int Fun4All_G4_Prototype3(int nEvents = 1) { gSystem->Load("libfun4all"); gSystem->Load("libg4detectors"); gSystem->Load("libg4testbench"); gSystem->Load("libg4histos"); gSystem->Load("libg4eval.so"); gSystem->Load("libqa_modules"); bool cemc_on = true; bool cemc_cell = cemc_on && true; bool cemc_twr = cemc_cell && true; bool cemc_digi = cemc_twr && true; bool cemc_twrcal = cemc_digi && true; bool ihcal_on = true; bool ihcal_cell = ihcal_on && false; bool ihcal_twr = ihcal_cell && false; bool ihcal_digi = ihcal_twr && false; bool ihcal_twrcal = ihcal_digi && false; bool ohcal_on = true; bool ohcal_cell = ohcal_on && false; bool ohcal_twr = ohcal_cell && false; bool ohcal_digi = ohcal_twr && false; bool ohcal_twrcal = ohcal_digi && false; bool cryo_on = true; bool bh_on = false; // the surrounding boxes need some further thinking bool dstreader = true; bool hit_ntuple = false; bool dstoutput = false; /////////////////////////////////////////// // Make the Server ////////////////////////////////////////// Fun4AllServer *se = Fun4AllServer::instance(); se->Verbosity(1); recoConsts *rc = recoConsts::instance(); // only set this if you want a fixed random seed to make // results reproducible for testing // rc->set_IntFlag("RANDOMSEED",12345678); // simulated setup sits at eta=1, theta=40.395 degrees double theta = 90-46.4; // shift in x with respect to midrapidity setup double add_place_x = 183.-173.93+2.54/2.; // Test beam generator PHG4SimpleEventGenerator *gen = new PHG4SimpleEventGenerator(); gen->add_particles("e-", 1); // mu-,e-,anti_proton,pi- gen->set_vertex_distribution_mean(0.0, 0.0, 0); gen->set_vertex_distribution_width(0.0, .7, .7); // Rough beam profile size @ 16 GeV measured by Abhisek gen->set_vertex_distribution_function(PHG4SimpleEventGenerator::Gaus, PHG4SimpleEventGenerator::Gaus, PHG4SimpleEventGenerator::Gaus); // Gauss beam profile double angle = theta*TMath::Pi()/180.; double eta = -1.*TMath::Log(TMath::Tan(angle/2.)); gen->set_eta_range(eta-0.001,eta+0.001); // 1mrad angular divergence gen->set_phi_range(-0.001, 0.001); // 1mrad angular divergence const double momentum = 32; gen->set_p_range(momentum,momentum, momentum*2e-2); // 2% momentum smearing se->registerSubsystem(gen); PHG4ParticleGenerator *pgen = new PHG4ParticleGenerator(); pgen->set_name("geantino"); //pgen->set_name(particle); pgen->set_vtx(0, 0, 0); //pgen->set_vtx(0, ypos, 0); double angle = theta*TMath::Pi()/180.; double eta = -1.*TMath::Log(TMath::Tan(angle/2.)); pgen->set_eta_range(0.2*eta, 1.8*eta); //pgen->set_phi_range(-0.001, 0.001); // 1mrad angular diverpgence //pgen->set_phi_range(-0.5/180.*TMath::Pi(), 0.5/180.*TMath::Pi()); //pgen->set_eta_range(-1., 1.); //pgen->set_phi_range(-0./180.*TMath::Pi(), 0./180.*TMath::Pi()); pgen->set_phi_range(-20/180.*TMath::Pi(), 20/180.*TMath::Pi()); pgen->set_mom_range(1, 1); // se->registerSubsystem(pgen); // Simple single particle generator PHG4ParticleGun *gun = new PHG4ParticleGun(); gun->set_name("geantino"); // gun->set_name("proton"); gun->set_vtx(0, 0, 0); double angle = theta*TMath::Pi()/180.; gun->set_mom(sin(angle),0.,cos(angle)); // se->registerSubsystem(gun); PHG4Reco* g4Reco = new PHG4Reco(); g4Reco->set_field(0); // g4Reco->SetPhysicsList("QGSP_BERT_HP"); // uncomment this line to enable the high-precision neutron simulation physics list, QGSP_BERT_HP //---------------------------------------- // EMCal G4 //---------------------------------------- if (cemc_on) { PHG4SpacalPrototypeSubsystem *cemc; cemc = new PHG4SpacalPrototypeSubsystem("CEMC"); cemc->SetActive(); cemc->SuperDetector("CEMC"); cemc->SetAbsorberActive(); cemc->OverlapCheck(true); // cemc->Verbosity(2); // cemc->set_int_param("construction_verbose",2); cemc->UseCalibFiles(PHG4DetectorSubsystem::xml); cemc->SetCalibrationFileDir(string(getenv("CALIBRATIONROOT")) + string("/Prototype3/Geometry/") ); // cemc->SetCalibrationFileDir("./test_geom/" ); // cemc->set_double_param("z_rotation_degree", 15); // rotation around CG // cemc->set_double_param("xpos", (116.77 + 137.0)*.5 - 26.5 - 10.2); // location in cm of EMCal CG. Updated with final positioning of EMCal // cemc->set_double_param("ypos", 4); // put it some where in UIUC blocks // cemc->set_double_param("zpos", 4); // put it some where in UIUC blocks g4Reco->registerSubsystem(cemc); } //---------------------------------------- // HCal G4 //---------------------------------------- if (ihcal_on) { PHG4Prototype2InnerHcalSubsystem *innerhcal = new PHG4Prototype2InnerHcalSubsystem("HCalIn"); innerhcal->set_int_param("hi_eta",1); innerhcal->set_double_param("place_x",add_place_x); innerhcal->set_double_param("place_z",144); innerhcal->SetActive(); innerhcal->SetAbsorberActive(); innerhcal->SetAbsorberTruth(1); innerhcal->OverlapCheck(true); innerhcal->SuperDetector("HCALIN"); g4Reco->registerSubsystem(innerhcal); } if (ohcal_on) { PHG4Prototype2OuterHcalSubsystem *outerhcal = new PHG4Prototype2OuterHcalSubsystem("HCalOut"); outerhcal->set_int_param("hi_eta",1); outerhcal->set_double_param("place_x",add_place_x); outerhcal->set_double_param("place_z",229.5); outerhcal->SetActive(); outerhcal->SetAbsorberActive(); outerhcal->SetAbsorberTruth(1); outerhcal->OverlapCheck(true); outerhcal->SuperDetector("HCALOUT"); g4Reco->registerSubsystem(outerhcal); } if (cryo_on) { double place_z = 175.; // Cryostat from engineering drawing PHG4BlockSubsystem *cryo1 = new PHG4BlockSubsystem("cryo1",1); cryo1->set_double_param("size_x",0.95); cryo1->set_double_param("size_y",60.96); cryo1->set_double_param("size_z",60.96); cryo1->set_double_param("place_x",141.96+0.95/2.+add_place_x); cryo1->set_double_param("place_z",place_z); cryo1->set_string_param("material","G4_Al"); cryo1->SetActive(); // it is an active volume - save G4Hits cryo1->SuperDetector("CRYO"); g4Reco->registerSubsystem(cryo1); PHG4BlockSubsystem *cryo2 = new PHG4BlockSubsystem("cryo2",2); cryo2->set_double_param("size_x",8.89); cryo2->set_double_param("size_y",60.96); cryo2->set_double_param("size_z",60.96); cryo2->set_double_param("place_x",150.72+8.89/2.+add_place_x); cryo2->set_double_param("place_z",place_z); cryo2->set_string_param("material","G4_Al"); cryo2->SetActive(); // it is an active volume - save G4Hits cryo2->SuperDetector("CRYO"); g4Reco->registerSubsystem(cryo2); PHG4BlockSubsystem *cryo3 = new PHG4BlockSubsystem("cryo3",3); cryo3->set_double_param("size_x",2.54); cryo3->set_double_param("size_y",60.96); cryo3->set_double_param("size_z",60.96); cryo3->set_double_param("place_x",173.93+2.54/2.