int main(int argc, char **argv) { // Init LLVM, call llvm_shutdown() on exit, parse args, etc. llvm::PrettyStackTraceProgram X(argc, argv); cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); llvm_shutdown_obj Y; std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext())); Function *F = GenEmptyFunction(M.get()); FillFunction(F); IntroduceControlFlow(F); // Figure out what stream we are supposed to write to... OwningPtr<tool_output_file> Out; // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } PassManager Passes; Passes.add(createVerifierPass()); Passes.add(createPrintModulePass(&Out->os())); Passes.run(*M.get()); Out->keep(); return 0; }
static void WriteOutputFile(const Module *M) { // Infer the output filename if needed. if (OutputFilename.empty()) { if (InputFilename == "-") { OutputFilename = "-"; } else { std::string IFN = InputFilename; int Len = IFN.length(); if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') { // Source ends in .ll OutputFilename = std::string(IFN.begin(), IFN.end()-3); } else { OutputFilename = IFN; // Append a .bc to it } OutputFilename += ".bc"; } } std::string ErrorInfo; OwningPtr<tool_output_file> Out (new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; exit(1); } if (Force || !CheckBitcodeOutputToConsole(Out->os(), true)) WriteBitcodeToFile(M, Out->os()); // Declare success. Out->keep(); }
static void WriteOutputFile(const Module *M) { std::string ErrorInfo; OwningPtr<tool_output_file> Out (new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; exit(1); } NaClWriteBitcodeToFile(M, Out->os(), /* AcceptSupportedOnly = */ false); // Declare success. Out->keep(); }
int main (int argc, char ** argv) { if (argc < 3) { fprintf(stderr,"Not enough positional arguments to %s.\n",argv[0]); return 1; } llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. LLVMContext &Context = getGlobalContext(); std::string InputFilename(argv[1]); std::string OutputFilename(argv[2]); OwningPtr<tool_output_file> Out; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, sys::fs::F_Binary)); SMDiagnostic Err; std::auto_ptr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.print(argv[0], errs()); return 1; } Summarize(M.get()); WriteBitcodeToFile(M.get(),Out->os()); Out->keep(); return 0; }
int main(int argc, char **argv) { // Init LLVM, call llvm_shutdown() on exit, parse args, etc. llvm::PrettyStackTraceProgram X(argc, argv); cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); llvm_shutdown_obj Y; OwningPtr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext())); Function *F = GenEmptyFunction(M.get()); // Pick an initial seed value Random R(SeedCL); // Generate lots of random instructions inside a single basic block. FillFunction(F, R); // Break the basic block into many loops. IntroduceControlFlow(F, R); // Figure out what stream we are supposed to write to... OwningPtr<tool_output_file> Out; // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, sys::fs::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } PassManager Passes; Passes.add(createVerifierPass()); Passes.add(createPrintModulePass(Out->os())); Passes.run(*M.get()); Out->keep(); return 0; }
//===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); llvm::PrettyStackTraceProgram X(argc, argv); // Enable debug stream buffering. EnableDebugBuffering = true; llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. LLVMContext &Context = getGlobalContext(); InitializeAllTargets(); InitializeAllTargetMCs(); // Initialize passes PassRegistry &Registry = *PassRegistry::getPassRegistry(); initializeCore(Registry); initializeScalarOpts(Registry); initializeObjCARCOpts(Registry); initializeVectorization(Registry); initializeIPO(Registry); initializeAnalysis(Registry); initializeIPA(Registry); initializeTransformUtils(Registry); initializeInstCombine(Registry); initializeInstrumentation(Registry); initializeTarget(Registry); // @LOCALMOD-BEGIN