Example #1
0
void ParGridFunction::ExchangeFaceNbrData()
{
   pfes->ExchangeFaceNbrData();

   if (pfes->GetFaceNbrVSize() <= 0)
   {
      return;
   }

   ParMesh *pmesh = pfes->GetParMesh();

   face_nbr_data.SetSize(pfes->GetFaceNbrVSize());
   Vector send_data(pfes->send_face_nbr_ldof.Size_of_connections());

   int *send_offset = pfes->send_face_nbr_ldof.GetI();
   int *send_ldof = pfes->send_face_nbr_ldof.GetJ();
   int *recv_offset = pfes->face_nbr_ldof.GetI();
   MPI_Comm MyComm = pfes->GetComm();

   int num_face_nbrs = pmesh->GetNFaceNeighbors();
   MPI_Request *requests = new MPI_Request[2*num_face_nbrs];
   MPI_Request *send_requests = requests;
   MPI_Request *recv_requests = requests + num_face_nbrs;
   MPI_Status  *statuses = new MPI_Status[num_face_nbrs];

   for (int i = 0; i < send_data.Size(); i++)
   {
      send_data[i] = data[send_ldof[i]];
   }

   for (int fn = 0; fn < num_face_nbrs; fn++)
   {
      int nbr_rank = pmesh->GetFaceNbrRank(fn);
      int tag = 0;

      MPI_Isend(&send_data(send_offset[fn]),
                send_offset[fn+1] - send_offset[fn],
                MPI_DOUBLE, nbr_rank, tag, MyComm, &send_requests[fn]);

      MPI_Irecv(&face_nbr_data(recv_offset[fn]),
                recv_offset[fn+1] - recv_offset[fn],
                MPI_DOUBLE, nbr_rank, tag, MyComm, &recv_requests[fn]);
   }

   MPI_Waitall(num_face_nbrs, send_requests, statuses);
   MPI_Waitall(num_face_nbrs, recv_requests, statuses);

   delete [] statuses;
   delete [] requests;
}
Example #2
0
void ParNonlinearForm::Mult(const Vector &x, Vector &y) const
{
   NonlinearForm::Mult(x, y); // x --(P)--> aux1 --(A_local)--> aux2
   Y.SetData(aux2.GetData()); // aux2 contains A_local.P.x

   if (fnfi.Size())
   {
      // Terms over shared interior faces in parallel.
      ParFiniteElementSpace *pfes = ParFESpace();
      ParMesh *pmesh = pfes->GetParMesh();
      FaceElementTransformations *tr;
      const FiniteElement *fe1, *fe2;
      Array<int> vdofs1, vdofs2;
      Vector el_x, el_y;

      X.SetData(aux1.GetData()); // aux1 contains P.x
      X.ExchangeFaceNbrData();
      const int n_shared_faces = pmesh->GetNSharedFaces();
      for (int i = 0; i < n_shared_faces; i++)
      {
         tr = pmesh->GetSharedFaceTransformations(i, true);

         fe1 = pfes->GetFE(tr->Elem1No);
         fe2 = pfes->GetFaceNbrFE(tr->Elem2No);

         pfes->GetElementVDofs(tr->Elem1No, vdofs1);
         pfes->GetFaceNbrElementVDofs(tr->Elem2No, vdofs2);

         el_x.SetSize(vdofs1.Size() + vdofs2.Size());
         X.GetSubVector(vdofs1, el_x.GetData());
         X.FaceNbrData().GetSubVector(vdofs2, el_x.GetData() + vdofs1.Size());

         for (int k = 0; k < fnfi.Size(); k++)
         {
            fnfi[k]->AssembleFaceVector(*fe1, *fe2, *tr, el_x, el_y);
            Y.AddElementVector(vdofs1, el_y.GetData());
         }
      }
   }

   P->MultTranspose(Y, y);

   for (int i = 0; i < ess_tdof_list.Size(); i++)
   {
      y(ess_tdof_list[i]) = 0.0;
   }
}
Example #3
0
void VisualizeMesh(socketstream &sock, const char *vishost, int visport,
                   ParMesh &pmesh, const char *title,
                   int x, int y, int w, int h, const char *keys, bool vec)
{
   MPI_Comm comm = pmesh.GetComm();

   int num_procs, myid;
   MPI_Comm_size(comm, &num_procs);
   MPI_Comm_rank(comm, &myid);

   bool newly_opened = false;
   int connection_failed;

   do
   {
      if (myid == 0)
      {
         if (!sock.is_open() || !sock)
         {
            sock.open(vishost, visport);
            sock.precision(8);
            newly_opened = true;
         }
         sock << "solution\n";
      }

      pmesh.PrintAsOne(sock);

      if (myid == 0 && newly_opened)
      {
         sock << "window_title '" << title << "'\n"
              << "window_geometry "
              << x << " " << y << " " << w << " " << h << "\n";
         if ( keys ) { sock << "keys " << keys << "\n"; }
         else { sock << "keys maaAc"; }
         if ( vec ) { sock << "vvv"; }
         sock << endl;
      }

      if (myid == 0)
      {
         connection_failed = !sock && !newly_opened;
      }
      MPI_Bcast(&connection_failed, 1, MPI_INT, 0, comm);
   }
   while (connection_failed);
}
Example #4
0
File: ex4p.cpp Project: LLNL/mfem
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   const char *mesh_file = "../../data/star.mesh";
   int order = 1;
   bool set_bc = true;
   bool static_cond = false;
   bool hybridization = false;
   bool visualization = 1;
   bool use_petsc = true;
   const char *petscrc_file = "";
   bool use_nonoverlapping = false;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&set_bc, "-bc", "--impose-bc", "-no-bc", "--dont-impose-bc",
                  "Impose or not essential boundary conditions.");
   args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
                  " solution.");
   args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
                  "--no-static-condensation", "Enable static condensation.");
   args.AddOption(&hybridization, "-hb", "--hybridization", "-no-hb",
                  "--no-hybridization", "Enable hybridization.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc",
                  "--no-petsc",
                  "Use or not PETSc to solve the linear system.");
   args.AddOption(&petscrc_file, "-petscopts", "--petscopts",
                  "PetscOptions file to use.");
   args.AddOption(&use_nonoverlapping, "-nonoverlapping", "--nonoverlapping",
                  "-no-nonoverlapping", "--no-nonoverlapping",
                  "Use or not the block diagonal PETSc's matrix format "
                  "for non-overlapping domain decomposition.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
      {
         args.PrintUsage(cout);
      }
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
   {
      args.PrintOptions(cout);
   }
   // 2b. We initialize PETSc
   if (use_petsc) { MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); }
   kappa = freq * M_PI;

   // 3. Read the (serial) mesh from the given mesh file on all processors.  We
   //    can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
   //    and volume, as well as periodic meshes with the same code.
   Mesh *mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();
   int sdim = mesh->SpaceDimension();