+add_place_x); cryo3->set_double_param("place_z",place_z); cryo3->set_string_param("material","G4_Al"); cryo3->SetActive(); // it is an active volume - save G4Hits cryo3->SuperDetector("CRYO"); g4Reco->registerSubsystem(cryo3); } if (bh_on) { // BLACKHOLE, box surrounding the prototype to check for leakage PHG4BlockSubsystem *bh[5]; // surrounding outer hcal // top bh[0] = new PHG4BlockSubsystem("bh1",1); bh[0]->set_double_param("size_x",270.); bh[0]->set_double_param("size_y",0.01); bh[0]->set_double_param("size_z",165.); bh[0]->set_double_param("place_x",270./2.); bh[0]->set_double_param("place_y",125./2.); // bottom bh[1] = new PHG4BlockSubsystem("bh2",2); bh[1]->set_double_param("size_x",270.); bh[1]->set_double_param("size_y",0.01); bh[1]->set_double_param("size_z",165.); bh[1]->set_double_param("place_x",270./2.); bh[1]->set_double_param("place_y",-125./2.); // right side bh[2] = new PHG4BlockSubsystem("bh3",3); bh[2]->set_double_param("size_x",200.); bh[2]->set_double_param("size_y",125.); bh[2]->set_double_param("size_z",0.01); bh[2]->set_double_param("place_x",200./2.); bh[2]->set_double_param("place_z",165./2.); // left side bh[3] = new PHG4BlockSubsystem("bh4",4); bh[3]->set_double_param("size_x",270.); bh[3]->set_double_param("size_y",125.); bh[3]->set_double_param("size_z",0.01); bh[3]->set_double_param("place_x",270./2.); bh[3]->set_double_param("place_z",-165./2.); // back bh[4] = new PHG4BlockSubsystem("bh5",5); bh[4]->set_double_param("size_x",0.01); bh[4]->set_double_param("size_y",125.); bh[4]->set_double_param("size_z",165.); bh[4]->set_double_param("place_x",270.); for (int i=0; i<5; i++) { bh[i]->BlackHole(); bh[i]->SetActive(); bh[i]->SuperDetector("BlackHole"); bh[i]->OverlapCheck(true); g4Reco->registerSubsystem(bh[i]); } } PHG4TruthSubsystem *truth = new PHG4TruthSubsystem(); g4Reco->registerSubsystem(truth); se->registerSubsystem( g4Reco ); //---------------------------------------- // EMCal digitization //---------------------------------------- if (cemc_cell) { PHG4FullProjSpacalCellReco *cemc_cells = new PHG4FullProjSpacalCellReco("CEMCCYLCELLRECO"); cemc_cells->Detector("CEMC"); cemc_cells->set_timing_window(0.,60.); cemc_cells->get_light_collection_model().load_data_file(string(getenv("CALIBRATIONROOT")) + string("/CEMC/LightCollection/Prototype2Module.xml"),"data_grid_light_guide_efficiency","data_grid_fiber_trans"); se->registerSubsystem(cemc_cells); } if (cemc_twr) { RawTowerBuilder *TowerBuilder = new RawTowerBuilder("EmcRawTowerBuilder"); TowerBuilder->Detector("CEMC"); TowerBuilder->set_sim_tower_node_prefix("SIM"); se->registerSubsystem(TowerBuilder); } const double sampling_fraction = 0.0190134; // +/- 0.000224984 from 0 Degree indenting 32 GeV electron showers const double photoelectron_per_GeV = 500; //500 photon per total GeV deposition const double ADC_per_photoelectron_HG = 3.8; // From Sean Stoll, Mar 29 const double ADC_per_photoelectron_LG = 0.24; // From Sean Stoll, Mar 29 // low gains if (cemc_digi) { RawTowerDigitizer *TowerDigitizer = new RawTowerDigitizer("EmcRawTowerDigitizerLG"); TowerDigitizer->Detector("CEMC"); TowerDigitizer->set_raw_tower_node_prefix("RAW_LG"); TowerDigitizer->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update TowerDigitizer->set_photonelec_ADC(1. / ADC_per_photoelectron_LG); TowerDigitizer->set_photonelec_yield_visible_GeV(photoelectron_per_GeV / sampling_fraction); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); // high gains TowerDigitizer = new RawTowerDigitizer("EmcRawTowerDigitizerHG"); TowerDigitizer->Detector("CEMC"); TowerDigitizer->set_raw_tower_node_prefix("RAW_HG"); TowerDigitizer->set_digi_algorithm( RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(15); // From John Haggerty, Mar 29 TowerDigitizer->set_photonelec_ADC(1. / ADC_per_photoelectron_HG); TowerDigitizer->set_photonelec_yield_visible_GeV(photoelectron_per_GeV / sampling_fraction); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); } if (cemc_twrcal) { RawTowerCalibration *TowerCalibration = new RawTowerCalibration("EmcRawTowerCalibrationLG"); TowerCalibration->Detector("CEMC"); TowerCalibration->set_raw_tower_node_prefix("RAW_LG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_LG"); TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(1. / ADC_per_photoelectron_LG / photoelectron_per_GeV); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); TowerCalibration = new RawTowerCalibration("EmcRawTowerCalibrationHG"); TowerCalibration->Detector("CEMC"); TowerCalibration->set_raw_tower_node_prefix("RAW_HG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_HG"); TowerCalibration->set_calib_algorithm( RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(1. / ADC_per_photoelectron_HG / photoelectron_per_GeV); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); } //---------------------------------------- // HCal towering //---------------------------------------- if (ihcal_cell) { PHG4Prototype2HcalCellReco *hccell = new PHG4Prototype2HcalCellReco("HCALinCellReco"); hccell->Detector("HCALIN"); se->registerSubsystem(hccell); } if (ihcal_twr) { Prototype2RawTowerBuilder *hcaltwr = new Prototype2RawTowerBuilder("HCALinRawTowerBuilder"); hcaltwr->Detector("HCALIN"); hcaltwr->set_sim_tower_node_prefix("SIM"); se->registerSubsystem(hcaltwr); } if (ohcal_cell) { hccell = new PHG4Prototype2HcalCellReco("HCALoutCellReco"); hccell->Detector("HCALOUT"); se->registerSubsystem(hccell); } if (ohcal_twr) { hcaltwr = new Prototype2RawTowerBuilder("HCALoutRawTowerBuilder"); hcaltwr->Detector("HCALOUT"); hcaltwr->set_sim_tower_node_prefix("SIM"); se->registerSubsystem(hcaltwr); } //---------------------------------------- // HCal digitization //---------------------------------------- // From: Abhisek Sen [mailto:[email protected]] // Sent: Tuesday, April 19, 2016 10:55 PM // To: Huang, Jin <*****@*****.**>; Haggerty, John <*****@*****.**> // HCALIN: // 1/5 pixel / HG ADC channel // 32/5 pixel / LG ADC channel // 0.4 MeV/ LG ADC // 0.4/32 MeV/ HG ADC // HCALOUT: // 1/5 pixel / HG ADC channel // 16/5 pixel / LG ADC channel // 0.2 MeV/ LG ADC // 0.2/16 MeV/ HG ADC RawTowerDigitizer *TowerDigitizer = NULL; if (ihcal_digi) { TowerDigitizer = new RawTowerDigitizer("HCALinTowerDigitizerLG"); TowerDigitizer->Detector("HCALIN"); TowerDigitizer->set_raw_tower_node_prefix("RAW_LG"); TowerDigitizer->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update TowerDigitizer->set_photonelec_ADC(32. / 5.); TowerDigitizer->set_photonelec_yield_visible_GeV(32. / 5 / (0.4e-3)); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); TowerDigitizer = new RawTowerDigitizer("HCALinTowerDigitizerHG"); TowerDigitizer->Detector("HCALIN"); TowerDigitizer->set_raw_tower_node_prefix("RAW_HG"); TowerDigitizer->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update TowerDigitizer->set_photonelec_ADC(1. / 5.); TowerDigitizer->set_photonelec_yield_visible_GeV(1. / 5 / (0.4e-3 / 32)); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); } if (ohcal_digi) { TowerDigitizer = new RawTowerDigitizer("HCALoutTowerDigitizerLG"); TowerDigitizer->Detector("HCALOUT"); TowerDigitizer->set_raw_tower_node_prefix("RAW_LG"); TowerDigitizer->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update TowerDigitizer->set_photonelec_ADC(16. / 5.); TowerDigitizer->set_photonelec_yield_visible_GeV(16. / 5 / (0.2e-3)); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); TowerDigitizer = new RawTowerDigitizer("HCALoutTowerDigitizerHG"); TowerDigitizer->Detector("HCALOUT"); TowerDigitizer->set_raw_tower_node_prefix("RAW_HG"); TowerDigitizer->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitalization); TowerDigitizer->set_pedstal_central_ADC(0); TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update TowerDigitizer->set_photonelec_ADC(1. / 5.); TowerDigitizer->set_photonelec_yield_visible_GeV(1. / 5 / (0.2e-3 / 16)); TowerDigitizer->set_zero_suppression_ADC(-1000); // no-zero suppression se->registerSubsystem(TowerDigitizer); } //---------------------------------------- // HCal calibration //---------------------------------------- // 32 GeV Pi+ scan const double visible_sample_fraction_HCALIN = 7.19505e-02 ; // 1.34152e-02 const double visible_sample_fraction_HCALOUT = 0.0313466 ; // +/- 0.0067744 RawTowerCalibration *TowerCalibration = NULL; if (ihcal_twrcal) { TowerCalibration = new