initializeAddPNaClExternalDeclsPass(Registry); initializeCanonicalizeMemIntrinsicsPass(Registry); initializeExpandArithWithOverflowPass(Registry); initializeExpandByValPass(Registry); initializeExpandConstantExprPass(Registry); initializeExpandCtorsPass(Registry); initializeExpandGetElementPtrPass(Registry); initializeExpandSmallArgumentsPass(Registry); initializeExpandStructRegsPass(Registry); initializeExpandTlsConstantExprPass(Registry); initializeExpandTlsPass(Registry); initializeExpandVarArgsPass(Registry); initializeFlattenGlobalsPass(Registry); initializeGlobalCleanupPass(Registry); initializeInsertDivideCheckPass(Registry); initializePNaClABIVerifyFunctionsPass(Registry); initializePNaClABIVerifyModulePass(Registry); initializePNaClSjLjEHPass(Registry); initializePromoteI1OpsPass(Registry); initializePromoteIntegersPass(Registry); initializeRemoveAsmMemoryPass(Registry); initializeReplacePtrsWithIntsPass(Registry); initializeResolveAliasesPass(Registry); initializeResolvePNaClIntrinsicsPass(Registry); initializeRewriteAtomicsPass(Registry); initializeRewriteLLVMIntrinsicsPass(Registry); initializeRewritePNaClLibraryCallsPass(Registry); initializeStripAttributesPass(Registry); initializeStripMetadataPass(Registry); initializeExpandI64Pass(Registry); // @LOCALMOD-END cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n"); if (AnalyzeOnly && NoOutput) { errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n"; return 1; } SMDiagnostic Err; // Load the input module... OwningPtr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.print(argv[0], errs()); return 1; } // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) M->setTargetTriple(Triple::normalize(TargetTriple)); // Figure out what stream we are supposed to write to... OwningPtr<tool_output_file> Out; if (NoOutput) { if (!OutputFilename.empty()) errs() << "WARNING: The -o (output filename) option is ignored when\n" "the --disable-output option is used.\n"; } else { // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } } // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly) if (CheckBitcodeOutputToConsole(Out->os(), !Quiet)) NoOutput = true; // Create a PassManager to hold and optimize the collection of passes we are // about to build. // PassManager Passes; // Add an appropriate TargetLibraryInfo pass for the module's triple. TargetLibraryInfo *TLI = new TargetLibraryInfo(Triple(M->getTargetTriple())); // The -disable-simplify-libcalls flag actually disables all builtin optzns. if (DisableSimplifyLibCalls) TLI->disableAllFunctions(); Passes.add(TLI); // Add an appropriate DataLayout instance for this module. DataLayout *TD = 0; const std::string &ModuleDataLayout = M.get()->getDataLayout(); if (!ModuleDataLayout.empty()) TD = new DataLayout(ModuleDataLayout); else if (!DefaultDataLayout.empty()) TD = new DataLayout(DefaultDataLayout); if (TD) Passes.add(TD); Triple ModuleTriple(M->getTargetTriple()); TargetMachine *Machine = 0; if (ModuleTriple.getArch()) Machine = GetTargetMachine(Triple(ModuleTriple)); OwningPtr<TargetMachine> TM(Machine); // Add internal analysis passes from the target machine. if (TM.get()) TM->addAnalysisPasses(Passes); OwningPtr<FunctionPassManager> FPasses; if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) { FPasses.reset(new FunctionPassManager(M.get())); if (TD) FPasses->add(new DataLayout(*TD)); } if (PrintBreakpoints) { // Default to standard output. if (!Out) { if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } } Passes.add(new BreakpointPrinter(Out->os())); NoOutput = true; } // If the -strip-debug command line option was specified, add it. If // -std-compile-opts was also specified, it will handle StripDebug. if (StripDebug && !StandardCompileOpts) addPass(Passes, createStripSymbolsPass(true)); // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { // Check to see if -std-compile-opts was specified before this option. If // so, handle it. if (StandardCompileOpts && StandardCompileOpts.getPosition() < PassList.getPosition(i)) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (StandardLinkOpts && StandardLinkOpts.getPosition() < PassList.getPosition(i)) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 1, 0); OptLevelO1 = false; } if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 0); OptLevelO2 = false; } if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 1); OptLevelOs = false; } if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 2); OptLevelOz = false; } if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 3, 0); OptLevelO3 = false; } // @LOCALMOD-BEGIN if (PNaClABISimplifyPreOpt && PNaClABISimplifyPreOpt.getPosition() < PassList.getPosition(i)) { PNaClABISimplifyAddPreOptPasses(Passes); PNaClABISimplifyPreOpt = false; } if (PNaClABISimplifyPostOpt && PNaClABISimplifyPostOpt.getPosition() < PassList.getPosition(i)) { PNaClABISimplifyAddPostOptPasses(Passes); PNaClABISimplifyPostOpt = false; } // @LOCALMOD-END const PassInfo *PassInf = PassList[i]; Pass *P = 0; if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else errs() << argv[0] << ": cannot create pass: "******"\n"; if (P) { PassKind Kind = P->getPassKind(); addPass(Passes, P); if (AnalyzeOnly) { switch (Kind) { case PT_BasicBlock: Passes.add(new BasicBlockPassPrinter(PassInf, Out->os())); break; case PT_Region: Passes.add(new RegionPassPrinter(PassInf, Out->os())); break; case PT_Loop: Passes.add(new LoopPassPrinter(PassInf, Out->os())); break; case PT_Function: Passes.add(new FunctionPassPrinter(PassInf, Out->os())); break; case PT_CallGraphSCC: Passes.add(new CallGraphSCCPassPrinter(PassInf, Out->os())); break; default: Passes.add(new ModulePassPrinter(PassInf, Out->os())); break; } } } if (PrintEachXForm) Passes.add(createPrintModulePass(&errs())); } // If -std-compile-opts was specified at the end of the pass list, add them. if (StandardCompileOpts) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (StandardLinkOpts) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1) AddOptimizationPasses(Passes, *FPasses, 1, 0); if (OptLevelO2) AddOptimizationPasses(Passes, *FPasses, 2, 0); if (OptLevelOs) AddOptimizationPasses(Passes, *FPasses, 2, 1); if (OptLevelOz) AddOptimizationPasses(Passes, *FPasses, 2, 2); if (OptLevelO3) AddOptimizationPasses(Passes, *FPasses, 3, 0); if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) { FPasses->doInitialization(); for (Module::iterator F = M->begin(), E = M->end(); F != E; ++F) FPasses->run(*F); FPasses->doFinalization(); } // @LOCALMOD-BEGIN if (PNaClABISimplifyPreOpt) PNaClABISimplifyAddPreOptPasses(Passes); if (PNaClABISimplifyPostOpt) PNaClABISimplifyAddPostOptPasses(Passes); // @LOCALMOD-END // Check that the module is well formed on completion of optimization if (!NoVerify && !VerifyEach) Passes.add(createVerifierPass()); // Write bitcode or assembly to the output as the last step... if (!NoOutput && !AnalyzeOnly) { if (OutputAssembly) Passes.add(createPrintModulePass(&Out->os())); // @LOCALMOD } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Now that we have all of the passes ready, run them. Passes.run(*M.get()); // @LOCALMOD-BEGIN // Write bitcode to the output. if (!NoOutput && !AnalyzeOnly && !OutputAssembly) { switch (OutputFileFormat) { case LLVMFormat: WriteBitcodeToFile(M.get(), Out->os()); break; case PNaClFormat: NaClWriteBitcodeToFile(M.get(), Out->os()); break; default: errs() << "Don't understand bitcode format for generated bitcode.\n"; return 1; } } // @LOCALMOD-END // Declare success. if (!NoOutput || PrintBreakpoints) Out->keep(); return 0; }
// main - Entry point for the llc compiler. // int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); // Enable debug stream buffering. EnableDebugBuffering = true; LLVMContext &Context = getGlobalContext(); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. // Initialize targets first, so that --version shows registered targets. InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); InitializeAllAsmParsers(); // Register the target printer for --version. cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n"); // Load the module to be compiled... SMDiagnostic Err; std::auto_ptr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.print(argv[0], errs()); return 1; } Module &mod = *M.get(); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) mod.setTargetTriple(Triple::normalize(TargetTriple)); // Figure out the target triple. Triple TheTriple(mod.getTargetTriple()); if (TheTriple.getTriple().empty()) TheTriple.setTriple(sys::getDefaultTargetTriple()); // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple, Error); if (!TheTarget) { errs() << argv[0] << ": " << Error; return 1; } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } TargetOptions Options; Options.LessPreciseFPMADOption = EnableFPMAD; Options.NoFramePointerElim = DisableFPElim; Options.NoFramePointerElimNonLeaf = DisableFPElimNonLeaf; Options.NoExcessFPPrecision = DisableExcessPrecision; Options.UnsafeFPMath = EnableUnsafeFPMath; Options.NoInfsFPMath = EnableNoInfsFPMath; Options.NoNaNsFPMath = EnableNoNaNsFPMath; Options.HonorSignDependentRoundingFPMathOption = EnableHonorSignDependentRoundingFPMath; Options.UseSoftFloat = GenerateSoftFloatCalls; if (FloatABIForCalls != FloatABI::Default) Options.FloatABIType = FloatABIForCalls; Options.NoZerosInBSS = DontPlaceZerosInBSS; Options.GuaranteedTailCallOpt = EnableGuaranteedTailCallOpt; Options.DisableTailCalls = DisableTailCalls; Options.StackAlignmentOverride = OverrideStackAlignment; Options.RealignStack = EnableRealignStack; Options.DisableJumpTables = DisableSwitchTables; Options.TrapFuncName = TrapFuncName; Options.PositionIndependentExecutable = EnablePIE; Options.EnableSegmentedStacks = SegmentedStacks; std::auto_ptr<TargetMachine> target(TheTarget->createTargetMachine(TheTriple.getTriple(), MCPU, FeaturesStr, Options, RelocModel, CMModel, OLvl)); assert(target.get() && "Could not allocate target machine!"); TargetMachine &Target = *target.get(); if (DisableDotLoc) Target.setMCUseLoc(false); if (DisableCFI) Target.setMCUseCFI(false); if (EnableDwarfDirectory) Target.setMCUseDwarfDirectory(true); if (GenerateSoftFloatCalls) FloatABIForCalls = FloatABI::Soft; // Disable .loc support for older OS X versions. if (TheTriple.isMacOSX() && TheTriple.isMacOSXVersionLT(10, 6)) Target.setMCUseLoc(false); // Figure out where we are going to send the output... OwningPtr<tool_output_file> Out (GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0])); if (!Out) return 1; // Build up all of the passes that we want to do to the module. PassManager PM; // Add the target data from the target machine, if it exists, or the module. if (const TargetData *TD = Target.getTargetData()) PM.add(new TargetData(*TD)); else PM.add(new TargetData(&mod)); // Override default to generate verbose assembly. Target.setAsmVerbosityDefault(true); if (RelaxAll) { if (FileType != TargetMachine::CGFT_ObjectFile) errs() << argv[0] << ": warning: ignoring -mc-relax-all because filetype != obj"; else Target.setMCRelaxAll(true); } { formatted_raw_ostream FOS(Out->os()); // Ask the target to add backend passes as necessary. if (Target.addPassesToEmitFile(PM, FOS, FileType, NoVerify)) { errs() << argv[0] << ": target does not support generation of this" << " file type!\n"; return 1; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); PM.run(mod); } // Declare success. Out->keep(); return 0; }
//===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); llvm::PrettyStackTraceProgram X(argc, argv); if (AnalyzeOnly && NoOutput) { errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n"; return 1; } // Enable debug stream buffering. EnableDebugBuffering = true; llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. LLVMContext &Context = getGlobalContext(); cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n"); // Allocate a full target machine description only if necessary. // FIXME: The choice of target should be controllable on the command line. std::auto_ptr<TargetMachine> target; SMDiagnostic Err; // Load the input module... std::auto_ptr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.Print(argv[0], errs()); return 1; } // Figure out what stream we are supposed to write to... OwningPtr<tool_output_file> Out; if (NoOutput) { if (!OutputFilename.empty()) errs() << "WARNING: The -o (output filename) option is ignored when\n" "the --disable-output option is used.\n"; } else { // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } } // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly) if (CheckBitcodeOutputToConsole(Out->os(), !Quiet)) NoOutput = true; // Create a PassManager to hold and optimize the collection of passes we are // about to build... // PassManager Passes; // Add an appropriate TargetData instance for this module... TargetData *TD = 0; const std::string &ModuleDataLayout = M.get()->getDataLayout(); if (!ModuleDataLayout.empty()) TD = new TargetData(ModuleDataLayout); else if (!DefaultDataLayout.empty()) TD = new TargetData(DefaultDataLayout); if (TD) Passes.add(TD); OwningPtr<PassManager> FPasses; if (OptLevelO1 || OptLevelO2 || OptLevelO3) { FPasses.reset(new PassManager()); if (TD) FPasses->add(new TargetData(*TD)); } // If the -strip-debug command line option was specified, add