   // 4. Refine the serial mesh on all processors to increase the resolution. In
   //    this example we do 'ref_levels' of uniform refinement. We choose
   //    'ref_levels' to be the largest number that gives a final mesh with no
   //    more than 1,000 elements.
   {
      int ref_levels =
         (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
      {
         mesh->UniformRefinement();
      }
   }

   // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted. Tetrahedral
   //    meshes need to be reoriented before we can define high-order Nedelec
   //    spaces on them (this is needed in the ADS solver below).
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   {
      int par_ref_levels = 2;
      for (int l = 0; l < par_ref_levels; l++)
      {
         pmesh->UniformRefinement();
      }
   }
   pmesh->ReorientTetMesh();

   // 6. Define a parallel finite element space on the parallel mesh. Here we
   //    use the Raviart-Thomas finite elements of the specified order.
   FiniteElementCollection *fec = new RT_FECollection(order-1, dim);
   ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
   HYPRE_Int size = fespace->GlobalTrueVSize();
   if (myid == 0)
   {
      cout << "Number of finite element unknowns: " << size << endl;
   }

   // 7. Determine the list of true (i.e. parallel conforming) essential
   //    boundary dofs. In this example, the boundary conditions are defined
   //    by marking all the boundary attributes from the mesh as essential
   //    (Dirichlet) and converting them to a list of true dofs.
   Array<int> ess_tdof_list;
   if (pmesh->bdr_attributes.Size())
   {
      Array<int> ess_bdr(pmesh->bdr_attributes.Max());
      ess_bdr = set_bc ? 1 : 0;
      fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
   }

   // 8. Set up the parallel linear form b(.) which corresponds to the
   //    right-hand side of the FEM linear system, which in this case is
   //    (f,phi_i) where f is given by the function f_exact and phi_i are the
   //    basis functions in the finite element fespace.
   VectorFunctionCoefficient f(sdim, f_exact);
   ParLinearForm *b = new ParLinearForm(fespace);
   b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
   b->Assemble();

   // 9. Define the solution vector x as a parallel finite element grid function
   //    corresponding to fespace. Initialize x by projecting the exact
   //    solution. Note that only values from the boundary faces will be used
   //    when eliminating the non-homogeneous boundary condition to modify the
   //    r.h.s. vector b.
   ParGridFunction x(fespace);
   VectorFunctionCoefficient F(sdim, F_exact);
   x.ProjectCoefficient(F);

   // 10. Set up the parallel bilinear form corresponding to the H(div)
   //     diffusion operator grad alpha div + beta I, by adding the div-div and
   //     the mass domain integrators.
   Coefficient *alpha = new ConstantCoefficient(1.0);
   Coefficient *beta  = new ConstantCoefficient(1.0);
   ParBilinearForm *a = new ParBilinearForm(fespace);
   a->AddDomainIntegrator(new DivDivIntegrator(*alpha));
   a->AddDomainIntegrator(new VectorFEMassIntegrator(*beta));

   // 11. Assemble the parallel bilinear form and the corresponding linear
   //     system, applying any necessary transformations such as: parallel
   //     assembly, eliminating boundary conditions, applying conforming
   //     constraints for non-conforming AMR, static condensation,
   //     hybridization, etc.
   FiniteElementCollection *hfec = NULL;
   ParFiniteElementSpace *hfes = NULL;
   if (static_cond)
   {
      a->EnableStaticCondensation();
   }
   else if (hybridization)
   {
      hfec = new DG_Interface_FECollection(order-1, dim);
      hfes = new ParFiniteElementSpace(pmesh, hfec);
      a->EnableHybridization(hfes, new NormalTraceJumpIntegrator(),
                             ess_tdof_list);
   }
   a->Assemble();

   Vector B, X;
   CGSolver *pcg = new CGSolver(MPI_COMM_WORLD);
   pcg->SetRelTol(1e-12);
   pcg->SetMaxIter(500);
   pcg->SetPrintLevel(1);

   if (!use_petsc)
   {
      HypreParMatrix A;
      a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);

      HYPRE_Int glob_size = A.GetGlobalNumRows();
      if (myid == 0)
      {
         cout << "Size of linear system: " << glob_size << endl;
      }

      // 12. Define and apply a parallel PCG solver for A X = B with the 2D AMS or
      //     the 3D ADS preconditioners from hypre. If using hybridization, the
      //     system is preconditioned with hypre's BoomerAMG.
      HypreSolver *prec = NULL;
      pcg->SetOperator(A);
      if (hybridization) { prec = new HypreBoomerAMG(A); }
      else
      {
         ParFiniteElementSpace *prec_fespace =
            (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);
         if (dim == 2)   { prec = new HypreAMS(A, prec_fespace); }
         else            { prec = new HypreADS(A, prec_fespace); }
      }
      pcg->SetPreconditioner(*prec);
      pcg->Mult(B, X);
      delete prec;
   }
   else
   {
      PetscParMatrix A;
      PetscPreconditioner *prec = NULL;
      a->SetOperatorType(use_nonoverlapping ?
                         Operator::PETSC_MATIS : Operator::PETSC_MATAIJ);
      a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);

      if (myid == 0)
      {
         cout << "Size of linear system: " << A.M() << endl;
      }

      pcg->SetOperator(A);
      if (use_nonoverlapping)
      {
         ParFiniteElementSpace *prec_fespace =
            (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);

         // Auxiliary class for BDDC customization
         PetscBDDCSolverParams opts;
         // Inform the solver about the finite element space
         opts.SetSpace(prec_fespace);
         // Inform the solver about essential dofs
         opts.SetEssBdrDofs(&ess_tdof_list);
         // Create a BDDC solver with parameters
         prec = new PetscBDDCSolver(A, opts);
      }
      else
      {
         // Create an empty preconditioner that can be customized at runtime.
         prec = new PetscPreconditioner(A, "solver_");
      }
      pcg->SetPreconditioner(*prec);
      pcg->Mult(B, X);
      delete prec;
   }
   delete pcg;

   // 13. Recover the parallel grid function corresponding to X. This is the
   //     local finite element solution on each processor.
   a->RecoverFEMSolution(X, *b, x);

   // 14. Compute and print the L^2 norm of the error.
   {
      double err = x.ComputeL2Error(F);
      if (myid == 0)
      {
         cout << "\n|| F_h - F ||_{L^2} = " << err << '\n' << endl;
      }
   }

   // 15. Save the refined mesh and the solution in parallel. This output can
   //     be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
   {
      ostringstream mesh_name, sol_name;
      mesh_name << "mesh." << setfill('0') << setw(6) << myid;
      sol_name << "sol." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);

      ofstream sol_ofs(sol_name.str().c_str());
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 16. Send the solution by socket to a GLVis server.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock << "parallel " << num_procs << " " << myid << "\n";
      sol_sock.precision(8);
      sol_sock << "solution\n" << *pmesh << x << flush;
   }

   // 17. Free the used memory.
   delete hfes;
   delete hfec;
   delete a;
   delete alpha;
   delete beta;
   delete b;
   delete fespace;
   delete fec;
   delete pmesh;