RawTowerCalibration("HCALinRawTowerCalibrationLG"); TowerCalibration->Detector("HCALIN"); TowerCalibration->set_raw_tower_node_prefix("RAW_LG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_LG"); TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(0.4e-3 / visible_sample_fraction_HCALIN); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); TowerCalibration = new RawTowerCalibration("HCALinRawTowerCalibrationHG"); TowerCalibration->Detector("HCALIN"); TowerCalibration->set_raw_tower_node_prefix("RAW_HG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_HG"); TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(0.4e-3 / 32 / visible_sample_fraction_HCALIN); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); } if (ohcal_twrcal) { TowerCalibration = new RawTowerCalibration("HCALoutRawTowerCalibrationLG"); TowerCalibration->Detector("HCALOUT"); TowerCalibration->set_raw_tower_node_prefix("RAW_LG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_LG"); TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(0.2e-3 / visible_sample_fraction_HCALOUT); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); TowerCalibration = new RawTowerCalibration("HCALoutRawTowerCalibrationHG"); TowerCalibration->Detector("HCALOUT"); TowerCalibration->set_raw_tower_node_prefix("RAW_HG"); TowerCalibration->set_calib_tower_node_prefix("CALIB_HG"); TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration); TowerCalibration->set_calib_const_GeV_ADC(0.2e-3 / 16 / visible_sample_fraction_HCALOUT); TowerCalibration->set_pedstal_ADC(0); TowerCalibration->set_zero_suppression_GeV(-1); // no-zero suppression se->registerSubsystem(TowerCalibration); } //---------------------- // QA Histograms //---------------------- if (cemc_on) { se->registerSubsystem(new QAG4SimulationCalorimeter("CEMC",QAG4SimulationCalorimeter::kProcessG4Hit)); } if (ihcal_on) { // TODO: disable QA for HCal right now as there is a hit->particle truth association error at the moment // se->registerSubsystem(new QAG4SimulationCalorimeter("HCALIN",QAG4SimulationCalorimeter::kProcessG4Hit)); } if (ohcal_on) { // se->registerSubsystem(new QAG4SimulationCalorimeter("HCALOUT",QAG4SimulationCalorimeter::kProcessG4Hit)); } //---------------------- // G4HitNtuple //---------------------- if (hit_ntuple) { G4HitNtuple *hit = new G4HitNtuple("G4HitNtuple","g4hitntuple.root"); hit->AddNode("HCALIN", 0); hit->AddNode("HCALOUT", 1); hit->AddNode("CRYO", 2); hit->AddNode("BlackHole", 3); hit->AddNode("ABSORBER_HCALIN", 10); hit->AddNode("ABSORBER_HCALOUT", 11); se->registerSubsystem(hit); } // G4ScintillatorSlatTTree *scintcell = new G4ScintillatorSlatTTree("inslat"); // scintcell->Detector("HCALIN"); // se->registerSubsystem(scintcell); // scintcell = new G4ScintillatorSlatTTree("outslat"); // scintcell->Detector("HCALOUT"); // se->registerSubsystem(scintcell); //---------------------- // save a comprehensive evaluation file //---------------------- if (dstreader) { PHG4DSTReader* ana = new PHG4DSTReader(string("DSTReader.root")); ana->set_save_particle(true); ana->set_load_all_particle(false); ana->set_load_active_particle(false); ana->set_save_vertex(true); ana->set_tower_zero_sup(-1000); // no zero suppression // ana->AddNode("CEMC"); // if (absorberactive) // { // ana->AddNode("ABSORBER_CEMC"); // } if (cemc_twr) ana->AddTower("SIM_CEMC"); if (cemc_digi) ana->AddTower("RAW_LG_CEMC"); if (cemc_twrcal) ana->AddTower("CALIB_LG_CEMC"); // Low gain CEMC if (cemc_digi) ana->AddTower("RAW_HG_CEMC"); if (cemc_twrcal) ana->AddTower("CALIB_HG_CEMC"); // High gain CEMC if (ohcal_twr) ana->AddTower("SIM_HCALOUT"); if (ihcal_twr) ana->AddTower("SIM_HCALIN"); if (ihcal_digi) ana->AddTower("RAW_LG_HCALIN"); if (ihcal_digi) ana->AddTower("RAW_HG_HCALIN"); if (ohcal_digi) ana->AddTower("RAW_LG_HCALOUT"); if (ohcal_digi) ana->AddTower("RAW_HG_HCALOUT"); if (ihcal_twrcal) ana->AddTower("CALIB_LG_HCALIN"); if (ihcal_twrcal) ana->AddTower("CALIB_HG_HCALIN"); if (ohcal_twrcal) ana->AddTower("CALIB_LG_HCALOUT"); if (ohcal_twrcal) ana->AddTower("CALIB_HG_HCALOUT"); if (bh_on) ana->AddNode("BlackHole"); // add a G4Hit node se->registerSubsystem(ana); } // Fun4AllDstOutputManager *out = new Fun4AllDstOutputManager("DSTOUT","/phenix/scratch/pinkenbu/G4Prototype2Hcalin.root"); // out->AddNode("G4RootScintillatorSlat_HCALIN"); // se->registerOutputManager(out); // out = new Fun4AllDstOutputManager("DSTHCOUT","/phenix/scratch/pinkenbu/G4Prototype2Hcalout.root"); // out->AddNode("G4RootScintillatorSlat_HCALOUT"); // se->registerOutputManager(out); if (dstoutput) { Fun4AllDstOutputManager *out = new Fun4AllDstOutputManager("DSTOUT","G4Prototype3New.root"); se->registerOutputManager(out); } Fun4AllInputManager *in = new Fun4AllDummyInputManager( "JADE"); se->registerInputManager( in ); if (nEvents <= 0) { return 0; } se->run(nEvents); se->End(); QAHistManagerDef::saveQARootFile("G4Prototype2_qa.root"); // std::cout << "All done" << std::endl; delete se; // return 0; gSystem->Exit(0); }
//! ePHENIX simulation loading script //! \param[in] nEvents Number of events to run. If nEvents=1, then a event display will be shown //! \param[in] outputFile output for G4DSTReader //! \param[in] inputFile HepMC input files, not activated by default int Fun4All_G4_ePHENIX( // // int nEvents = 0, // // int nEvents = 1, // int nEvents = 2, // // int nEvents = 100000, // const char * outputFile = "G4ePHENIX.root", // const char * inputFile = "MyPythia.dat" // ) { //--------------- // Load libraries //--------------- const bool readhepmc = false; // read HepMC files const int absorberactive = 1; // set to 1 to make all absorbers active volumes const bool verbosity = false; // very slow but very detailed logs // const bool verbosity = true; // very slow but very detailed logs gSystem->Load("libg4testbench.so"); gSystem->Load("libfun4all.so"); gSystem->Load("libcemc.so"); gSystem->Load("libg4eval.so"); gROOT->LoadMacro("G4Setup_ePHENIX.C"); G4Init(); // initialize layer numbers for barrel //--------------- // Fun4All server //--------------- Fun4AllServer *se = Fun4AllServer::instance(); se->Verbosity(0); //----------------- // Event generation //----------------- if (readhepmc) { // this module is needed to read the HepMC records into our G4 sims // but only if you read HepMC input files HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } else { // The PHG4ParticleGun runs the same particle(s) in // every event PHG4ParticleGun *gun = new PHG4ParticleGun(); // gun->set_name("geantino+"); // gun->set_name("chargedgeantino"); gun->set_name("mu-"); // gun->set_name("pi-"); // e,pi,mu,p,gamma // gun->set_vtx(0,12.09,200); gun->set_vtx(0, 0, 0); // gun->set_mom(0, 0, 10); gun->set_mom(1.12641e-16, 1.83962, 13.6021); // se->registerSubsystem(gun); PHG4ParticleGenerator *gen = new PHG4ParticleGenerator(); // gen->set_seed(TRandom3(0).GetSeed()); gen->set_seed(1234); // gen->set_name("geantino"); gen->set_name("mu-"); // gun->set_name("pi-"); // e,pi,mu,p,gamma gen->set_vtx(0, 0, 0); gen->set_z_range(0, 0); // gen->set_eta_range(3.5, 3.5); gen->set_eta_range(-4, 4); gen->set_phi_range(TMath::Pi() / 2, TMath::Pi() / 2); gen->set_mom_range(1.0, 50.0); gen->Verbosity(1); // se->registerSubsystem(gen); // //! high Q2 250x10 GeV pythia file from Kieran ReadEICFiles *eic = new ReadEICFiles(); const char *infile = "/direct/phenix+sim02/phnxreco/ePHENIX/jinhuang/display/pythia.ep.250x010.10000000events.seed679586890.root"; eic->OpenInputFile(infile); eic->SetFirstEntry(565); se->registerSubsystem(eic); } //--------------------- // Detector description from loaded macro //--------------------- G4Setup(absorberactive, -1); // G4Setup_Sandbox(absorberactive, -1); // MaterialScan(); //---------------------- // Simulation evaluation //---------------------- // SubsysReco* eval = new PHG4Evaluator("PHG4EVALUATOR","g4eval.root"); //eval->Verbosity(0); //se->registerSubsystem( eval ); //SubsysReco* eval = new PHG4CEMCEvaluator("PHG4CEMCEVALUATOR","out/g4eval.root"); //eval->Verbosity(1); //se->registerSubsystem( eval ); // HitNtuples *hits = new HitNtuples(); // hits->AddNode("FEMCABS",0); // hits->AddNode("FEMC",3); // hits->AddNode("FPRESHOWER",1); // hits->AddNode("GEM",2); // hits->AddNode("GEMLIDFRONT",4); // hits->AddNode("GEMLIDBACK",5); // se->registerSubsystem(hits); //---------------------- // Save selected nodes to root file //---------------------- { // require offline/analysis/g4analysis_fsphenix PHG4DSTReader* ana = new PHG4DSTReader(outputFile); if (nEvents > 0 && nEvents < 3) ana->Verbosity(2); ana->AddNode("GEMSTATION0"); ana->AddNode("GEMSTATION1"); ana->AddNode("GEMSTATION2"); ana->AddNode("GEMSTATION3"); ana->AddNode("GEMSTATION4"); // ana->AddNode("TestDetector_0"); se->registerSubsystem(ana); } //-------------- // IO management //-------------- if (readhepmc) { Fun4AllInputManager *in = new Fun4AllHepMCInputManager("DSTIN"); se->registerInputManager(in); se->fileopen(in->Name(), inputFile); } else { // for single particle generators we just need something which drives // the event loop, the Dummy Input Mgr does just that Fun4AllInputManager *in = new Fun4AllDummyInputManager("JADE"); se->registerInputManager(in); } // File Managers bool save_dst = false; if (save_dst) { Fun4AllDstOutputManager *dstManager = new Fun4AllDstOutputManager( "DSTOUT", "DST.root"); //FVTX nodes dstManager->AddNode("PHG4INEVENT"); dstManager->AddNode("G4TruthInfo"); se->registerOutputManager(dstManager); } //----------------- // Event processing //----------------- if (nEvents == 1) { PHG4Reco *g4 = (PHG4Reco *) se->getSubsysReco("PHG4RECO"); g4->ApplyCommand("/control/execute eic.mac"); // g4->StartGui(); se->run(1); se->End(); std::cout << "All done" << std::endl; } else { if (verbosity) { se->Verbosity(3); PHG4Reco *g4 = (PHG4Reco *) se->getSubsysReco("PHG4RECO"); g4->Verbosity(3); g4->ApplyCommand("/control/verbose 5"); g4->ApplyCommand("/run/verbose 5"); g4->ApplyCommand("/tracking/verbose 5"); } se->run(nEvents); se->End(); std::cout << "All done" << std::endl; delete se; gSystem->Exit(0); } // //----- // // Exit // //----- return 0; }
int Fun4All_G4_sPHENIX_photonjet( const int nEvents = 5, const char *inputFile = "hepmc_pythia.dat", const char *outputFile = "G4sPHENIX.root", const char *embed_input_file = "/sphenix/data/data02/review_2017-08-02/sHijing/fm_0-4.list") { // Set the number of TPC layer const int n_TPC_layers = 40; // use 60 for backward compatibility only //=============== // Input options //=============== // Either: // read previously generated g4-hits files, in this case it opens a DST and skips // the simulations step completely. The G4Setup macro is only loaded to get information // about the number of layers used for the cell reco code // // In case reading production output, please double check your G4Setup_sPHENIX.C and G4_*.C consistent with those in the production macro folder // E.g. /sphenix/sim//sim01/production/2016-07-21/single_particle/spacal2d/ const bool readhits = false; // Or: // read files in HepMC format (typically output from event generators like hijing or pythia) const bool readhepmc = true; // read HepMC files // Or: // Use pythia const bool runpythia8 = false; const bool runpythia6 = false; // // **** And **** // Further choose to embed newly simulated events to a previous simulation. Not compatible with `readhits = true` // In case embedding into a production output, please double check your G4Setup_sPHENIX.C and G4_*.C consistent with those in the production macro folder // E.g. /sphenix/data/data02/review_2017-08-02/ const bool do_embedding = false; // Besides the above flags. One can further choose to further put in following particles in Geant4 simulation // Use multi-particle generator (PHG4SimpleEventGenerator), see the code block below to choose particle species and kinematics const bool particles = false && !readhits; // or gun/ very simple single particle gun generator const bool usegun = false && !readhits; // Throw single Upsilons, may be embedded in Hijing by setting readhepmc flag also (note, careful to set Z vertex equal to Hijing events) const bool upsilons = false && !readhits; // Event pile up simulation with collision rate in Hz MB collisions. // Note please follow up the macro to verify the settings for beam parameters const double pileup_collision_rate = 0; // 100e3 for 100kHz nominal AuAu collision rate. //====================== // What to run //====================== bool do_bbc = true; bool do_pipe = true; bool do_svtx = true; bool do_svtx_cell = do_svtx && true; bool do_svtx_track = do_svtx_cell && true; bool do_svtx_eval = do_svtx_track && false; bool do_pstof = false; bool do_cemc = true; bool do_cemc_cell = do_cemc && true; bool do_cemc_twr = do_cemc_cell && true; bool do_cemc_cluster = do_cemc_twr && true; bool do_cemc_eval = do_cemc_cluster && false; bool do_hcalin = true; bool do_hcalin_cell = do_hcalin && true; bool do_hcalin_twr = do_hcalin_cell && true; bool do_hcalin_cluster = do_hcalin_twr && true; bool do_hcalin_eval = do_hcalin_cluster && false; bool do_magnet = true; bool do_hcalout = true; bool do_hcalout_cell = do_hcalout && true; bool do_hcalout_twr = do_hcalout_cell && true; bool do_hcalout_cluster = do_hcalout_twr && true; bool do_hcalout_eval = do_hcalout_cluster && false; //! forward flux return plug door. Out of acceptance and off by default. bool do_plugdoor = false; bool do_global = true; bool do_global_fastsim = true; bool do_calotrigger = true && do_cemc_twr && do_hcalin_twr && do_hcalout_twr; bool do_jet_reco = true; bool do_jet_eval = do_jet_reco && true; // HI Jet Reco for p+Au / Au+Au collisions (default is false for // single particle / p+p-only simulations, or for p+Au / Au+Au // simulations which don't particularly care about jets) bool do_HIjetreco = false && do_cemc_twr && do_hcalin_twr && do_hcalout_twr; bool do_dst_compress = false; //Option to convert DST to human command readable TTree for quick poke around the outputs bool do_DSTReader = false; //--------------- // Load libraries //--------------- gSystem->Load("libfun4all.so"); gSystem->Load("libg4detectors.so"); gSystem->Load("libphhepmc.so"); gSystem->Load("libg4testbench.so"); gSystem->Load("libg4hough.so"); gSystem->Load("libg4eval.so"); // establish the geometry and reconstruction setup gROOT->LoadMacro("G4Setup_sPHENIX.C"); G4Init(do_svtx, do_pstof, do_cemc, do_hcalin, do_magnet, do_hcalout, do_pipe, do_plugdoor, n_TPC_layers); int absorberactive = 1; // set to 1 to make all absorbers active volumes // const string magfield = "1.5"; // if like float -> solenoidal field in T, if string use as fieldmap name (including path) const string magfield = "/phenix/upgrades/decadal/fieldmaps/sPHENIX.2d.root"; // if like float -> solenoidal field in T, if string use as fieldmap name (including path) const float magfield_rescale = -1.4 / 1.5; // scale the map to a 1.4 T field //--------------- // Fun4All server //--------------- Fun4AllServer *se = Fun4AllServer::instance(); se->Verbosity(0); // just if we set some flags somewhere in this macro recoConsts *rc = recoConsts::instance(); // By