Example #1
0
void setup() {
  // put your setup code here, to run once:
  pinMode(pinHeater, OUTPUT);
  pinMode(pinThermistor, INPUT);
  digitalWrite(pinHeater, 0);

  Serial.begin(57600);
  Serial.setTimeout(250); // Set timeout to 250ms

  // Restore calibration if already set.
  thermCalibrated = true;
  if(EEPROM.read(thermStepSetAddr) == 0) {
    unsigned char setPoint[4];
    for(int i = 0; i < 4; i++)
      setPoint[i] = EEPROM.read(thermStepAddr+i);
    thermStep = *((float*)setPoint);
  } else {
    thermCalibrated = false;
  }
  
  if(EEPROM.read(thermYIntSetAddr) == 0) {
    unsigned char setPoint[4];
    for(int i = 0; i < 4; i++)
      setPoint[i] = EEPROM.read(thermYIntAddr+i);
    thermYInt = *((float*)setPoint);
  } else {
    thermCalibrated = false;
  }

  pid.SetOutputLimits(0.0f, 1.0f);
  pid.SetSampleTime(250); // 250ms compute period
  pid.SetMode(MANUAL);
}
Example #2
0
void PIDControl::optionsPID(int setTimePoint)
{
    //tell the PID to range between 0 and the full window size
    myPID.SetOutputLimits(0, setTimePoint);

    //turn the PID on
    myPID.SetMode(AUTOMATIC);
}
Example #3
0
void onSetAngleOutputLimits()
{
    Serial.println("Receiving Angle output limits command...");
    float lMin, lMax;
    readLimitsArgs(&lMin, &lMax);
    anglePID.SetOutputLimits(lMin, lMax);
    cmdMessenger.sendCmd(kStatus, "Angle output limits set");
}
Example #4
0
void motorsInit( int leftPin, int rightPin )
{
  servoLeft.attach(leftPin);
  servoRight.attach(rightPin);
  servoLeft.writeMicroseconds(servoSpeedLeft);
  servoRight.writeMicroseconds(servoSpeedRight);
#ifdef USE_PID
  Input = 0;
  Setpoint = 0;
  turningPID.SetMode(AUTOMATIC);
  turningPID.SetOutputLimits(-SERVO_DRIVE_TURN_SPEED, SERVO_DRIVE_TURN_SPEED);
#endif
}
Example #5
0
  void setup() {
    pinMode(MOSFET_PIN, OUTPUT);
    pinMode(HEAT_ON_LED_PIN, OUTPUT);

    pid.SetOutputLimits(-PID_OUTPUT_RANGE, PID_OUTPUT_RANGE);

    pid_autotune.SetOutputStep(PID_OUTPUT_RANGE);
    pid_autotune.SetControlType(1);  // PID control type.

    EEPROM.begin(EEPROM_TOTAL_BYTES);
    byte* p = (byte*)(void*)&settings;
    for (unsigned int i = 0; i < sizeof(settings); i++) {
      *p++ = EEPROM.read(EEPROM_SETTINGS_LOCATION + i);
    }

    update_pid_tunings();
    handle_enabled();
  }
void setup()
{
  Wire.begin(myAddress);
  Wire.onReceive(i2cReceive);
  Wire.onRequest(i2cRequest);

  pinMode(limit_switch_pin, INPUT); 

  mySerial.begin(9600); // Serial commuication to motor controller start.

  setpoint = 0.0;

  calibration(); // Running the calibration code on every start up

  input = encoderRead();

  myPID.SetMode(AUTOMATIC);
  myPID.SetOutputLimits(-127, 127);
  myPID.SetSampleTime(20);
}
Example #7
0
/* Calcule les pwm a appliquer pour un asservissement en vitesse en trapeze
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void speedControl(int* value_pwm_left, int* value_pwm_right){
	/* si le robot est en train de tourner, et qu'on lui donne une consigne de vitesse, il ne va pas partir droit
	 * solution = decomposer l'asservissement en vitesse en 2 :
	 * -> stopper le robot (les 2 vitesses = 0)
	 * -> lancer l'asservissement en vitesse
	 */

	static int start_time;

	static bool initDone = false;