   // We finalize PETSc
   if (use_petsc) { MFEMFinalizePetsc(); }

   MPI_Finalize();

   return 0;
}
Example #5
0
File: ex3p.cpp Project: YPCC/mfem
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   const char *mesh_file = "../data/beam-tet.mesh";
   int order = 1;
   bool visualization = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
         args.PrintUsage(cout);
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
      args.PrintOptions(cout);

   // 3. Read the (serial) mesh from the given mesh file on all processors.  We
   //    can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
   //    and volume meshes with the same code.
   Mesh *mesh;
   ifstream imesh(mesh_file);
   if (!imesh)
   {
      if (myid == 0)
         cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
      MPI_Finalize();
      return 2;
   }
   mesh = new Mesh(imesh, 1, 1);
   imesh.close();
   int dim = mesh->Dimension();
   if (dim != 3)
   {
      if (myid == 0)
         cerr << "\nThis example requires a 3D mesh\n" << endl;
      MPI_Finalize();
      return 3;
   }

   // 4. Refine the serial mesh on all processors to increase the resolution. In
   //    this example we do 'ref_levels' of uniform refinement. We choose
   //    'ref_levels' to be the largest number that gives a final mesh with no
   //    more than 1,000 elements.
   {
      int ref_levels =
         (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
         mesh->UniformRefinement();
   }

   // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted. Tetrahedral
   //    meshes need to be reoriented before we can define high-order Nedelec
   //    spaces on them.
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   {
      int par_ref_levels = 2;
      for (int l = 0; l < par_ref_levels; l++)
         pmesh->UniformRefinement();
   }
   pmesh->ReorientTetMesh();

   // 6. Define a parallel finite element space on the parallel mesh. Here we
   //    use the lowest order Nedelec finite elements, but we can easily switch
   //    to higher-order spaces by changing the value of p.
   FiniteElementCollection *fec = new ND_FECollection(order, dim);
   ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
   int size = fespace->GlobalTrueVSize();
   if (myid == 0)
      cout << "Number of unknowns: " << size << endl;

   // 7. Set up the parallel linear form b(.) which corresponds to the
   //    right-hand side of the FEM linear system, which in this case is
   //    (f,phi_i) where f is given by the function f_exact and phi_i are the
   //    basis functions in the finite element fespace.
   VectorFunctionCoefficient f(3, f_exact);
   ParLinearForm *b = new ParLinearForm(fespace);
   b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
   b->Assemble();

   // 8. Define the solution vector x as a parallel finite element grid function
   //    corresponding to fespace. Initialize x by projecting the exact
   //    solution. Note that only values from the boundary edges will be used
   //    when eliminating the non-homogeneous boundary condition to modify the
   //    r.h.s. vector b.
   ParGridFunction x(fespace);
   VectorFunctionCoefficient E(3, E_exact);
   x.ProjectCoefficient(E);

   // 9. Set up the parallel bilinear form corresponding to the EM diffusion
   //    operator curl muinv curl + sigma I, by adding the curl-curl and the
   //    mass domain integrators and finally imposing non-homogeneous Dirichlet
   //    boundary conditions. The boundary conditions are implemented by
   //    marking all the boundary attributes from the mesh as essential
   //    (Dirichlet). After serial and parallel assembly we extract the
   //    parallel matrix A.
   Coefficient *muinv = new ConstantCoefficient(1.0);
   Coefficient *sigma = new ConstantCoefficient(1.0);
   ParBilinearForm *a = new ParBilinearForm(fespace);
   a->AddDomainIntegrator(new CurlCurlIntegrator(*muinv));
   a->AddDomainIntegrator(new VectorFEMassIntegrator(*sigma));
   a->Assemble();
   Array<int> ess_bdr(pmesh->bdr_attributes.Max());
   ess_bdr = 1;
   a->EliminateEssentialBC(ess_bdr, x, *b);
   a->Finalize();

   // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
   //     b(.) and the finite element approximation.
   HypreParMatrix *A = a->ParallelAssemble();
   HypreParVector *B = b->ParallelAssemble();
   HypreParVector *X = x.ParallelAverage();
   *X = 0.0;

   delete a;
   delete sigma;
   delete muinv;
   delete b;

   // 11. Define and apply a parallel PCG solver for AX=B with the AMS
   //     preconditioner from hypre.
   HypreSolver *ams = new HypreAMS(*A, fespace);
   HyprePCG *pcg = new HyprePCG(*A);
   pcg->SetTol(1e-12);
   pcg->SetMaxIter(500);
   pcg->SetPrintLevel(2);
   pcg->SetPreconditioner(*ams);
   pcg->Mult(*B, *X);

   // 12. Extract the parallel grid function corresponding to the finite element
   //     approximation X. This is the local solution on each processor.
   x = *X;

   // 13. Compute and print the L^2 norm of the error.
   {
      double err = x.ComputeL2Error(E);
      if (myid == 0)
         cout << "\n|| E_h - E ||_{L^2} = " << err << '\n' << endl;
   }

   // 14. Save the refined mesh and the solution in parallel. This output can
   //     be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
   {
      ostringstream mesh_name, sol_name;
      mesh_name << "mesh." << setfill('0') << setw(6) << myid;
      sol_name << "sol." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);

      ofstream sol_ofs(sol_name.str().c_str());
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 15. Send the solution by socket to a GLVis server.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock << "parallel " << num_procs << " " << myid << "\n";
      sol_sock.precision(8);
      sol_sock << "solution\n" << *pmesh << x << flush;
   }

   // 16. Free the used memory.
   delete pcg;
   delete ams;
   delete X;
   delete B;
   delete A;
   delete fespace;
   delete fec;
   delete pmesh;

   MPI_Finalize();

   return 0;
}
Example #6
0
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   int elem_type = 1;
   int ref_levels = 2;
   int amr = 0;
   int order = 2;
   bool always_snap = false;
   bool visualization = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&elem_type, "-e", "--elem",
                  "Type of elements to use: 0 - triangles, 1 - quads.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&ref_levels, "-r", "--refine",
                  "Number of times to refine the mesh uniformly.");
   args.AddOption(&amr, "-amr", "--refine-locally",
                  "Additional local (non-conforming) refinement:"
                  " 1 = refine around north pole, 2 = refine randomly.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap",
                  "--snap-at-the-end",
                  "If true, snap nodes to the sphere initially and after each refinement "
                  "otherwise, snap only after the last refinement");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
      {
         args.PrintUsage(cout);
      }
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
   {
      args.PrintOptions(cout);
   }