default every random number generator uses // PHRandomSeed() which reads /dev/urandom to get its seed // if the RANDOMSEED flag is set its value is taken as seed // You ca neither set this to a random value using PHRandomSeed() // which will make all seeds identical (not sure what the point of // this would be: // rc->set_IntFlag("RANDOMSEED",PHRandomSeed()); // or set it to a fixed value so you can debug your code // rc->set_IntFlag("RANDOMSEED", 12345); //----------------- // Event generation //----------------- if (readhits) { // Get the hits from a file // The input manager is declared later if (do_embedding) { cout << "Do not support read hits and embed background at the same time." << endl; exit(1); } } else { // running Geant4 stage. First load event generators. if (readhepmc) { // place holder. Additional action is performed in later stage at the input manager level HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } if (runpythia8) { gSystem->Load("libPHPythia8.so"); PHPythia8 *pythia8 = new PHPythia8(); // see coresoftware/generators/PHPythia8 for example config pythia8->set_config_file("phpythia8.cfg"); PHPy8ParticleTrigger *ptrig = new PHPy8ParticleTrigger(); ptrig->AddParticles(22); ptrig->SetPtLow(10); ptrig->SetEtaHigh(1); ptrig->SetEtaLow(-1); ptrig->PrintConfig(); pythia8->register_trigger(ptrig); PHPy8JetTrigger *trig = new PHPy8JetTrigger(); trig->SetEtaHighLow(-1,1); trig->SetMinJetPt(5); trig->SetJetR(0.4); pythia8->register_trigger(trig); if (readhepmc) pythia8->set_reuse_vertex(0); // reuse vertex of subevent with embedding ID of 0 // pythia8->set_vertex_distribution_width(0,0,10,0); // additional vertex smearing if needed, more vertex options available se->registerSubsystem(pythia8); } if (runpythia6) { gSystem->Load("libPHPythia6.so"); PHPythia6 *pythia6 = new PHPythia6(); pythia6->set_config_file("phpythia6.cfg"); if (readhepmc) pythia6->set_reuse_vertex(0); // reuse vertex of subevent with embedding ID of 0 // pythia6->set_vertex_distribution_width(0,0,10,0); // additional vertex smearing if needed, more vertex options available se->registerSubsystem(pythia6); } // If "readhepMC" is also set, the particles will be embedded in Hijing events if (particles) { // toss low multiplicity dummy events PHG4SimpleEventGenerator *gen = new PHG4SimpleEventGenerator(); gen->add_particles("pi-", 2); // mu+,e+,proton,pi+,Upsilon //gen->add_particles("pi+",100); // 100 pion option if (readhepmc || do_embedding || runpythia8 || runpythia6) { gen->set_reuse_existing_vertex(true); gen->set_existing_vertex_offset_vector(0.0, 0.0, 0.0); } else { gen->set_vertex_distribution_function(PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform); gen->set_vertex_distribution_mean(0.0, 0.0, 0.0); gen->set_vertex_distribution_width(0.0, 0.0, 5.0); } gen->set_vertex_size_function(PHG4SimpleEventGenerator::Uniform); gen->set_vertex_size_parameters(0.0, 0.0); gen->set_eta_range(-1.0, 1.0); gen->set_phi_range(-1.0 * TMath::Pi(), 1.0 * TMath::Pi()); //gen->set_pt_range(0.1, 50.0); gen->set_pt_range(0.1, 20.0); gen->Embed(2); gen->Verbosity(0); se->registerSubsystem(gen); } if (usegun) { PHG4ParticleGun *gun = new PHG4ParticleGun(); // gun->set_name("anti_proton"); gun->set_name("geantino"); gun->set_vtx(0, 0, 0); gun->set_mom(10, 0, 0.01); // gun->AddParticle("geantino",1.7776,-0.4335,0.); // gun->AddParticle("geantino",1.7709,-0.4598,0.); // gun->AddParticle("geantino",2.5621,0.60964,0.); // gun->AddParticle("geantino",1.8121,0.253,0.); // se->registerSubsystem(gun); PHG4ParticleGenerator *pgen = new PHG4ParticleGenerator(); pgen->set_name("geantino"); pgen->set_z_range(0, 0); pgen->set_eta_range(0.01, 0.01); pgen->set_mom_range(10, 10); pgen->set_phi_range(5.3 / 180. * TMath::Pi(), 5.7 / 180. * TMath::Pi()); se->registerSubsystem(pgen); } // If "readhepMC" is also set, the Upsilons will be embedded in Hijing events, if 'particles" is set, the Upsilons will be embedded in whatever particles are thrown if (upsilons) { // run upsilons for momentum, dca performance, alone or embedded in Hijing PHG4ParticleGeneratorVectorMeson *vgen = new PHG4ParticleGeneratorVectorMeson(); vgen->add_decay_particles("e+", "e-", 0); // i = decay id // event vertex if (readhepmc || do_embedding || particles || runpythia8 || runpythia6) { vgen->set_reuse_existing_vertex(true); } else { vgen->set_vtx_zrange(-10.0, +10.0); } // Note: this rapidity range completely fills the acceptance of eta = +/- 1 unit vgen->set_rapidity_range(-1.0, +1.0); vgen->set_pt_range(0.0, 10.0); int istate = 1; if (istate == 1) { // Upsilon(1S) vgen->set_mass(9.46); vgen->set_width(54.02e-6); } else if (istate == 2) { // Upsilon(2S) vgen->set_mass(10.0233); vgen->set_width(31.98e-6); } else { // Upsilon(3S) vgen->set_mass(10.3552); vgen->set_width(20.32e-6); } vgen->Verbosity(0); vgen->Embed(3); se->registerSubsystem(vgen); cout << "Upsilon generator for istate = " << istate << " created and registered " << endl; } } if (!readhits) { //--------------------- // Detector description //--------------------- G4Setup(absorberactive, magfield, TPythia6Decayer::kAll, do_svtx, do_pstof, do_cemc, do_hcalin, do_magnet, do_hcalout, do_pipe,do_plugdoor, magfield_rescale); } //--------- // BBC Reco //--------- if (do_bbc) { gROOT->LoadMacro("G4_Bbc.C"); BbcInit(); Bbc_Reco(); } //------------------ // Detector Division //------------------ if (do_svtx_cell) Svtx_Cells(); if (do_cemc_cell) CEMC_Cells(); if (do_hcalin_cell) HCALInner_Cells(); if (do_hcalout_cell) HCALOuter_Cells(); //----------------------------- // CEMC towering and clustering //----------------------------- if (do_cemc_twr) CEMC_Towers(); if (do_cemc_cluster) CEMC_Clusters(); //----------------------------- // HCAL towering and clustering //----------------------------- if (do_hcalin_twr) HCALInner_Towers(); if (do_hcalin_cluster) HCALInner_Clusters(); if (do_hcalout_twr) HCALOuter_Towers(); if (do_hcalout_cluster) HCALOuter_Clusters(); if (do_dst_compress) ShowerCompress(); //-------------- // SVTX tracking //-------------- if (do_svtx_track) Svtx_Reco(); //----------------- // Global Vertexing //----------------- if (do_global) { gROOT->LoadMacro("G4_Global.C"); Global_Reco(); } else if (do_global_fastsim) { gROOT->LoadMacro("G4_Global.C"); Global_FastSim(); } //----------------- // Calo Trigger Simulation //----------------- if (do_calotrigger) { gROOT->LoadMacro("G4_CaloTrigger.C"); CaloTrigger_Sim(); } //--------- // Jet reco //--------- if (do_jet_reco) { gROOT->LoadMacro("G4_Jets.C"); Jet_Reco(); } if (do_HIjetreco) { gROOT->LoadMacro("G4_HIJetReco.C"); HIJetReco(); } //---------------------- // Simulation evaluation //---------------------- if (do_svtx_eval) Svtx_Eval(string(outputFile) + "_g4svtx_eval.root"); if (do_cemc_eval) CEMC_Eval(string(outputFile) + "_g4cemc_eval.root"); if (do_hcalin_eval) HCALInner_Eval(string(outputFile) + "_g4hcalin_eval.root"); if (do_hcalout_eval) HCALOuter_Eval(string(outputFile) + "_g4hcalout_eval.root"); if (do_jet_eval) Jet_Eval(string(outputFile) + "_g4jet_eval.root"); gSystem->Load("libPhotonJet.so"); PhotonJet *photjet = new PhotonJet(outputFile); photjet->Set_Isocone_radius(3); photjet->set_cluspt_mincut(0.5); //this is just total cluster pt photjet->set_directphotonpt_mincut(5); //this is the direct photon min pt photjet->set_jetpt_mincut(5.); photjet->use_trigger_emulator(1); photjet->use_tracked_jets(0); photjet->set_eta_lowhigh(-1,1); photjet->use_isocone_algorithm(0); photjet->set_jetcone_size(4); photjet->use_positioncorrection_CEMC(1); photjet->set_AA_collisions(0); se->registerSubsystem(photjet); //-------------- // IO