	if(!initDone){
		start_time = 0;
		pwm = 0;
		currentSpeed = 0;
		consigne = 0;
		pid4SpeedControl.Reset();
		pid4SpeedControl.SetInputLimits(-20000,20000);
		pid4SpeedControl.SetOutputLimits(-255,255);
		pid4SpeedControl.SetSampleTime(DUREE_CYCLE);
		pid4SpeedControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	if(current_goal.phase == PHASE_1){ //phase d'acceleration
		consigne = current_goal.speed;
		currentSpeed = robot_state.speed;
		if(abs(consigne-currentSpeed) < 1000){ /*si l'erreur est inferieur a 1, on concidere la consigne atteinte*/
			current_goal.phase = PHASE_2;
			start_time = millis();
		}
	}
	else if(current_goal.phase == PHASE_2){ //phase de regime permanent
		consigne = current_goal.speed;
		currentSpeed = robot_state.speed;
		if(millis()-start_time > current_goal.period){ /* fin de regime permanent */
			current_goal.phase = PHASE_3;
		}
	}
	else if(current_goal.phase == PHASE_3){ //phase de decceleration
		consigne = 0;
		currentSpeed = robot_state.speed;
		if(abs(robot_state.speed)<1000){
			current_goal.phase = PHASE_4;
		}
	}

	pid4SpeedControl.Compute();

	if(current_goal.phase == PHASE_4){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		current_goal.isReached = true;
		initDone = false;
	}else{
		(*value_pwm_right) = pwm;
		(*value_pwm_left) = pwm;
	}
}
Example #8
0
/* Calcule les pwm a appliquer pour un asservissement en position
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void positionControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		output4Delta = 0;
		output4Alpha = 0;
		currentDelta = .0;
		currentAlpha = .0;
		consigneDelta = .0;
		consigneAlpha = .0;
		pid4DeltaControl.Reset();
		pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
		pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
		pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
		pid4DeltaControl.SetMode(AUTO);
		pid4AlphaControl.Reset();
		pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
		pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
		pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
		pid4AlphaControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}


	/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
	 * borne = [-PI PI] */
	double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
	currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !


	/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
	 * Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
	 * Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
	 */
	int sens = 1;
	if(abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
		sens = -1;
		currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
	}
	
	currentAlpha = -currentAlpha;


 	double dx = current_goal.x-robot_state.x;
	double dy = current_goal.y-robot_state.y;
	currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant

	/*
	Serial.print("coeff:");
	Serial.print(angularCoeff);
	Serial.print("  angle:");
	Serial.print(robot_state.angle);
	Serial.print("  alpha:");
	Serial.print(currentAlpha);
	Serial.print("  delta:");
	Serial.print(currentDelta);
	Serial.print("  x:");
	Serial.print(current_goal.x);
	Serial.print("  y:");
	Serial.println(current_goal.y);
	*/
	
	
	
	/* on limite la vitesse lineaire quand on s'approche du but */
	if (abs(currentDelta)<250){
		pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<500){
		pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<750){
		pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1000){
		pid4DeltaControl.SetOutputLimits(-min(100,current_goal.speed),min(100,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1250){
		pid4DeltaControl.SetOutputLimits(-min(150,current_goal.speed),min(150,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1500){
		pid4DeltaControl.SetOutputLimits(-min(200,current_goal.speed),min(200,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}

	if(abs(currentDelta) < 5*ENC_MM_TO_TICKS) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
		current_goal.phase = PHASE_2;
	else
		current_goal.phase = PHASE_1;

	pid4AlphaControl.Compute();
	pid4DeltaControl.Compute();

	if(current_goal.phase == PHASE_2){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else{
		double pwm4Delta = 0.0;

		//FIXME probleme de debordemment
		//alpha 200 delta 255 / delta+alpha = 455 / delta-alpha = 55 / => alpha 200 delta 55
		//alpha 200 delta -255 / delta+alpha = -55 / delta-alpha = -455 / => alpha 200 delta -55
		//alpha -200 delta 255 / delta+alpha = 55 / delta-alpha = 455 / => alpha -200 delta 55
		//alpha -200 delta -255 / delta+alpha = -455 / delta-alpha = -55 / => alpha -200 delta -55
		/*
		 Correction by thomas
		 if(output4Delta+output4Alpha>255 || output4Delta-output4Alpha>255)
			pwm4Delta = 255-output4Alpha;
		else if(output4Delta+output4Alpha<-255 || output4Delta-output4Alpha<-255)
			pwm4Delta = -255+output4Alpha;
		else
			pwm4Delta = output4Delta;*/