   // 3. Generate an initial high-order (surface) mesh on the unit sphere. The
   //    Mesh object represents a 2D mesh in 3 spatial dimensions. We first add
   //    the elements and the vertices of the mesh, and then make it high-order
   //    by specifying a finite element space for its nodes.
   int Nvert = 8, Nelem = 6;
   if (elem_type == 0)
   {
      Nvert = 6;
      Nelem = 8;
   }
   Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3);

   if (elem_type == 0) // inscribed octahedron
   {
      const double tri_v[6][3] =
      {
         { 1,  0,  0}, { 0,  1,  0}, {-1,  0,  0},
         { 0, -1,  0}, { 0,  0,  1}, { 0,  0, -1}
      };
      const int tri_e[8][3] =
      {
         {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4},
         {1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5}
      };

      for (int j = 0; j < Nvert; j++)
      {
         mesh->AddVertex(tri_v[j]);
      }
      for (int j = 0; j < Nelem; j++)
      {
         int attribute = j + 1;
         mesh->AddTriangle(tri_e[j], attribute);
      }
      mesh->FinalizeTriMesh(1, 1, true);
   }
   else // inscribed cube
   {
      const double quad_v[8][3] =
      {
         {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1},
         {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1}
      };
      const int quad_e[6][4] =
      {
         {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5},
         {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7}
      };

      for (int j = 0; j < Nvert; j++)
      {
         mesh->AddVertex(quad_v[j]);
      }
      for (int j = 0; j < Nelem; j++)
      {
         int attribute = j + 1;
         mesh->AddQuad(quad_e[j], attribute);
      }
      mesh->FinalizeQuadMesh(1, 1, true);
   }

   // Set the space for the high-order mesh nodes.
   H1_FECollection fec(order, mesh->Dimension());
   FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension());
   mesh->SetNodalFESpace(&nodal_fes);

   // 4. Refine the mesh while snapping nodes to the sphere. Number of parallel
   //    refinements is fixed to 2.
   for (int l = 0; l <= ref_levels; l++)
   {
      if (l > 0) // for l == 0 just perform snapping
      {
         mesh->UniformRefinement();
      }

      // Snap the nodes of the refined mesh back to sphere surface.
      if (always_snap)
      {
         SnapNodes(*mesh);
      }
   }

   if (amr == 1)
   {
      for (int l = 0; l < 3; l++)
      {
         mesh->RefineAtVertex(Vertex(0, 0, 1));
      }
      SnapNodes(*mesh);
   }
   else if (amr == 2)
   {
      for (int l = 0; l < 2; l++)
      {
         mesh->RandomRefinement(0.5); // 50% probability
      }
      SnapNodes(*mesh);
   }

   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   {
      int par_ref_levels = 2;
      for (int l = 0; l < par_ref_levels; l++)
      {
         pmesh->UniformRefinement();

         // Snap the nodes of the refined mesh back to sphere surface.
         if (always_snap)
         {
            SnapNodes(*pmesh);
         }
      }
      if (!always_snap || par_ref_levels < 1)
      {
         SnapNodes(*pmesh);
      }
   }

   if (amr == 1)
   {
      for (int l = 0; l < 2; l++)
      {
         pmesh->RefineAtVertex(Vertex(0, 0, 1));
      }
      SnapNodes(*pmesh);
   }
   else if (amr == 2)
   {
      for (int l = 0; l < 2; l++)
      {
         pmesh->RandomRefinement(0.5); // 50% probability
      }
      SnapNodes(*pmesh);
   }

   // 5. Define a finite element space on the mesh. Here we use isoparametric
   //    finite elements -- the same as the mesh nodes.
   ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, &fec);
   HYPRE_Int size = fespace->GlobalTrueVSize();
   if (myid == 0)
   {
      cout << "Number of unknowns: " << size << endl;
   }

   // 6. Set up the linear form b(.) which corresponds to the right-hand side of
   //    the FEM linear system, which in this case is (1,phi_i) where phi_i are
   //    the basis functions in the finite element fespace.
   ParLinearForm *b = new ParLinearForm(fespace);
   ConstantCoefficient one(1.0);
   FunctionCoefficient rhs_coef (analytic_rhs);
   FunctionCoefficient sol_coef (analytic_solution);
   b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef));
   b->Assemble();

   // 7. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x with initial guess of zero.
   ParGridFunction x(fespace);
   x = 0.0;

   // 8. Set up the bilinear form a(.,.) on the finite element space
   //    corresponding to the Laplacian operator -Delta, by adding the Diffusion
   //    and Mass domain integrators.
   ParBilinearForm *a = new ParBilinearForm(fespace);
   a->AddDomainIntegrator(new DiffusionIntegrator(one));
   a->AddDomainIntegrator(new MassIntegrator(one));

   // 9. Assemble the parallel linear system, applying any transformations
   //    such as: parallel assembly, applying conforming constraints, etc.
   a->Assemble();
   HypreParMatrix A;
   Vector B, X;
   Array<int> empty_tdof_list;
   a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B);

   // 10. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
   //     preconditioner from hypre. Extract the parallel grid function x
   //     corresponding to the finite element approximation X. This is the local
   //     solution on each processor.
   HypreSolver *amg = new HypreBoomerAMG(A);
   HyprePCG *pcg = new HyprePCG(A);
   pcg->SetTol(1e-12);
   pcg->SetMaxIter(200);
   pcg->SetPrintLevel(2);
   pcg->SetPreconditioner(*amg);
   pcg->Mult(B, X);
   a->RecoverFEMSolution(X, *b, x);

   delete a;
   delete b;

   // 11. Compute and print the L^2 norm of the error.
   double err = x.ComputeL2Error(sol_coef);
   if (myid == 0)
   {
      cout << "\nL2 norm of error: " << err << endl;
   }

   // 12. Save the refined mesh and the solution. This output can be viewed
   //     later using GLVis: "glvis -np <np> -m sphere_refined -g sol".
   {
      ostringstream mesh_name, sol_name;
      mesh_name << "sphere_refined." << setfill('0') << setw(6) << myid;
      sol_name << "sol." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);

      ofstream sol_ofs(sol_name.str().c_str());
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 13. Send the solution by socket to a GLVis server.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock << "parallel " << num_procs << " " << myid << "\n";
      sol_sock.precision(8);
      sol_sock << "solution\n" << *pmesh << x << flush;
   }

   // 14. Free the used memory.
   delete pcg;
   delete amg;
   delete fespace;
   delete pmesh;

   MPI_Finalize();

   return 0;
}
Example #7
0
File: ex10p.cpp Project: YPCC/mfem
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   const char *mesh_file = "../data/beam-quad.mesh";
   int ser_ref_levels = 2;
   int par_ref_levels = 0;
   int order = 2;
   int ode_solver_type = 3;
   double t_final = 300.0;
   double dt = 3;
   double visc = 1e-2;
   bool visualization = true;
   int vis_steps = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
                  "Number of times to refine the mesh uniformly in serial.");
   args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
                  "Number of times to refine the mesh uniformly in parallel.");
   args.AddOption(&order, "-o", "--order",
                  "Order (degree) of the finite elements.");
   args.AddOption(&ode_solver_type, "-s", "--ode-solver",
                  "ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t"
                  "\t   11 - Forward Euler, 12 - RK2, 13 - RK3 SSP, 14 - RK4.");
   args.AddOption(&t_final, "-tf", "--t-final",
                  "Final time; start time is 0.");
   args.AddOption(&dt, "-dt", "--time-step",
                  "Time step.");
   args.AddOption(&visc, "-v", "--viscosity",
                  "Viscosity coefficient.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.AddOption(&vis_steps, "-vs", "--visualization-steps",
                  "Visualize every n-th timestep.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
         args.PrintUsage(cout);
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
      args.PrintOptions(cout);

