb;
        pardb.MergeSerialDatabases(resultDB,MPI_COMM_WORLD);
        if (rank==0)
        {
            pardb.DumpSummary(cout);
            pardb.DumpOutliers(cout);
        }
#endif

    }
    catch( InvalidArgValue& e )
    {
        std::cerr << e.what() << ": " << e.GetMessage() << std::endl;
        ret = 1;
    }
    catch( std::exception& e )
    {
        std::cerr << e.what() << std::endl;
        ret = 1;
    }
    catch( ... )
    {
        ret = 1;
    }


#ifdef PARALLEL
    MPI_Finalize();
#endif

#ifdef _WIN32
    if (!noprompt)
    {
        cout << "Press return to exit\n";
        cin.get();
    }
#endif

    return ret;
}
Example #11
0
int
main(int argc, char** argv)
{
  Tasks::Context context;
  I18N::setLanguage(context.dir_i18n);
  Scheduler::set(Scheduler::POLICY_RR);

  OptionParser options;
  options.executable("dune")
  .program(DUNE_SHORT_NAME)
  .copyright(DUNE_COPYRIGHT)
  .email(DUNE_CONTACT)
  .version(getFullVersion())
  .date(getCompileDate())
  .arch(DUNE_SYSTEM_NAME)
  .add("-d", "--config-dir",
       "Configuration directory", "DIR")
  .add("-w", "--www-dir",
       "HTTP server base directory", "DIR")
  .add("-c", "--config-file",
       "Load configuration file CONFIG", "CONFIG")
  .add("-m", "--lock-memory",
       "Lock memory")
  .add("-p", "--profiles",
       "Execution Profiles", "PROFILES")
  .add("-V", "--vehicle",
       "Vehicle name override", "VEHICLE")
  .add("-X", "--dump-params-xml",
       "Dump parameters XML to folder DIR", "DIR");

  // Parse command line arguments.
  if (!options.parse(argc, argv))
  {
    if (options.bad())
      std::cerr << "ERROR: " << options.error() << std::endl;
    options.usage();
    return 1;
  }

  // If requested, lock memory.
  if (!options.value("--lock-memory").empty())
  {
#if defined(DUNE_USING_TLSF) && defined(DUNE_CLIB_GNU)
    Resources::lockMemory(c_memory, c_memory_size);
#else
    Resources::lockMemory();
#endif
  }

  // If requested, set alternate configuration directory.
  if (options.value("--config-dir") != "")
  {
    context.dir_cfg = options.value("--config-dir");
  }

  // If requested, set alternate HTTP server directory.
  if (options.value("--www-dir") != "")
  {
    context.dir_www = options.value("--www-dir");
  }

  DUNE::Tasks::Factory::registerDynamicTasks(context.dir_lib.c_str());
  registerStaticTasks();

  // Retrieve configuration file and try parsing it.
  if (options.value("--config-file") == "")
  {
    std::cerr << String::str(DTR("ERROR: no configuration file was given, "
                                 "see options --config-list and --config-file\n"))
              << std::endl;
    return 1;
  }

  Path cfg_file = context.dir_cfg / options.value("--config-file") + ".ini";
  try
  {
    context.config.parseFile(cfg_file.c_str());
  }
  catch (std::runtime_error& e)
  {
    try
    {
      cfg_file = context.dir_usr_cfg / options.value("--config-file") + ".ini";
      context.config.parseFile(cfg_file.c_str());
      context.dir_cfg = context.dir_usr_cfg;
    }
    catch (std::runtime_error& e2)
    {
      std::cerr << String::str("ERROR: %s\n", e.what()) << std::endl;
      std::cerr << String::str("ERROR: %s\n", e2.what()) << std::endl;
      return 1;
    }
  }

  if (!options.value("--vehicle").empty())
    context.config.set("General", "Vehicle", options.value("--vehicle"));

  try
  {
    DUNE::Daemon daemon(context, options.value("--profiles"));

    // Parameters XML.
    if (options.value("--dump-params-xml") != "")
    {
      std::string lang = I18N::getLanguage();
      std::string file = String::str("%s.%s.xml", daemon.getSystemName(), lang.c_str());
      Path path = Path(options.value("--dump-params-xml")) / file;
      std::ofstream ofs(path.c_str());
      if (!ofs.is_open())
      {
        std::cerr << "ERROR: failed to create file '" << path << "'" << std::endl;
        return 1;
      }

      daemon.writeParamsXML(ofs);
      return 0;
    }

    return runDaemon(daemon);
  }
  catch (std::exception& e)
  {
    std::cerr << "ERROR: " << e.what() << std::endl;
  }
}
Example #12
0
int
main(int argc, char** argv)
{
  OptionParser options;
  options.executable(argv[0])
  .program("DUNE UCTK Flash Programmer")
  .copyright(DUNE_COPYRIGHT)
  .email("Ricardo Martins <*****@*****.**>")
  .version(getFullVersion())
  .date(getCompileDate())
  .arch(DUNE_SYSTEM_NAME)
  .description("Utility to update the firmware of UCTK based devices.")
  .add("-d", "--dev",
       "System device", "DEVICE")
  .add("-t", "--dev-type",
       "System device type", "TYPE")
  .add("-f", "--file",
       "iHEX file", "IHEX_FILE");

  // Parse command line arguments.
  if (!options.parse(argc, argv))
  {
    if (options.bad())
      std::cerr << "ERROR: " << options.error() << std::endl;
    options.usage();
    return 1;
  }

  // Get iHEX file.
  std::string ihex = options.value("--file");
  if (ihex.empty())
  {
    std::cerr << "ERROR: you must specify one iHEX file." << std::endl;
    return 1;
  }

  if (Path(ihex).type() != Path::PT_FILE)
  {
    std::cerr << "ERROR: no such file: '" << ihex << "'" << std::endl;
    return 1;
  }

  // Get system device.
  std::string sys_dev = options.value("--dev");
  if (sys_dev.empty())
  {
    std::cerr << "ERROR: you must specify one system device." << std::endl;
    return 1;
  }

  // Get device type.
  IO::Handle* handle = NULL;
  std::string dev_type = options.value("--dev-type");
  if (dev_type == "escc")
    handle = new ESCC(sys_dev);
  else
    handle = new SerialPort(sys_dev, c_baud_rate);

  UCTK::Interface itf(handle);
  UCTK::Bootloader* boot = new UCTK::Bootloader(&itf, true);
  boot->program(ihex);
  delete boot;
  delete handle;

  return 0;
}