		(*value_pwm_right) = output4Delta+output4Alpha;
		(*value_pwm_left) = output4Delta-output4Alpha;
		
		// Correction by thomas
		if ((*value_pwm_right) > 255)
			(*value_pwm_right) = 255;
		else if ((*value_pwm_right) < -255)
			(*value_pwm_right) = -255;
		
		if ((*value_pwm_left) > 255)
			(*value_pwm_left) = 255;
		else if ((*value_pwm_left) < -255)
			(*value_pwm_left) = -255;
	}

	if(current_goal.phase == PHASE_2){
		if(current_goal.id != -1 && !current_goal.isMessageSent){
			//le message d'arrivee n'a pas encore ete envoye a l'intelligence
			//envoi du message
			sendMessage(current_goal.id,2);
			current_goal.isMessageSent = true;
		}
		/*condition d'arret = si on a atteint le but et qu'un nouveau but attends dans la fifo*/
		if(!fifoIsEmpty()){ //on passe a la tache suivante
			current_goal.isReached = true;
			initDone = false;
		}
	}

}
Example #9
0
/* Calcule les pwm a appliquer pour un asservissement en angle
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void angleControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		pwm = 0;
		currentEcart = .0;
		consigne = .0;
		pid4AngleControl.Reset();
		pid4AngleControl.SetInputLimits(-M_PI,M_PI);
		pid4AngleControl.SetOutputLimits(-current_goal.speed,current_goal.speed);
		pid4AngleControl.SetSampleTime(DUREE_CYCLE);
		pid4AngleControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/*l'angle consigne doit etre comprise entre ]-PI, PI]

	En fait pour simplifier, l'entree du PID sera l'ecart entre le l'angle courant et l'angle cible (consigne - angle courant)
	la consigne (SetPoint) du PID sera 0
	la sortie du PID sera le double pwm
	*/
	currentEcart = -moduloPI(current_goal.angle - robot_state.angle);

	/*
	Serial.print("goal: ");
	Serial.print(current_goal.angle);
	Serial.print(" current: ");
	Serial.print(robot_state.angle);
	Serial.print(" ecart: ");
	Serial.println(currentEcart);
	*/

	if(abs(currentEcart) < 3.0f*M_PI/360.0f) /*si l'erreur est inferieur a 3deg, on concidere la consigne atteinte*/
		current_goal.phase = PHASE_2;
	else
		current_goal.phase = PHASE_1;

	pid4AngleControl.Compute();

	if(current_goal.phase == PHASE_2){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else{
		(*value_pwm_right) = pwm;
		(*value_pwm_left) = -pwm;
	}

	if(current_goal.phase == PHASE_2){
		if(current_goal.id != -1 && !current_goal.isMessageSent){
			//le message d'arrivee n'a pas encore ete envoye a l'intelligence
			//envoi du message
			sendMessage(current_goal.id,2);
			current_goal.isMessageSent = true;
		}
		if(!fifoIsEmpty()){ //on passe a la tache suivante
			/*condition d'arret = si on a atteint le but et qu'un nouveau but attends dans la fifo*/
			current_goal.isReached = true;
			initDone = false;
		}
	}
}
Example #10
0
/* Calcule les pwm a appliquer pour un asservissement en position
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void positionControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		output4Delta = 0;
		output4Alpha = 0;
		currentDelta = .0;
		currentAlpha = .0;
		consigneDelta = .0;
		consigneAlpha = .0;
		pid4DeltaControl.Reset();
		pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
		pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
		pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
		pid4DeltaControl.SetMode(AUTO);
		pid4AlphaControl.Reset();
		pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
		pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
		pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
		pid4AlphaControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}


	/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
	 * borne = [-PI PI] */
	double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
	currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !


	/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
	 * Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
	 * Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
	 */
	int sens = 1;
	if(current_goal.phase != PHASE_1 and abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
		sens = -1;
		currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
	}
	
	currentAlpha = -currentAlpha;


 	double dx = current_goal.x-robot_state.x;
	double dy = current_goal.y-robot_state.y;
	currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant
	
	

	switch(current_goal.phase)
	{
		case PHASE_1:
			if(abs(currentDelta)<1500) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
			{
				current_goal.phase = PHASE_DECEL;
			}
		break;
		
		case PHASE_DECEL:
			if (fifoIsEmpty())
			{
				/* on limite la vitesse lineaire quand on s'approche du but */
				if (abs(currentDelta)<250){
					pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<500){
					pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<750){
					pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<1000){
					pid4DeltaControl.SetOutputLimits(-min(100,current_goal.speed),min(100,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<1250){
					pid4DeltaControl.SetOutputLimits(-min(150,current_goal.speed),min(150,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else {
					pid4DeltaControl.SetOutputLimits(-min(200,current_goal.speed),min(200,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
			}
			if(abs(currentDelta) < 5*ENC_MM_TO_TICKS) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
			{
				//envoi du message
				sendMessage(current_goal.id,2);
				current_goal.isMessageSent = true;
				
				current_goal.phase = PHASE_ARRET;
			}
		break;

		case PHASE_ARRET:
			if (abs(currentDelta) > 5*ENC_MM_TO_TICKS)
			{
				current_goal.phase = PHASE_CORRECTION;
			}
		break;

		case PHASE_CORRECTION:
			pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
			pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
			if (abs(currentDelta) < 5*ENC_MM_TO_TICKS)
			{
				current_goal.phase = PHASE_ARRET;
			}
		default:
		
		break;
	}

	if (!fifoIsEmpty() and (current_goal.phase == PHASE_ARRET or current_goal.phase == PHASE_CORRECTION)) { //on passe a la tache suivante si la fifo n'est pas vide
		current_goal.isReached = true;
		initDone = false;
	}
		

	pid4AlphaControl.Compute();
	pid4DeltaControl.Compute();

	if (current_goal.phase == PHASE_ARRET)
	{
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else
	{
		(*value_pwm_right) = output4Delta+output4Alpha;
		(*value_pwm_left) = output4Delta-output4Alpha;
		
		// Débordement
		if ((*value_pwm_right) > 255)
			(*value_pwm_right) = 255;
		else if ((*value_pwm_right) < -255)
			(*value_pwm_right) = -255;
		
		if ((*value_pwm_left) > 255)
			(*value_pwm_left) = 255;
		else if ((*value_pwm_left) < -255)
			(*value_pwm_left) = -255;
	}
}
Example #11
0
void initIMU(void) {
	float selfTest9250[6];

	/* Initialize motors */
	Motor_Init();
	trace_printf("Motor initialized.\n");

	/* Initialize related variables */
	GyroMeasError = _PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
	beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
	GyroMeasDrift = _PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
	zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value

	/* Initialize balancing */
	bal_pitch = 0;
	bal_roll = 0;
	bal_yaw = 0;

	/* Initialize PID */
	pitchReg.SetMode(AUTOMATIC);
	pitchReg.SetOutputLimits(-PID_PITCH_INFLUENCE, PID_PITCH_INFLUENCE);

	rollReg.SetMode(AUTOMATIC);
	rollReg.SetOutputLimits(-PID_ROLL_INFLUENCE, PID_ROLL_INFLUENCE);

	yawReg.SetMode(AUTOMATIC);
	yawReg.SetOutputLimits(-PID_YAW_INFLUENCE, PID_YAW_INFLUENCE);
	trace_printf("PID initialized.\n");

	/* Detect whether MPU9250 is online */
	MPU9250_I2C_Init();
	resetMPU9250();

	if(MPU9250_I2C_ByteRead(MPU9250_ADDRESS, WHO_AM_I_MPU9250) != 0x71) {
		trace_printf("Could not find MPU9250!\n");
	}
	trace_printf("MPU9250 is online.\n");
	timer_sleep(100);