   // 3. Read the serial mesh from the given mesh file on all processors. We can
   //    handle triangular, quadrilateral, tetrahedral and hexahedral meshes
   //    with the same code.
   Mesh *mesh;
   ifstream imesh(mesh_file);
   if (!imesh)
   {
      if (myid == 0)
         cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
      MPI_Finalize();
      return 2;
   }
   mesh = new Mesh(imesh, 1, 1);
   imesh.close();
   int dim = mesh->Dimension();

   // 4. Define the ODE solver used for time integration. Several implicit
   //    singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as
   //    explicit Runge-Kutta methods are available.
   ODESolver *ode_solver;
   switch (ode_solver_type)
   {
   // Implicit L-stable methods
   case 1:  ode_solver = new BackwardEulerSolver; break;
   case 2:  ode_solver = new SDIRK23Solver(2); break;
   case 3:  ode_solver = new SDIRK33Solver; break;
   // Explicit methods
   case 11: ode_solver = new ForwardEulerSolver; break;
   case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method
   case 13: ode_solver = new RK3SSPSolver; break;
   case 14: ode_solver = new RK4Solver; break;
   // Implicit A-stable methods (not L-stable)
   case 22: ode_solver = new ImplicitMidpointSolver; break;
   case 23: ode_solver = new SDIRK23Solver; break;
   case 24: ode_solver = new SDIRK34Solver; break;
   default:
      if (myid == 0)
         cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
      MPI_Finalize();
      return 3;
   }

   // 5. Refine the mesh in serial to increase the resolution. In this example
   //    we do 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is
   //    a command-line parameter.
   for (int lev = 0; lev < ser_ref_levels; lev++)
      mesh->UniformRefinement();

   // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted.
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   for (int lev = 0; lev < par_ref_levels; lev++)
      pmesh->UniformRefinement();

   // 7. Define the parallel vector finite element spaces representing the mesh
   //    deformation x_gf, the velocity v_gf, and the initial configuration,
   //    x_ref. Define also the elastic energy density, w_gf, which is in a
   //    discontinuous higher-order space. Since x and v are integrated in time
   //    as a system, we group them together in block vector vx, on the unique
   //    parallel degrees of freedom, with offsets given by array true_offset.
   H1_FECollection fe_coll(order, dim);
   ParFiniteElementSpace fespace(pmesh, &fe_coll, dim);

   int glob_size = fespace.GlobalTrueVSize();
   if (myid == 0)
      cout << "Number of velocity/deformation unknowns: " << glob_size << endl;
   int true_size = fespace.TrueVSize();
   Array<int> true_offset(3);
   true_offset[0] = 0;
   true_offset[1] = true_size;
   true_offset[2] = 2*true_size;

   BlockVector vx(true_offset);
   ParGridFunction v_gf(&fespace), x_gf(&fespace);

   ParGridFunction x_ref(&fespace);
   pmesh->GetNodes(x_ref);

   L2_FECollection w_fec(order + 1, dim);
   ParFiniteElementSpace w_fespace(pmesh, &w_fec);
   ParGridFunction w_gf(&w_fespace);

   // 8. Set the initial conditions for v_gf, x_gf and vx, and define the
   //    boundary conditions on a beam-like mesh (see description above).
   VectorFunctionCoefficient velo(dim, InitialVelocity);
   v_gf.ProjectCoefficient(velo);
   VectorFunctionCoefficient deform(dim, InitialDeformation);
   x_gf.ProjectCoefficient(deform);

   v_gf.GetTrueDofs(vx.GetBlock(0));
   x_gf.GetTrueDofs(vx.GetBlock(1));

   Array<int> ess_bdr(fespace.GetMesh()->bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed

   // 9. Initialize the hyperelastic operator, the GLVis visualization and print
   //    the initial energies.
   HyperelasticOperator oper(fespace, ess_bdr, visc);

   socketstream vis_v, vis_w;
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      vis_v.open(vishost, visport);
      vis_v.precision(8);
      visualize(vis_v, pmesh, &x_gf, &v_gf, "Velocity", true);
      // Make sure all ranks have sent their 'v' solution before initiating
      // another set of GLVis connections (one from each rank):
      MPI_Barrier(pmesh->GetComm());
      vis_w.open(vishost, visport);
      if (vis_w)
      {
         oper.GetElasticEnergyDensity(x_gf, w_gf);
         vis_w.precision(8);
         visualize(vis_w, pmesh, &x_gf, &w_gf, "Elastic energy density", true);
      }
   }

   double ee0 = oper.ElasticEnergy(x_gf);
   double ke0 = oper.KineticEnergy(v_gf);
   if (myid == 0)
   {
      cout << "initial elastic energy (EE) = " << ee0 << endl;
      cout << "initial kinetic energy (KE) = " << ke0 << endl;
      cout << "initial   total energy (TE) = " << (ee0 + ke0) << endl;
   }

   // 10. Perform time-integration (looping over the time iterations, ti, with a
   //     time-step dt).
   ode_solver->Init(oper);
   double t = 0.0;

   bool last_step = false;
   for (int ti = 1; !last_step; ti++)
   {
      if (t + dt >= t_final - dt/2)
         last_step = true;

      ode_solver->Step(vx, t, dt);

      if (last_step || (ti % vis_steps) == 0)
      {
         v_gf.Distribute(vx.GetBlock(0));
         x_gf.Distribute(vx.GetBlock(1));

         double ee = oper.ElasticEnergy(x_gf);
         double ke = oper.KineticEnergy(v_gf);

         if (myid == 0)
            cout << "step " << ti << ", t = " << t << ", EE = " << ee
                 << ", KE = " << ke << ", ΔTE = " << (ee+ke)-(ee0+ke0) << endl;

         if (visualization)
         {
            visualize(vis_v, pmesh, &x_gf, &v_gf);
            if (vis_w)
            {
               oper.GetElasticEnergyDensity(x_gf, w_gf);
               visualize(vis_w, pmesh, &x_gf, &w_gf);
            }
         }
      }
   }

   // 11. Save the displaced mesh, the velocity and elastic energy.
   {
      GridFunction *nodes = &x_gf;
      int owns_nodes = 0;
      pmesh->SwapNodes(nodes, owns_nodes);

      ostringstream mesh_name, velo_name, ee_name;
      mesh_name << "deformed." << setfill('0') << setw(6) << myid;
      velo_name << "velocity." << setfill('0') << setw(6) << myid;
      ee_name << "elastic_energy." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);
      pmesh->SwapNodes(nodes, owns_nodes);
      ofstream velo_ofs(velo_name.str().c_str());
      velo_ofs.precision(8);
      v_gf.Save(velo_ofs);
      ofstream ee_ofs(ee_name.str().c_str());
      ee_ofs.precision(8);
      oper.GetElasticEnergyDensity(x_gf, w_gf);
      w_gf.Save(ee_ofs);
   }