management //-------------- if (readhits) { //meta-lib for DST objects used in simulation outputs gSystem->Load("libg4dst.so"); // Hits file Fun4AllInputManager *hitsin = new Fun4AllDstInputManager("DSTin"); hitsin->fileopen(inputFile); se->registerInputManager(hitsin); } if (do_embedding) { if (embed_input_file == NULL) { cout << "Missing embed_input_file! Exit"; exit(3); } //meta-lib for DST objects used in simulation outputs gSystem->Load("libg4dst.so"); Fun4AllDstInputManager *in1 = new Fun4AllNoSyncDstInputManager("DSTinEmbed"); // in1->AddFile(embed_input_file); // if one use a single input file in1->AddListFile(embed_input_file); // RecommendedL: if one use a text list of many input files se->registerInputManager(in1); } if (readhepmc) { //meta-lib for DST objects used in simulation outputs gSystem->Load("libg4dst.so"); Fun4AllHepMCInputManager *in = new Fun4AllHepMCInputManager("HepMCInput_1"); se->registerInputManager(in); se->fileopen(in->Name().c_str(), inputFile); //in->set_vertex_distribution_width(100e-4,100e-4,30,0);//optional collision smear in space, time //in->set_vertex_distribution_mean(0,0,1,0);//optional collision central position shift in space, time // //optional choice of vertex distribution function in space, time //in->set_vertex_distribution_function(PHHepMCGenHelper::Gaus,PHHepMCGenHelper::Gaus,PHHepMCGenHelper::Uniform,PHHepMCGenHelper::Gaus); //! embedding ID for the event //! positive ID is the embedded event of interest, e.g. jetty event from pythia //! negative IDs are backgrounds, .e.g out of time pile up collisions //! Usually, ID = 0 means the primary Au+Au collision background //in->set_embedding_id(2); } else { // for single particle generators we just need something which drives // the event loop, the Dummy Input Mgr does just that Fun4AllInputManager *in = new Fun4AllDummyInputManager("JADE"); se->registerInputManager(in); } if (pileup_collision_rate > 0) { // pile up simulation. // add random beam collisions following a collision diamond and rate from a HepMC stream Fun4AllHepMCPileupInputManager *pileup = new Fun4AllHepMCPileupInputManager("HepMCPileupInput"); se->registerInputManager(pileup); const string pileupfile("/sphenix/sim/sim01/sHijing/sHijing_0-12fm.dat"); pileup->AddFile(pileupfile); // HepMC events used in pile up collisions. You can add multiple files, and the file list will be reused. //pileup->set_vertex_distribution_width(100e-4,100e-4,30,5);//override collision smear in space time //pileup->set_vertex_distribution_mean(0,0,0,0);//override collision central position shift in space time pileup->set_collision_rate(pileup_collision_rate); double time_window_minus = -35000; double time_window_plus = 35000; if (do_svtx) { // double TPCDriftVelocity = 6.0 / 1000.0; // cm/ns, which is loaded from G4_SVTX*.C macros time_window_minus = -105.5 / TPCDriftVelocity; // ns time_window_plus = 105.5 / TPCDriftVelocity; // ns; } pileup->set_time_window(time_window_minus, time_window_plus); // override timing window in ns cout << "Collision pileup enabled using file " << pileupfile << " with collision rate " << pileup_collision_rate << " and time window " << time_window_minus << " to " << time_window_plus << endl; } if (do_DSTReader) { //Convert DST to human command readable TTree for quick poke around the outputs gROOT->LoadMacro("G4_DSTReader.C"); G4DSTreader(outputFile, // /*int*/ absorberactive, /*bool*/ do_svtx, /*bool*/ do_pstof, /*bool*/ do_cemc, /*bool*/ do_hcalin, /*bool*/ do_magnet, /*bool*/ do_hcalout, /*bool*/ do_cemc_twr, /*bool*/ do_hcalin_twr, /*bool*/ do_magnet, /*bool*/ do_hcalout_twr); } // Fun4AllDstOutputManager *out = new Fun4AllDstOutputManager("DSTOUT", outputFile); // if (do_dst_compress) DstCompress(out); // se->registerOutputManager(out); //----------------- // Event processing //----------------- if (nEvents < 0) { return; } // if we run the particle generator and use 0 it'll run forever if (nEvents == 0 && !readhits && !readhepmc) { cout << "using 0 for number of events is a bad idea when using particle generators" << endl; cout << "it will run forever, so I just return without running anything" << endl; return; } se->run(nEvents); //----- // Exit //----- se->End(); std::cout << "All done" << std::endl; delete se; gSystem->Exit(0); }
int Fun4All_G4_EICDetector_LQ_reference( string n="1093", string ebeam="20", string pbeam="250", //string inputFile, string inputFile="/direct/phenix+u/spjeffas/LQGENEP/TestOut.1093event.root", string output="", const char * outputFile = "G4EICDetector.root" ) { // Set the number of TPC layer const int n_TPC_layers = 40; // use 60 for backward compatibility only //Get parameter variables from parameter file int nEvents; stringstream geek(n); geek>>nEvents; string directory = "/direct/phenix+u/spjeffas/leptoquark/output/"+output+"/"; //=============== // Input options //=============== // Either: // read previously generated g4-hits files, in this case it opens a DST and skips // the simulations step completely. The G4Setup macro is only loaded to get information // about the number of layers used for the cell reco code // // In case reading production output, please double check your G4Setup_sPHENIX.C and G4_*.C consistent with those in the production macro folder // E.g. /sphenix/sim//sim01/production/2016-07-21/single_particle/spacal2d/ const bool readhits = false; // Or: // read files in HepMC format (typically output from event generators like hijing or pythia) const bool readhepmc = false; // read HepMC files // Or: // read files in EICTree format generated by eicsmear package const bool readeictree = true; // Or: // Use Pythia 8 const bool runpythia8 = false; // Or: // Use Pythia 6 const bool runpythia6 = false; // Or: // Use HEPGen const bool runhepgen = false; // Or: // Use Sartre const bool runsartre = false; // Besides the above flags. One can further choose to further put in following particles in Geant4 simulation // Use multi-particle generator (PHG4SimpleEventGenerator), see the code block below to choose particle species and kinematics const bool particles = false && !readhits; // or gun/ very simple single particle gun generator const bool usegun = false && !readhits; // Throw single Upsilons, may be embedded in Hijing by setting readhepmc flag also (note, careful to set Z vertex equal to Hijing events) const bool upsilons = false && !readhits; //====================== // What to run //====================== // sPHENIX barrel bool do_bbc = true; bool do_pipe = true; bool do_svtx = true; bool do_svtx_cell = do_svtx && true; bool do_svtx_track = do_svtx_cell && true; bool do_svtx_eval = do_svtx_track && true; bool do_pstof = false; bool do_cemc = true; bool do_cemc_cell = true; bool do_cemc_twr = true; bool do_cemc_cluster = true; bool do_cemc_eval = true; bool do_hcalin = true; bool do_hcalin_cell = true; bool do_hcalin_twr = true; bool do_hcalin_cluster = true; bool do_hcalin_eval = true; bool do_cemc_cell = do_cemc && true; bool do_cemc_twr = do_cemc_cell && true; bool do_cemc_cluster = do_cemc_twr && true; bool do_cemc_eval = do_cemc_cluster && true; bool do_hcalin = true; bool do_hcalin_cell = do_hcalin && true; bool do_hcalin_twr = do_hcalin_cell && true; bool do_hcalin_cluster = do_hcalin_twr && true; bool do_hcalin_eval = do_hcalin_cluster && true; bool do_magnet = true; bool do_hcalout = true; bool do_hcalout_cell = true; bool do_hcalout_twr = true; bool do_hcalout_cluster = true; bool do_hcalout_eval = true; bool do_global = true; bool do_global_fastsim = false; bool do_jet_reco = true; bool do_jet_eval = true; bool do_fwd_jet_reco = true; bool do_fwd_jet_eval = false; bool do_hcalout_cell = do_hcalout && true; bool do_hcalout_twr = do_hcalout_cell && true; bool do_hcalout_cluster = do_hcalout_twr && true; bool do_hcalout_eval = do_hcalout_cluster && true; // EICDetector geometry - barrel bool do_DIRC = true; // EICDetector geometry - 'hadron' direction bool do_FGEM = true; bool do_FGEM_track = do_FGEM && false; bool do_RICH = true; bool do_Aerogel = true; bool do_FEMC = true; bool do_FEMC_cell = do_FEMC && true; bool do_FEMC_twr = do_FEMC_cell && true; bool do_FEMC_cluster = do_FEMC_twr && true; bool do_FEMC_eval = do_FEMC_cluster && true; bool do_FHCAL = true; bool do_FHCAL_cell = do_FHCAL && true; bool do_FHCAL_twr = do_FHCAL_cell && true; bool do_FHCAL_cluster = do_FHCAL_twr && true; bool do_FHCAL_eval = do_FHCAL_cluster && true; // EICDetector geometry - 'electron' direction bool do_EGEM = true; bool do_EGEM_track = do_EGEM && false; bool do_EEMC = true; bool do_EEMC_cell = do_EEMC && true; bool do_EEMC_twr = do_EEMC_cell && true; bool do_EEMC_cluster = do_EEMC_twr && true; bool do_EEMC_eval = do_EEMC_cluster && true; //do leptoquark analysis modules bool do_lepto_analysis = true; // Other options bool do_global = true; bool do_global_fastsim = false; bool do_calotrigger = false && do_cemc_twr && do_hcalin_twr && do_hcalout_twr; bool do_jet_reco = true; bool do_jet_eval = do_jet_reco && true; bool do_fwd_jet_reco = true; bool do_fwd_jet_eval = do_fwd_jet_reco && true; // HI Jet Reco for jet simulations in Au+Au (default is false for // single particle / p+p simulations, or for Au+Au simulations which // don't care about jets) bool do_HIjetreco = false && do_jet_reco && do_cemc_twr && do_hcalin_twr && do_hcalout_twr; // Compress DST files bool do_dst_compress = false; //Option to convert DST to human command readable TTree for quick poke around the outputs bool do_DSTReader = false; //--------------- // Load libraries //--------------- gSystem->Load("libfun4all.so"); gSystem->Load("libg4detectors.so"); gSystem->Load("libphhepmc.so"); gSystem->Load("libg4testbench.so"); gSystem->Load("libg4hough.so"); gSystem->Load("libg4calo.so"); gSystem->Load("libg4eval.so"); gSystem->Load("libeicana.so"); // establish the geometry and reconstruction setup gROOT->LoadMacro("G4Setup_EICDetector.C"); G4Init(do_svtx,do_cemc,do_hcalin,do_magnet,do_hcalout,do_pipe,do_FGEM,do_EGEM,do_FEMC,do_FHCAL,do_EEMC,do_DIRC,do_RICH,do_Aerogel,n_TPC_layers); int absorberactive = 0; // set to 1 to make all absorbers active volumes // const string magfield = "1.5"; // if like float -> solenoidal field in T, if string use as fieldmap name (including path) const string magfield = "/phenix/upgrades/decadal/fieldmaps/sPHENIX.2d.root"; // if like float -> solenoidal field in T, if string use as fieldmap name (including path) const float magfield_rescale = 1.4/1.5; // scale the map to a 1.4 T field //--------------- // Fun4All server //--------------- Fun4AllServer *se = Fun4AllServer::instance(); se->Verbosity(0); // uncomment for batch production running with minimal output messages // se->Verbosity(Fun4AllServer::VERBOSITY_SOME); // uncomment for some info for interactive running // just if we set some flags somewhere in this macro recoConsts *rc = recoConsts::instance(); // By default every random number generator uses // PHRandomSeed() which reads /dev/urandom to get its seed // if the RANDOMSEED flag is set its value is taken as seed // You can either set this to a random value using PHRandomSeed() // which will make all seeds identical (not sure what the point of // this would be: // rc->set_IntFlag("RANDOMSEED",PHRandomSeed()); // or set it to a fixed value so you can debug your code // rc->set_IntFlag("RANDOMSEED", 12345); //----------------- // Event generation //----------------- if (readhits) { // Get the hits from a file // The input manager is declared later } else if (readhepmc) { // this module is needed to read the HepMC records into our G4 sims // but only if you read HepMC input files HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } else if (readeictree) { // this module is needed to read the EICTree style records into our G4 sims ReadEICFiles *eicr = new ReadEICFiles(); eicr->OpenInputFile(inputFile); se->registerSubsystem(eicr); } else if (runpythia8) { gSystem->Load("libPHPythia8.so"); PHPythia8* pythia8 = new PHPythia8(); // see coresoftware/generators/PHPythia8 for example config pythia8->set_config_file("/direct/phenix+u/spjeffas/coresoftware/generators/PHPythia8/phpythia8.cfg"); se->registerSubsystem(pythia8); HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } else if (runpythia6) { gSystem->Load("libPHPythia6.so"); PHPythia6 *pythia6 = new PHPythia6(); // see coresoftware/generators/PHPythia6 for example config pythia6->set_config_file("/direct/phenix+u/spjeffas/coresoftware/generators/PHPythia6/phpythia6_ep.cfg"); se->registerSubsystem(pythia6); HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } else if (runhepgen) { gSystem->Load("libsHEPGen.so"); sHEPGen *hepgen = new sHEPGen(); // see HEPGen source directory/share/vggdata for required .dat files // see HEPGen source directory/share/datacards for required datacard files hepgen->set_datacard_file("hepgen_dvcs.data"); hepgen->set_momentum_electron(-20); hepgen->set_momentum_hadron(250); se->registerSubsystem(hepgen); HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } else if (runsartre) { // see coresoftware/generators/PHSartre/README for setup instructions // before running: // setenv SARTRE_DIR /opt/sphenix/core/sartre-1.20_root-5.34.36 gSystem->Load("libPHSartre.so"); PHSartre* mysartre = new PHSartre(); // see coresoftware/generators/PHSartre for example config mysartre->set_config_file("sartre.cfg"); // particle trigger to enhance forward J/Psi -> ee PHSartreParticleTrigger* pTrig = new PHSartreParticleTrigger("MySartreTrigger"); pTrig->AddParticles(-11); //pTrig->SetEtaHighLow(4.0,1.4); pTrig->SetEtaHighLow(1.0,-1.1); // central arm pTrig->PrintConfig(); mysartre->register_trigger((PHSartreGenTrigger *)pTrig); se->registerSubsystem(mysartre); HepMCNodeReader *hr = new HepMCNodeReader(); se->registerSubsystem(hr); } // If "readhepMC" is also set, the particles will be embedded in Hijing events if(particles) { // toss low multiplicity dummy events PHG4SimpleEventGenerator *gen = new PHG4SimpleEventGenerator(); //gen->add_particles("e-",5); // mu+,e+,proton,pi+,Upsilon //gen->add_particles("e+",5); // mu-,e-,anti_proton,pi- gen->add_particles("tau-",1); // mu-,e-,anti_proton,pi- if (readhepmc) { gen->set_reuse_existing_vertex(true); gen->set_existing_vertex_offset_vector(0.0,0.0,0.0); } else { gen->set_vertex_distribution_function(PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform); gen->set_vertex_distribution_mean(0.0,0.0,0.0); gen->set_vertex_distribution_width(0.0,0.0,5.0); } gen->set_vertex_size_function(PHG4SimpleEventGenerator::Uniform); gen->set_vertex_size_parameters(0.0,0.0); gen->set_eta_range(0.1, 0.1); //gen->set_eta_range(3.0, 3.0); //EICDetector FWD gen->set_phi_range(TMath::Pi()/2-0.1, TMath::Pi()/2-0.1); //gen->set_phi_range(TMath::Pi()/2-0.1, TMath::Pi()/2-0.1); gen->set_p_range(30.0, 30.0); //gen->add_particles("pi-",1); // mu+,e+,proton,pi+,Upsilon //gen->add_particles("pi+",100); // 