it. If // -std-compile-opts was also specified, it will handle StripDebug. if (StripDebug && !StandardCompileOpts) addPass(Passes, createStripSymbolsPass(true)); // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { // Check to see if -std-compile-opts was specified before this option. If // so, handle it. if (StandardCompileOpts && StandardCompileOpts.getPosition() < PassList.getPosition(i)) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (StandardLinkOpts && StandardLinkOpts.getPosition() < PassList.getPosition(i)) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 1); OptLevelO1 = false; } if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2); OptLevelO2 = false; } if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 3); OptLevelO3 = false; } const PassInfo *PassInf = PassList[i]; Pass *P = 0; if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else errs() << argv[0] << ": cannot create pass: "******"\n"; if (P) { PassKind Kind = P->getPassKind(); addPass(Passes, P); if (AnalyzeOnly) { switch (Kind) { case PT_BasicBlock: Passes.add(new BasicBlockPassPrinter(PassInf, Out->os())); break; case PT_Loop: Passes.add(new LoopPassPrinter(PassInf, Out->os())); break; case PT_Function: Passes.add(new FunctionPassPrinter(PassInf, Out->os())); break; case PT_CallGraphSCC: Passes.add(new CallGraphSCCPassPrinter(PassInf, Out->os())); break; default: Passes.add(new ModulePassPrinter(PassInf, Out->os())); break; } } } if (PrintEachXForm) Passes.add(createPrintModulePass(&errs())); } // If -std-compile-opts was specified at the end of the pass list, add them. if (StandardCompileOpts) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (StandardLinkOpts) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1) AddOptimizationPasses(Passes, *FPasses, 1); if (OptLevelO2) AddOptimizationPasses(Passes, *FPasses, 2); if (OptLevelO3) AddOptimizationPasses(Passes, *FPasses, 3); if (OptLevelO1 || OptLevelO2 || OptLevelO3) FPasses->run(*M.get()); // Check that the module is well formed on completion of optimization if (!NoVerify && !VerifyEach) Passes.add(createVerifierPass()); // Write bitcode or assembly to the output as the last step... if (!NoOutput && !AnalyzeOnly) { if (OutputAssembly) Passes.add(createPrintModulePass(&Out->os())); else Passes.add(createBitcodeWriterPass(Out->os())); } // Now that we have all of the passes ready, run them. Passes.run(*M.get()); // Declare success. if (!NoOutput) Out->keep(); return 0; }
static int compileModule(char **argv, LLVMContext &Context) { // Load the module to be compiled... SMDiagnostic Err; std::auto_ptr<Module> M; Module *mod = 0; Triple TheTriple; bool SkipModule = MCPU == "help" || (!MAttrs.empty() && MAttrs.front() == "help"); // If user just wants to list available options, skip module loading if (!SkipModule) { M.reset(ParseIRFile(InputFilename, Err, Context)); mod = M.get(); if (mod == 0) { Err.print(argv[0], errs()); return 1; } // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) mod->setTargetTriple(Triple::normalize(TargetTriple)); TheTriple = Triple(mod->getTargetTriple()); } else { TheTriple = Triple(Triple::normalize(TargetTriple)); } if (TheTriple.getTriple().empty()) TheTriple.setTriple(sys::getDefaultTargetTriple()); // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple, Error); if (!TheTarget) { errs() << argv[0] << ": " << Error; return 1; } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } TargetOptions Options; Options.LessPreciseFPMADOption = EnableFPMAD; Options.NoFramePointerElim = DisableFPElim; Options.NoFramePointerElimNonLeaf = DisableFPElimNonLeaf; Options.AllowFPOpFusion = FuseFPOps; Options.UnsafeFPMath = EnableUnsafeFPMath; Options.NoInfsFPMath = EnableNoInfsFPMath; Options.NoNaNsFPMath = EnableNoNaNsFPMath; Options.HonorSignDependentRoundingFPMathOption = EnableHonorSignDependentRoundingFPMath; Options.UseSoftFloat = GenerateSoftFloatCalls; if (FloatABIForCalls != FloatABI::Default) Options.FloatABIType = FloatABIForCalls; Options.NoZerosInBSS = DontPlaceZerosInBSS; Options.GuaranteedTailCallOpt = EnableGuaranteedTailCallOpt; Options.DisableTailCalls = DisableTailCalls; Options.StackAlignmentOverride = OverrideStackAlignment; Options.RealignStack = EnableRealignStack; Options.TrapFuncName = TrapFuncName; Options.PositionIndependentExecutable = EnablePIE; Options.EnableSegmentedStacks = SegmentedStacks; Options.UseInitArray = UseInitArray; Options.SSPBufferSize = SSPBufferSize; std::auto_ptr<TargetMachine> target(TheTarget->createTargetMachine(TheTriple.getTriple(), MCPU, FeaturesStr, Options, RelocModel, CMModel, OLvl)); assert(target.get() && "Could not allocate target machine!"); assert(mod && "Should have exited after outputting help!"); TargetMachine &Target = *target.get(); if (DisableDotLoc) Target.setMCUseLoc(false); if (DisableCFI) Target.setMCUseCFI(false); if (EnableDwarfDirectory) Target.setMCUseDwarfDirectory(true); if (GenerateSoftFloatCalls) FloatABIForCalls = FloatABI::Soft; // Disable .loc support for older OS X versions. if (TheTriple.isMacOSX() && TheTriple.isMacOSXVersionLT(10, 6)) Target.setMCUseLoc(false); // Figure out where we are going to send the output. OwningPtr<tool_output_file> Out (GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0])); if (!Out) return 1; // Build up all of the passes that we want to do to the module. PassManager PM; // Add an appropriate TargetLibraryInfo pass for the module's triple. TargetLibraryInfo *TLI = new TargetLibraryInfo(TheTriple); if (DisableSimplifyLibCalls) TLI->disableAllFunctions(); PM.add(TLI); if (target.get()) { PM.add(createNoTTIPass(target->getScalarTargetTransformInfo(), target->getVectorTargetTransformInfo())); } // Add the target data from the target machine, if it exists, or the module. if (const DataLayout *TD = Target.getDataLayout()) PM.add(new DataLayout(*TD)); else PM.add(new DataLayout(mod)); // Override default to generate verbose assembly. Target.setAsmVerbosityDefault(true); if (RelaxAll) { if (FileType != TargetMachine::CGFT_ObjectFile) errs() << argv[0] << ": warning: ignoring -mc-relax-all because filetype != obj"; else Target.setMCRelaxAll(true); } { formatted_raw_ostream FOS(Out->os()); AnalysisID StartAfterID = 0; AnalysisID StopAfterID = 0; const PassRegistry *PR = PassRegistry::getPassRegistry(); if (!StartAfter.empty()) { const PassInfo *PI = PR->getPassInfo(StartAfter); if (!PI) { errs() << argv[0] << ": start-after pass is not registered.\n"; return 1; } StartAfterID = PI->getTypeInfo(); } if (!StopAfter.empty()) { const PassInfo *PI = PR->getPassInfo(StopAfter); if (!PI) { errs() << argv[0] << ": stop-after pass is not registered.\n"; return 1; } StopAfterID = PI->getTypeInfo(); } // Ask the target to add backend passes as necessary. if (Target.addPassesToEmitFile(PM, FOS, FileType, NoVerify, StartAfterID, StopAfterID)) { errs() << argv[0] << ": target does not support generation of this" << " file type!\n"; return 1; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); PM.run(*mod); } // Declare success. Out->keep(); return 0; }
int main(int argc, char **argv) { LLVMContext &Context = getGlobalContext(); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. cl::ParseCommandLineOptions(argc, argv, "libclc builtin preparation tool\n"); std::string ErrorMessage; std::auto_ptr<Module> M; { OwningPtr<MemoryBuffer> BufferPtr; if (error_code ec = MemoryBuffer::getFileOrSTDIN(InputFilename, BufferPtr)) ErrorMessage = ec.message(); else M.reset(ParseBitcodeFile(BufferPtr.get(), Context, &ErrorMessage)); } if (M.get() == 0) { errs() << argv[0] << ": "; if (ErrorMessage.size()) errs() << ErrorMessage << "\n"; else errs() << "bitcode didn't read correctly.\n"; return 1; } // Set linkage of every external definition to linkonce_odr. for (Module::iterator i = M->begin(), e = M->end(); i != e; ++i) { if (!i->isDeclaration() && i->getLinkage() == GlobalValue::ExternalLinkage) { i->setLinkage(GlobalValue::LinkOnceODRLinkage); //i->addFnAttr(Attributes::AlwaysInline); } } for (Module::global_iterator i = M->global_begin(), e = M->global_end(); i != e; ++i) { if (!i->isDeclaration() && i->getLinkage() == GlobalValue::ExternalLinkage) { i->setLinkage(GlobalValue::LinkOnceAnyLinkage); } } if (OutputFilename.empty()) { errs() << "no output file\n"; return 1; } std::string ErrorInfo; OwningPtr<tool_output_file> Out (new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; exit(1); } WriteBitcodeToFile(M.get(), Out->os()); // Declare success. Out->keep(); return 0; }