   // 10. Free the used memory.
   delete ode_solver;
   delete pmesh;

   MPI_Finalize();

   return 0;
}
Example #8
0
File: joule.cpp Project: LLNL/mfem
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   MPI_Session mpi(argc, argv);
   int myid = mpi.WorldRank();

   // print the cool banner
   if (mpi.Root()) { display_banner(cout); }

   // 2. Parse command-line options.
   const char *mesh_file = "cylinder-hex.mesh";
   int ser_ref_levels = 0;
   int par_ref_levels = 0;
   int order = 2;
   int ode_solver_type = 1;
   double t_final = 100.0;
   double dt = 0.5;
   double amp = 2.0;
   double mu = 1.0;
   double sigma = 2.0*M_PI*10;
   double Tcapacity = 1.0;
   double Tconductivity = 0.01;
   double alpha = Tconductivity/Tcapacity;
   double freq = 1.0/60.0;
   bool visualization = true;
   bool visit = true;
   int vis_steps = 1;
   int gfprint = 0;
   const char *basename = "Joule";
   int amr = 0;
   int debug = 0;
   const char *problem = "rod";

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
                  "Number of times to refine the mesh uniformly in serial.");
   args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
                  "Number of times to refine the mesh uniformly in parallel.");
   args.AddOption(&order, "-o", "--order",
                  "Order (degree) of the finite elements.");
   args.AddOption(&ode_solver_type, "-s", "--ode-solver",
                  "ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3\n\t."
                  "\t   22 - Mid-Point, 23 - SDIRK23, 34 - SDIRK34.");
   args.AddOption(&t_final, "-tf", "--t-final",
                  "Final time; start time is 0.");
   args.AddOption(&dt, "-dt", "--time-step",
                  "Time step.");
   args.AddOption(&mu, "-mu", "--permeability",
                  "Magnetic permeability coefficient.");
   args.AddOption(&sigma, "-cnd", "--sigma",
                  "Conductivity coefficient.");
   args.AddOption(&freq, "-f", "--frequency",
                  "Frequency of oscillation.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.AddOption(&visit, "-visit", "--visit", "-no-visit", "--no-visit",
                  "Enable or disable VisIt visualization.");
   args.AddOption(&vis_steps, "-vs", "--visualization-steps",
                  "Visualize every n-th timestep.");
   args.AddOption(&basename, "-k", "--outputfilename",
                  "Name of the visit dump files");
   args.AddOption(&gfprint, "-print", "--print",
                  "Print results (grid functions) to disk.");
   args.AddOption(&amr, "-amr", "--amr",
                  "Enable AMR");
   args.AddOption(&STATIC_COND, "-sc", "--static-condensation",
                  "Enable static condensation");
   args.AddOption(&debug, "-debug", "--debug",
                  "Print matrices and vectors to disk");
   args.AddOption(&SOLVER_PRINT_LEVEL, "-hl", "--hypre-print-level",
                  "Hypre print level");
   args.AddOption(&problem, "-p", "--problem",
                  "Name of problem to run");
   args.Parse();
   if (!args.Good())
   {
      if (mpi.Root())
      {
         args.PrintUsage(cout);
      }
      return 1;
   }
   if (mpi.Root())
   {
      args.PrintOptions(cout);
   }

   aj_  = amp;
   mj_  = mu;
   sj_  = sigma;
   wj_  = 2.0*M_PI*freq;
   kj_  = sqrt(0.5*wj_*mj_*sj_);
   hj_  = alpha;
   dtj_ = dt;
   rj_  = 1.0;

   if (mpi.Root())
   {
      cout << "\nSkin depth sqrt(2.0/(wj*mj*sj)) = " << sqrt(2.0/(wj_*mj_*sj_))
           << "\nSkin depth sqrt(2.0*dt/(mj*sj)) = " << sqrt(2.0*dt/(mj_*sj_))
           << endl;
   }

   // 3. Here material properties are assigned to mesh attributes.  This code is
   //    not general, it is assumed the mesh has 3 regions each with a different
   //    integer attribute: 1, 2 or 3.
   //
   //       The coil problem has three regions: 1) coil, 2) air, 3) the rod.
   //       The rod problem has two regions: 1) rod, 2) air.
   //
   //    We can use the same material maps for both problems.

   std::map<int, double> sigmaMap, InvTcondMap, TcapMap, InvTcapMap;
   double sigmaAir;
   double TcondAir;
   double TcapAir;
   if (strcmp(problem,"rod")==0 || strcmp(problem,"coil")==0)
   {
      sigmaAir     = 1.0e-6 * sigma;
      TcondAir     = 1.0e6  * Tconductivity;
      TcapAir      = 1.0    * Tcapacity;
   }
   else
   {
      cerr << "Problem " << problem << " not recognized\n";
      mfem_error();
   }

   if (strcmp(problem,"rod")==0 || strcmp(problem,"coil")==0)
   {

      sigmaMap.insert(pair<int, double>(1, sigma));
      sigmaMap.insert(pair<int, double>(2, sigmaAir));
      sigmaMap.insert(pair<int, double>(3, sigmaAir));

      InvTcondMap.insert(pair<int, double>(1, 1.0/Tconductivity));
      InvTcondMap.insert(pair<int, double>(2, 1.0/TcondAir));
      InvTcondMap.insert(pair<int, double>(3, 1.0/TcondAir));

      TcapMap.insert(pair<int, double>(1, Tcapacity));
      TcapMap.insert(pair<int, double>(2, TcapAir));
      TcapMap.insert(pair<int, double>(3, TcapAir));

      InvTcapMap.insert(pair<int, double>(1, 1.0/Tcapacity));
      InvTcapMap.insert(pair<int, double>(2, 1.0/TcapAir));
      InvTcapMap.insert(pair<int, double>(3, 1.0/TcapAir));
   }
   else
   {
      cerr << "Problem " << problem << " not recognized\n";
      mfem_error();
   }

   // 4. Read the serial mesh from the given mesh file on all processors. We can
   //    handle triangular, quadrilateral, tetrahedral and hexahedral meshes
   //    with the same code.
   Mesh *mesh;
   mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();