100 pion option if (readhepmc) { gen->set_reuse_existing_vertex(true); gen->set_existing_vertex_offset_vector(0.0, 0.0, 0.0); } else { gen->set_vertex_distribution_function(PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform, PHG4SimpleEventGenerator::Uniform); gen->set_vertex_distribution_mean(0.0, 0.0, 0.0); gen->set_vertex_distribution_width(0.0, 0.0, 0.0); } gen->set_vertex_size_function(PHG4SimpleEventGenerator::Uniform); gen->set_vertex_size_parameters(0.0, 0.0); gen->set_eta_range(-1.0, 1.0); gen->set_phi_range(-1.0 * TMath::Pi(), 1.0 * TMath::Pi()); //gen->set_pt_range(0.1, 50.0); gen->set_pt_range(0.1, 20.0); gen->Embed(1); gen->Verbosity(0); se->registerSubsystem(gen); } if (usegun) { // PHG4ParticleGun *gun = new PHG4ParticleGun(); // gun->set_name("anti_proton"); // gun->set_name("geantino"); // gun->set_vtx(0, 0, 0); // gun->set_mom(10, 0, 0.01); // gun->AddParticle("geantino",1.7776,-0.4335,0.); // gun->AddParticle("geantino",1.7709,-0.4598,0.); // gun->AddParticle("geantino",2.5621,0.60964,0.); // gun->AddParticle("geantino",1.8121,0.253,0.); // se->registerSubsystem(gun); PHG4ParticleGenerator *pgen = new PHG4ParticleGenerator(); pgen->set_name("e-"); pgen->set_z_range(0,0); pgen->set_eta_range(0.01,0.01); pgen->set_mom_range(10,10); pgen->set_phi_range(-1.0 * TMath::Pi(), 1.0 * TMath::Pi()); se->registerSubsystem(pgen); } // If "readhepMC" is also set, the Upsilons will be embedded in Hijing events, if 'particles" is set, the Upsilons will be embedded in whatever particles are thrown if(upsilons) { // run upsilons for momentum, dca performance, alone or embedded in Hijing PHG4ParticleGeneratorVectorMeson *vgen = new PHG4ParticleGeneratorVectorMeson(); vgen->add_decay_particles("e+","e-",0); // i = decay id // event vertex if (readhepmc || particles) { vgen->set_reuse_existing_vertex(true); } else { vgen->set_vtx_zrange(-10.0, +10.0); } // Note: this rapidity range completely fills the acceptance of eta = +/- 1 unit vgen->set_rapidity_range(-1.0, +1.0); vgen->set_pt_range(0.0, 10.0); int istate = 1; if(istate == 1) { // Upsilon(1S) vgen->set_mass(9.46); vgen->set_width(54.02e-6); } else if (istate == 2) { // Upsilon(2S) vgen->set_mass(10.0233); vgen->set_width(31.98e-6); } else { // Upsilon(3S) vgen->set_mass(10.3552); vgen->set_width(20.32e-6); } vgen->Verbosity(0); vgen->Embed(2); se->registerSubsystem(vgen); cout << "Upsilon generator for istate = " << istate << " created and registered " << endl; } if (!readhits) { //--------------------- // Detector description //--------------------- G4Setup(absorberactive, magfield, TPythia6Decayer::kAll, do_svtx,do_cemc,do_hcalin,do_magnet,do_hcalout,do_pipe, do_FGEM,do_EGEM,do_FEMC,do_FHCAL,do_EEMC,do_DIRC,do_RICH,do_Aerogel, magfield_rescale); } //--------- // BBC Reco //--------- if (do_bbc) { gROOT->LoadMacro("G4_Bbc.C"); BbcInit(); Bbc_Reco(); } //------------------ // Detector Division //------------------ if (do_svtx_cell) Svtx_Cells(); if (do_cemc_cell) CEMC_Cells(); if (do_hcalin_cell) HCALInner_Cells(); if (do_hcalout_cell) HCALOuter_Cells(); if (do_FEMC_cell) FEMC_Cells(); if (do_FHCAL_cell) FHCAL_Cells(); if (do_EEMC_cell) EEMC_Cells(); //----------------------------- // CEMC towering and clustering //----------------------------- if (do_cemc_twr) CEMC_Towers(); if (do_cemc_cluster) CEMC_Clusters(); //----------------------------- // HCAL towering and clustering //----------------------------- if (do_hcalin_twr) HCALInner_Towers(); if (do_hcalin_cluster) HCALInner_Clusters(); if (do_hcalout_twr) HCALOuter_Towers(); if (do_hcalout_cluster) HCALOuter_Clusters(); //----------------------------- // e, h direction Calorimeter towering and clustering //----------------------------- if (do_FEMC_twr) FEMC_Towers(); if (do_FEMC_cluster) FEMC_Clusters(); if (do_FHCAL_twr) FHCAL_Towers(); if (do_FHCAL_cluster) FHCAL_Clusters(); if (do_EEMC_twr) EEMC_Towers(); if (do_EEMC_cluster) EEMC_Clusters(); if (do_dst_compress) ShowerCompress(); //-------------- // SVTX tracking //-------------- if (do_svtx_track) Svtx_Reco(); //-------------- // FGEM tracking //-------------- if(do_FGEM_track) FGEM_FastSim_Reco(); //-------------- // EGEM tracking //-------------- if(do_EGEM_track) EGEM_FastSim_Reco(); //----------------- // Global Vertexing //----------------- if (do_global) { gROOT->LoadMacro("G4_Global.C"); Global_Reco(); } else if (do_global_fastsim) { gROOT->LoadMacro("G4_Global.C"); Global_FastSim(); } //----------------- // Calo Trigger Simulation //----------------- if (do_calotrigger) { gROOT->LoadMacro("G4_CaloTrigger.C"); CaloTrigger_Sim(); } //--------- // Jet reco //--------- if (do_jet_reco) { gROOT->LoadMacro("G4_Jets.C"); Jet_Reco(); } if (do_HIjetreco) { gROOT->LoadMacro("G4_HIJetReco.C"); HIJetReco(); } if (do_fwd_jet_reco) { gROOT->LoadMacro("G4_FwdJets.C"); Jet_FwdReco(); } //---------------------- // Simulation evaluation //---------------------- if (do_svtx_eval) Svtx_Eval(directory+"g4svtx_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if (do_cemc_eval) CEMC_Eval(directory+"g4cemc_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if (do_hcalin_eval) HCALInner_Eval(directory+"g4hcalin_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if (do_hcalout_eval) HCALOuter_Eval(directory+"g4hcalout_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if (do_jet_eval) Jet_Eval(directory+"g4jet_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if (do_fwd_jet_eval) Jet_FwdEval(directory+"g4fwdjet_p"+pbeam+"_e"+ebeam+"_"+n+"events_eval.root"); if(do_lepto_analysis){ gROOT->LoadMacro("G4_Lepto.C"); G4_Lepto(directory+"LeptoAna_p"+pbeam+"_e"+ebeam+"_"+n+"events"); } //-------------- // IO management //-------------- if (readhits) { // Hits file Fun4AllInputManager *hitsin = new Fun4AllDstInputManager("DSTin"); hitsin->fileopen(inputFile); se->registerInputManager(hitsin); } if (readhepmc) { Fun4AllInputManager *in = new Fun4AllHepMCInputManager( "DSTIN"); se->registerInputManager( in ); se->fileopen( in->Name().c_str(), inputFile ); } else { // for single particle generators we just need something which drives // the event loop, the Dummy Input Mgr does just that Fun4AllInputManager *in = new Fun4AllDummyInputManager( "JADE"); se->registerInputManager( in ); } if (do_DSTReader) { //Convert DST to human command readable TTree for quick poke around the outputs gROOT->LoadMacro("G4_DSTReader_EICDetector.C"); G4DSTreader_EICDetector( outputFile, // /*int*/ absorberactive , /*bool*/ do_svtx , /*bool*/ do_cemc , /*bool*/ do_hcalin , /*bool*/ do_magnet , /*bool*/ do_hcalout , /*bool*/ do_cemc_twr , /*bool*/ do_hcalin_twr , /*bool*/ do_magnet , /*bool*/ do_hcalout_twr, /*bool*/ do_FGEM, /*bool*/ do_EGEM, /*bool*/ do_FHCAL, /*bool*/ do_FHCAL_twr, /*bool*/ do_FEMC, /*bool*/ do_FEMC_twr, /*bool*/ do_EEMC, /*bool*/ do_EEMC_twr ); } Fun4AllDstOutputManager *out = new Fun4AllDstOutputManager("DSTOUT", outputFile); if (do_dst_compress) DstCompress(out); se->registerOutputManager(out); //----------------- // Event processing //----------------- if (nEvents < 0) { return; } // if we run the particle generator and use 0 it'll run forever if (nEvents == 0 && !readhits && !readhepmc) { cout << "using 0 for number of events is a bad idea when using particle generators" << endl; cout << "it will run forever, so I just return without running anything" << endl; return; } se->run(nEvents); //----- // Exit //----- se->End(); std::cout << "All done" << std::endl; delete se; gSystem->Exit(0); }