// main - Entry point for the llc compiler. // int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); // Enable debug stream buffering. EnableDebugBuffering = true; LLVMContext &Context = getGlobalContext(); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. // Initialize targets first, so that --version shows registered targets. InitializeAllTargets(); InitializeAllAsmPrinters(); InitializeAllAsmParsers(); cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n"); // Load the module to be compiled... SMDiagnostic Err; std::auto_ptr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.Print(argv[0], errs()); return 1; } Module &mod = *M.get(); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) mod.setTargetTriple(Triple::normalize(TargetTriple)); Triple TheTriple(mod.getTargetTriple()); if (TheTriple.getTriple().empty()) TheTriple.setTriple(sys::getHostTriple()); // Allocate target machine. First, check whether the user has explicitly // specified an architecture to compile for. If so we have to look it up by // name, because it might be a backend that has no mapping to a target triple. const Target *TheTarget = 0; if (!MArch.empty()) { for (TargetRegistry::iterator it = TargetRegistry::begin(), ie = TargetRegistry::end(); it != ie; ++it) { if (MArch == it->getName()) { TheTarget = &*it; break; } } if (!TheTarget) { errs() << argv[0] << ": error: invalid target '" << MArch << "'.\n"; return 1; } // Adjust the triple to match (if known), otherwise stick with the // module/host triple. Triple::ArchType Type = Triple::getArchTypeForLLVMName(MArch); if (Type != Triple::UnknownArch) TheTriple.setArch(Type); } else { std::string Err; TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Err); if (TheTarget == 0) { errs() << argv[0] << ": error auto-selecting target for module '" << Err << "'. Please use the -march option to explicitly " << "pick a target.\n"; return 1; } } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MCPU.size() || MAttrs.size()) { SubtargetFeatures Features; Features.setCPU(MCPU); for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } std::auto_ptr<TargetMachine> target(TheTarget->createTargetMachine(TheTriple.getTriple(), FeaturesStr)); assert(target.get() && "Could not allocate target machine!"); TargetMachine &Target = *target.get(); if (DisableDotLoc) Target.setMCUseLoc(false); if (TheTriple.getOS() == Triple::Darwin) { switch (TheTriple.getDarwinMajorNumber()) { case 7: case 8: case 9: // disable .loc support for older darwin OS. Target.setMCUseLoc(false); break; default: break; } } // Figure out where we are going to send the output... OwningPtr<tool_output_file> Out (GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0])); if (!Out) return 1; CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } // Build up all of the passes that we want to do to the module. PassManager PM; // Add the target data from the target machine, if it exists, or the module. if (const TargetData *TD = Target.getTargetData()) PM.add(new TargetData(*TD)); else PM.add(new TargetData(&mod)); // Override default to generate verbose assembly. Target.setAsmVerbosityDefault(true); if (RelaxAll) { if (FileType != TargetMachine::CGFT_ObjectFile) errs() << argv[0] << ": warning: ignoring -mc-relax-all because filetype != obj"; else Target.setMCRelaxAll(true); } { formatted_raw_ostream FOS(Out->os()); // Ask the target to add backend passes as necessary. if (Target.addPassesToEmitFile(PM, FOS, FileType, OLvl, NoVerify)) { errs() << argv[0] << ": target does not support generation of this" << " file type!\n"; return 1; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); PM.run(mod); } // Declare success. Out->keep(); return 0; }
int main (int argc, char ** argv) { cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n"); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. LLVMContext &Context = getGlobalContext(); OwningPtr<tool_output_file> Out; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, sys::fs::F_Binary)); SMDiagnostic Err; std::auto_ptr<Module> M; M.reset(ParseIRFile(InputFilename, Err, Context)); if (M.get() == 0) { Err.print(argv[0], errs()); return 1; } if (PreOpt) { PassManager Passes; Passes.add(createVerifierPass()); Passes.add(createPromoteMemoryToRegisterPass()); Passes.add(createDeadInstEliminationPass()); Passes.run(*M.get()); } if (CSE) { #ifdef UseC LLVMCommonSubexpressionElimination(wrap(M.get())); #else