   // 5. Assign the boundary conditions
   Array<int> ess_bdr(mesh->bdr_attributes.Max());
   Array<int> thermal_ess_bdr(mesh->bdr_attributes.Max());
   Array<int> poisson_ess_bdr(mesh->bdr_attributes.Max());
   if (strcmp(problem,"coil")==0)
   {
      // BEGIN CODE FOR THE COIL PROBLEM
      // For the coil in a box problem we have surfaces 1) coil end (+),
      // 2) coil end (-), 3) five sides of box, 4) side of box with coil BC

      ess_bdr = 0;
      ess_bdr[0] = 1; // boundary attribute 4 (index 3) is fixed
      ess_bdr[1] = 1; // boundary attribute 4 (index 3) is fixed
      ess_bdr[2] = 1; // boundary attribute 4 (index 3) is fixed
      ess_bdr[3] = 1; // boundary attribute 4 (index 3) is fixed

      // Same as above, but this is for the thermal operator for HDiv
      // formulation the essential BC is the flux

      thermal_ess_bdr = 0;
      thermal_ess_bdr[2] = 1; // boundary attribute 4 (index 3) is fixed

      // Same as above, but this is for the poisson eq for H1 formulation the
      // essential BC is the value of Phi

      poisson_ess_bdr = 0;
      poisson_ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed
      poisson_ess_bdr[1] = 1; // boundary attribute 2 (index 1) is fixed
      // END CODE FOR THE COIL PROBLEM
   }
   else if (strcmp(problem,"rod")==0)
   {
      // BEGIN CODE FOR THE STRAIGHT ROD PROBLEM
      // the boundary conditions below are for the straight rod problem

      ess_bdr = 0;
      ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed (front)
      ess_bdr[1] = 1; // boundary attribute 2 (index 1) is fixed (rear)
      ess_bdr[2] = 1; // boundary attribute 3 (index 2) is fixed (outer)

      // Same as above, but this is for the thermal operator.  For HDiv
      // formulation the essential BC is the flux, which is zero on the front
      // and sides. Note the Natural BC is T = 0 on the outer surface.

      thermal_ess_bdr = 0;
      thermal_ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed (front)
      thermal_ess_bdr[1] = 1; // boundary attribute 2 (index 1) is fixed (rear)

      // Same as above, but this is for the poisson eq for H1 formulation the
      // essential BC is the value of Phi

      poisson_ess_bdr = 0;
      poisson_ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed (front)
      poisson_ess_bdr[1] = 1; // boundary attribute 2 (index 1) is fixed (back)
      // END CODE FOR THE STRAIGHT ROD PROBLEM
   }
   else
   {
      cerr << "Problem " << problem << " not recognized\n";
      mfem_error();
   }

   // The following is required for mesh refinement
   mesh->EnsureNCMesh();

   // 6. Define the ODE solver used for time integration. Several implicit
   //    methods are available, including singly diagonal implicit Runge-Kutta
   //    (SDIRK).
   ODESolver *ode_solver;
   switch (ode_solver_type)
   {
      // Implicit L-stable methods
      case 1:  ode_solver = new BackwardEulerSolver; break;
      case 2:  ode_solver = new SDIRK23Solver(2); break;
      case 3:  ode_solver = new SDIRK33Solver; break;
      // Implicit A-stable methods (not L-stable)
      case 22: ode_solver = new ImplicitMidpointSolver; break;
      case 23: ode_solver = new SDIRK23Solver; break;
      case 34: ode_solver = new SDIRK34Solver; break;
      default:
         if (mpi.Root())
         {
            cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
         }
         delete mesh;
         return 3;
   }

   // 7. Refine the mesh in serial to increase the resolution. In this example
   //    we do 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is
   //    a command-line parameter.
   for (int lev = 0; lev < ser_ref_levels; lev++)
   {
      mesh->UniformRefinement();
   }

   // 8. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted.
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   for (int lev = 0; lev < par_ref_levels; lev++)
   {
      pmesh->UniformRefinement();
   }
   // Make sure tet-only meshes are marked for local refinement.
   pmesh->Finalize(true);

   // 9. Apply non-uniform non-conforming mesh refinement to the mesh.  The
   //    whole metal region is refined once, before the start of the time loop,
   //    i.e. this is not based on any error estimator.
   if (amr == 1)
   {
      Array<int> ref_list;
      int numElems = pmesh->GetNE();
      for (int ielem = 0; ielem < numElems; ielem++)
      {
         int thisAtt = pmesh->GetAttribute(ielem);
         if (thisAtt == 1)
         {
            ref_list.Append(ielem);
         }
      }

      pmesh->GeneralRefinement(ref_list);

      ref_list.DeleteAll();
   }

   // 10. Reorient the mesh. Must be done after refinement but before definition
   //     of higher order Nedelec spaces
   pmesh->ReorientTetMesh();

   // 11. Rebalance the mesh. Since the mesh was adaptively refined in a
   //     non-uniform way it will be computationally unbalanced.
   if (pmesh->Nonconforming())
   {
      pmesh->Rebalance();
   }

   // 12. Define the parallel finite element spaces. We use:
   //
   //     H(curl) for electric field,
   //     H(div) for magnetic flux,
   //     H(div) for thermal flux,
   //     H(grad)/H1 for electrostatic potential,
   //     L2 for temperature

   // L2 contains discontinuous "cell-center" finite elements, type 2 is
   // "positive"
   L2_FECollection L2FEC(order-1, dim);

   // ND contains Nedelec "edge-centered" vector finite elements with continuous
   // tangential component.
   ND_FECollection HCurlFEC(order, dim);

   // RT contains Raviart-Thomas "face-centered" vector finite elements with
   // continuous normal component.
   RT_FECollection HDivFEC(order-1, dim);

   // H1 contains continuous "node-centered" Lagrange finite elements.
   H1_FECollection HGradFEC(order, dim);

   ParFiniteElementSpace    L2FESpace(pmesh, &L2FEC);
   ParFiniteElementSpace HCurlFESpace(pmesh, &HCurlFEC);
   ParFiniteElementSpace  HDivFESpace(pmesh, &HDivFEC);
   ParFiniteElementSpace  HGradFESpace(pmesh, &HGradFEC);

   // The terminology is TrueVSize is the unique (non-redundant) number of dofs
   HYPRE_Int glob_size_l2 = L2FESpace.GlobalTrueVSize();
   HYPRE_Int glob_size_nd = HCurlFESpace.GlobalTrueVSize();
   HYPRE_Int glob_size_rt = HDivFESpace.GlobalTrueVSize();
   HYPRE_Int glob_size_h1 = HGradFESpace.GlobalTrueVSize();

   if (mpi.Root())
   {
      cout << "Number of Temperature Flux unknowns:  " << glob_size_rt << endl;
      cout << "Number of Temperature unknowns:       " << glob_size_l2 << endl;
      cout << "Number of Electric Field unknowns:    " << glob_size_nd << endl;
      cout << "Number of Magnetic Field unknowns:    " << glob_size_rt << endl;
      cout << "Number of Electrostatic unknowns:     " << glob_size_h1 << endl;
   }

   int Vsize_l2 = L2FESpace.GetVSize();
   int Vsize_nd = HCurlFESpace.GetVSize();
   int Vsize_rt = HDivFESpace.GetVSize();
   int Vsize_h1 = HGradFESpace.GetVSize();