	/* MPU9250 self test and calibrate */
	MPU9250SelfTest(selfTest9250);
	trace_printf("x-axis self test: acceleration trim within : %6f %% of factory value\n", selfTest9250[0]);
	trace_printf("y-axis self test: acceleration trim within : %f %% of factory value\n", selfTest9250[1]);
	trace_printf("z-axis self test: acceleration trim within : %f %% of factory value\n", selfTest9250[2]);
	trace_printf("x-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[3]);
	trace_printf("y-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[4]);
	trace_printf("z-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[5]);
	timer_sleep(100);
	calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
	trace_printf("x gyro bias = %f\n", gyroBias[0]);
	trace_printf("y gyro bias = %f\n", gyroBias[1]);
	trace_printf("z gyro bias = %f\n", gyroBias[2]);
	trace_printf("x accel bias = %f\n", accelBias[0]);
	trace_printf("y accel bias = %f\n", accelBias[1]);
	trace_printf("z accel bias = %f\n", accelBias[2]);
	timer_sleep(100);

	/* Initialize MPU9250 and AK8963 */
	initMPU9250();
	trace_printf("MPU9250 initialized for active data mode....\n"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
	timer_sleep(500);
    initAK8963(magCalibration);
    trace_printf("AK8963 initialized for active data mode....\n"); // Initialize device for active mode read of magnetometer
    trace_printf("Accelerometer full-scale range = %f  g\n", 2.0f*(float)(1<<Ascale));
    trace_printf("Gyroscope full-scale range = %f  deg/s\n", 250.0f*(float)(1<<Gscale));
    if(Mscale == 0) trace_printf("Magnetometer resolution = 14  bits\n");
    if(Mscale == 1) trace_printf("Magnetometer resolution = 16  bits\n");
    if(Mmode == 2) trace_printf("Magnetometer ODR = 8 Hz\n");
    if(Mmode == 6) trace_printf("Magnetometer ODR = 100 Hz\n");
    timer_sleep(100);
    getAres(); // Get accelerometer sensitivity
    getGres(); // Get gyro sensitivity
    getMres(); // Get magnetometer sensitivity
    trace_printf("Accelerometer sensitivity is %f LSB/g \n", 1.0f/aRes);
    trace_printf("Gyroscope sensitivity is %f LSB/deg/s \n", 1.0f/gRes);
    trace_printf("Magnetometer sensitivity is %f LSB/G \n", 1.0f/mRes);
    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
}
Example #12
0
int main(int argc, char **argv) {
	START_EASYLOGGINGPP(argc, argv);
    // Load configuration from file
    el::Configurations conf("/home/debian/hackerboat/embedded_software/unified/setup/log.conf");
    // Actually reconfigure all loggers instead
    el::Loggers::reconfigureAllLoggers(conf);
    
    BoatState *me = new BoatState();
	me->rudder = new Servo();
	me->throttle = new Throttle();
	me->orient = new OrientationInput(SensorOrientation::SENSOR_AXIS_Z_UP);
    
	double targetHeading = 0;
	double in = 0, out = 0, setpoint = 0;
	Pin enable(Conf::get()->servoEnbPort(), Conf::get()->servoEnbPin(), true, true);
	PID *helm = new PID(&in, &out, &setpoint, 0, 0, 0, 0);
	helm->SetMode(AUTOMATIC);
	helm->SetControllerDirection(Conf::get()->rudderDir());
	helm->SetSampleTime(Conf::get()->rudderPeriod());
	helm->SetOutputLimits(Conf::get()->rudderMin(), 
						Conf::get()->rudderMax());
	helm->SetTunings(10,0,0);
	
	if (!me->rudder->attach(Conf::get()->rudderPort(), Conf::get()->rudderPin())) {
		std::cout << "Rudder failed to attach 1" << std::endl;
		return -1;
	}
	if (!me->rudder->isAttached())  {
		std::cout << "Rudder failed to attach 2" << std::endl;
		return -1;
	}
	if (me->orient->begin() && me->orient->isValid()) {
		cout << "Initialization successful" << endl;
		cout << "Oriented with Z axis up" << endl;
	} else {
		cout << "Initialization failed; exiting" << endl;
		return -1;
	}
	