LLVMCommonSubexpressionElimination_Cpp(M.get()); #endif } if (DumpSummary) { char filename[1024]; sprintf(filename,"%s.stats",OutputFilename.c_str()); #ifdef UseC Summarize(wrap(M.get()),"preGCM",filename); #else Summarize_Cpp(M.get(),"preGCM",filename); #endif } if (!NoLICM) { #ifdef UseC LoopInvariantCodeMotion_C(wrap(M.get())); #else LoopInvariantCodeMotion_Cpp(M.get()); #endif if (Twice) { #ifdef UseC LoopInvariantCodeMotion_C(wrap(M.get())); #else LoopInvariantCodeMotion_Cpp(M.get()); #endif } } if (DumpSummary) { char filename[1024]; sprintf(filename,"%s.stats",OutputFilename.c_str()); #ifdef UseC Summarize(wrap(M.get()),"postGCM",filename); #else Summarize_Cpp(M.get(),"postGCM",filename); #endif } if (PostOpt) { PassManager Passes; Passes.add(createDeadCodeEliminationPass()); Passes.add(createCFGSimplificationPass()); Passes.run(*M.get()); } WriteBitcodeToFile(M.get(),Out->os()); Out->keep(); return 0; }
static int compileModule(char **argv, LLVMContext &Context) { // Load the module to be compiled... SMDiagnostic Err; OwningPtr<Module> M; Module *mod = 0; Triple TheTriple; bool SkipModule = MCPU == "help" || (!MAttrs.empty() && MAttrs.front() == "help"); // If user just wants to list available options, skip module loading if (!SkipModule) { M.reset(ParseIRFile(InputFilename, Err, Context)); mod = M.get(); if (mod == 0) { Err.print(argv[0], errs()); return 1; } // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) mod->setTargetTriple(Triple::normalize(TargetTriple)); TheTriple = Triple(mod->getTargetTriple()); } else { TheTriple = Triple(Triple::normalize(TargetTriple)); } if (TheTriple.getTriple().empty()) TheTriple.setTriple(sys::getDefaultTargetTriple()); // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple, Error); if (!TheTarget) { errs() << argv[0] << ": " << Error; return 1; } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } TargetOptions Options = InitTargetOptionsFromCodeGenFlags(); Options.DisableIntegratedAS = NoIntegratedAssembler; OwningPtr<TargetMachine> target(TheTarget->createTargetMachine(TheTriple.getTriple(), MCPU, FeaturesStr, Options, RelocModel, CMModel, OLvl)); assert(target.get() && "Could not allocate target machine!"); assert(mod && "Should have exited after outputting help!"); TargetMachine &Target = *target.get(); if (DisableCFI) Target.setMCUseCFI(false); if (EnableDwarfDirectory) Target.setMCUseDwarfDirectory(true); if (GenerateSoftFloatCalls) FloatABIForCalls = FloatABI::Soft; // Figure out where we are going to send the output. OwningPtr<tool_output_file> Out (GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0])); if (!Out) return 1; // Build up all of the passes that we want to do to the module. PassManager PM; // Add an appropriate TargetLibraryInfo pass for the module's triple. TargetLibraryInfo *TLI = new TargetLibraryInfo(TheTriple); if (DisableSimplifyLibCalls) TLI->disableAllFunctions(); PM.add(TLI); // Add the target data from the target machine, if it exists, or the module. if (const DataLayout *DL = Target.getDataLayout()) PM.add(new DataLayout(*DL)); else PM.add(new DataLayout(mod)); // Override default to generate verbose assembly. Target.setAsmVerbosityDefault(true); if (RelaxAll) { if (FileType != TargetMachine::CGFT_ObjectFile) errs() << argv[0] << ": warning: ignoring -mc-relax-all because filetype != obj"; else Target.setMCRelaxAll(true); } { formatted_raw_ostream FOS(Out->os()); AnalysisID StartAfterID = 0; AnalysisID StopAfterID = 0; const PassRegistry *PR = PassRegistry::getPassRegistry(); if (!StartAfter.empty()) { const PassInfo *PI = PR->getPassInfo(StartAfter); if (!PI) { errs() << argv[0] << ": start-after pass is not registered.\n"; return 1; } StartAfterID = PI->getTypeInfo(); } if (!StopAfter.empty()) { const PassInfo *PI = PR->getPassInfo(StopAfter); if (!PI) { errs() << argv[0] << ": stop-after pass is not registered.\n"; return 1; } StopAfterID = PI->getTypeInfo(); } // Ask the target to add backend passes as necessary. if (Target.addPassesToEmitFile(PM, FOS, FileType, NoVerify, StartAfterID, StopAfterID)) { errs() << argv[0] << ": target does not support generation of this" << " file type!\n"; return 1; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); PM.run(*mod); } // Declare success. Out->keep(); return 0; }