	for (int i = 0; i < 100; i++) {
		double currentheading = me->orient->getOrientation()->makeTrue().heading;
		if (isfinite(currentheading)) targetHeading += currentheading;
		cout << ".";
		std::this_thread::sleep_for(100ms);
	}
	cout << endl;
	targetHeading = targetHeading/100;
	cout << "Target heading is " << to_string(targetHeading) << " degrees true " << endl;
	int count = 0;
	for (;;) {
		in = me->orient->getOrientation()->makeTrue().headingError(targetHeading);
		count++;
		LOG_EVERY_N(10, DEBUG) << "True Heading: " << me->orient->getOrientation()->makeTrue() 
								<< ", Target Course: " << targetHeading;
		helm->Compute();
		me->rudder->write(out);
		LOG_EVERY_N(10, DEBUG) << "Rudder command: " << to_string(out);
		std::this_thread::sleep_for(100ms);
		if (count > 9) {
			count = 0;
			cout << "True Heading: " << me->orient->getOrientation()->makeTrue().heading 
								<< "\tTarget Course: " << targetHeading
								<< "\tRudder command: " << to_string(out) << endl;
		}
	}
	
	return 0;
}
Example #13
0
	virtual void run() {
		int16_t accData[3];
		int16_t gyrData[3];

		CTimer tm(TIMER0);
		tm.second(DT);
		tm.enable();

		myPID.SetMode(AUTOMATIC);
		myPID.SetOutputLimits(-100.0, 100.0);
		myPID.SetSampleTime(PID_SAMPLE_RATE);

		m_roll = 0.0f;
		m_pitch = 0.0f;

		double output;

#if USE_AUTO_TUNING
		double sp_input, sp_output, sp_setpoint, lastRoll;
		PID speedPID(&sp_input, &sp_output, &sp_setpoint, 35, 1, 2, DIRECT);
		speedPID.SetMode(AUTOMATIC);
		speedPID.SetOutputLimits(-config.roll_offset, config.roll_offset);
		speedPID.SetSampleTime(PID_SAMPLE_RATE);
		sp_input = 0;
		sp_setpoint = 0;
		lastRoll = 0;
#endif
		//
		// loop
		//
		while (isAlive()) {

			//
			// wait timer interrupt (DT)
			//
			if (tm.wait()) {
				//
				// read sensors
				//
				m_mxMPU.lock();
				m_mpu->getMotion6(&accData[0], &accData[1], &accData[2],
						&gyrData[0], &gyrData[1], &gyrData[2]);
				m_mxMPU.unlock();

				//
				// filter
				//
				ComplementaryFilter(accData, gyrData, &m_pitch, &m_roll);


#if USE_AUTO_TUNING
				sp_input = (lastRoll - m_roll) / PID_SAMPLE_RATE;	// roll speed
				lastRoll = m_roll;
				speedPID.Compute();
				m_setpoint = -sp_output;							// tune output angle
#else
				m_roll -= config.roll_offset;
#endif
				m_input = m_roll;
				myPID.Compute();

				if ( m_output > config.skip_interval ) {
					LEDs[1] = LED_ON;
					LEDs[2] = LED_OFF;
					output = map(m_output, config.skip_interval, 100, config.pwm_min, config.pwm_max);

					m_left->direct(DIR_FORWARD);
					m_right->direct(DIR_FORWARD);

				} else if ( m_output<-config.skip_interval ) {
					LEDs[1] = LED_OFF;
					LEDs[2] = LED_ON;
					output = map(m_output, -config.skip_interval, -100, config.pwm_min, config.pwm_max);

					m_left->direct(DIR_REVERSE);
					m_right->direct(DIR_REVERSE);
				} else {
					LEDs[1] = LED_OFF;
					LEDs[2] = LED_OFF;
					output = 0;
					m_left->direct(DIR_STOP);
					m_right->direct(DIR_STOP);
				}

				//
				// auto power off when fell.
				//
				if ( abs(m_roll)>65 ) {
					output = 0;
				}

				//
				// output
				//
				m_left->dutyCycle(output * config.left_power);
				m_right->dutyCycle(output * config.right_power);

			}
		}