   // the big BlockVector stores the fields as
   //    0 Temperature
   //    1 Temperature Flux
   //    2 P field
   //    3 E field
   //    4 B field
   //    5 Joule Heating

   Array<int> true_offset(7);
   true_offset[0] = 0;
   true_offset[1] = true_offset[0] + Vsize_l2;
   true_offset[2] = true_offset[1] + Vsize_rt;
   true_offset[3] = true_offset[2] + Vsize_h1;
   true_offset[4] = true_offset[3] + Vsize_nd;
   true_offset[5] = true_offset[4] + Vsize_rt;
   true_offset[6] = true_offset[5] + Vsize_l2;

   // The BlockVector is a large contiguous chunk of memory for storing required
   // data for the hypre vectors, in this case: the temperature L2, the T-flux
   // HDiv, the E-field HCurl, and the B-field HDiv, and scalar potential P.
   BlockVector F(true_offset);

   // grid functions E, B, T, F, P, and w which is the Joule heating
   ParGridFunction E_gf, B_gf, T_gf, F_gf, w_gf, P_gf;
   T_gf.MakeRef(&L2FESpace,F,   true_offset[0]);
   F_gf.MakeRef(&HDivFESpace,F, true_offset[1]);
   P_gf.MakeRef(&HGradFESpace,F,true_offset[2]);
   E_gf.MakeRef(&HCurlFESpace,F,true_offset[3]);
   B_gf.MakeRef(&HDivFESpace,F, true_offset[4]);
   w_gf.MakeRef(&L2FESpace,F,   true_offset[5]);

   // 13. Get the boundary conditions, set up the exact solution grid functions
   //     These VectorCoefficients have an Eval function.  Note that e_exact and
   //     b_exact in this case are exact analytical solutions, taking a 3-vector
   //     point as input and returning a 3-vector field
   VectorFunctionCoefficient E_exact(3, e_exact);
   VectorFunctionCoefficient B_exact(3, b_exact);
   FunctionCoefficient T_exact(t_exact);
   E_exact.SetTime(0.0);
   B_exact.SetTime(0.0);

   // 14. Initialize the Diffusion operator, the GLVis visualization and print
   //     the initial energies.
   MagneticDiffusionEOperator oper(true_offset[6], L2FESpace, HCurlFESpace,
                                   HDivFESpace, HGradFESpace,
                                   ess_bdr, thermal_ess_bdr, poisson_ess_bdr,
                                   mu, sigmaMap, TcapMap, InvTcapMap,
                                   InvTcondMap);

   // This function initializes all the fields to zero or some provided IC
   oper.Init(F);

   socketstream vis_T, vis_E, vis_B, vis_w, vis_P;
   char vishost[] = "localhost";
   int  visport   = 19916;
   if (visualization)
   {
      // Make sure all ranks have sent their 'v' solution before initiating
      // another set of GLVis connections (one from each rank):
      MPI_Barrier(pmesh->GetComm());

      vis_T.precision(8);
      vis_E.precision(8);
      vis_B.precision(8);
      vis_P.precision(8);
      vis_w.precision(8);

      int Wx = 0, Wy = 0; // window position
      int Ww = 350, Wh = 350; // window size
      int offx = Ww+10, offy = Wh+45; // window offsets

      miniapps::VisualizeField(vis_P, vishost, visport,
                               P_gf, "Electric Potential (Phi)", Wx, Wy, Ww, Wh);
      Wx += offx;

      miniapps::VisualizeField(vis_E, vishost, visport,
                               E_gf, "Electric Field (E)", Wx, Wy, Ww, Wh);
      Wx += offx;

      miniapps::VisualizeField(vis_B, vishost, visport,
                               B_gf, "Magnetic Field (B)", Wx, Wy, Ww, Wh);
      Wx = 0;
      Wy += offy;

      miniapps::VisualizeField(vis_w, vishost, visport,
                               w_gf, "Joule Heating", Wx, Wy, Ww, Wh);

      Wx += offx;

      miniapps::VisualizeField(vis_T, vishost, visport,
                               T_gf, "Temperature", Wx, Wy, Ww, Wh);
   }
   // VisIt visualization
   VisItDataCollection visit_dc(basename, pmesh);
   if ( visit )
   {
      visit_dc.RegisterField("E", &E_gf);
      visit_dc.RegisterField("B", &B_gf);
      visit_dc.RegisterField("T", &T_gf);
      visit_dc.RegisterField("w", &w_gf);
      visit_dc.RegisterField("Phi", &P_gf);
      visit_dc.RegisterField("F", &F_gf);

      visit_dc.SetCycle(0);
      visit_dc.SetTime(0.0);
      visit_dc.Save();
   }

   E_exact.SetTime(0.0);
   B_exact.SetTime(0.0);

   // 15. Perform time-integration (looping over the time iterations, ti, with a
   //     time-step dt). The object oper is the MagneticDiffusionOperator which
   //     has a Mult() method and an ImplicitSolve() method which are used by
   //     the time integrators.
   ode_solver->Init(oper);
   double t = 0.0;

   bool last_step = false;
   for (int ti = 1; !last_step; ti++)
   {
      if (t + dt >= t_final - dt/2)
      {
         last_step = true;
      }

      // F is the vector of dofs, t is the current time, and dt is the time step
      // to advance.
      ode_solver->Step(F, t, dt);

      if (debug == 1)
      {
         oper.Debug(basename,t);
      }

      if (gfprint == 1)
      {
         ostringstream T_name, E_name, B_name, F_name, w_name, P_name, mesh_name;
         T_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "T." << setfill('0') << setw(6) << myid;
         E_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "E." << setfill('0') << setw(6) << myid;
         B_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "B." << setfill('0') << setw(6) << myid;
         F_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "F." << setfill('0') << setw(6) << myid;
         w_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "w." << setfill('0') << setw(6) << myid;
         P_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                << "P." << setfill('0') << setw(6) << myid;
         mesh_name << basename << "_" << setfill('0') << setw(6) << t << "_"
                   << "mesh." << setfill('0') << setw(6) << myid;

         ofstream mesh_ofs(mesh_name.str().c_str());
         mesh_ofs.precision(8);
         pmesh->Print(mesh_ofs);
         mesh_ofs.close();

         ofstream T_ofs(T_name.str().c_str());
         T_ofs.precision(8);
         T_gf.Save(T_ofs);
         T_ofs.close();

         ofstream E_ofs(E_name.str().c_str());
         E_ofs.precision(8);
         E_gf.Save(E_ofs);
         E_ofs.close();

         ofstream B_ofs(B_name.str().c_str());
         B_ofs.precision(8);
         B_gf.Save(B_ofs);
         B_ofs.close();

         ofstream F_ofs(F_name.str().c_str());
         F_ofs.precision(8);
         F_gf.Save(B_ofs);
         F_ofs.close();

         ofstream P_ofs(P_name.str().c_str());
         P_ofs.precision(8);
         P_gf.Save(P_ofs);
         P_ofs.close();

         ofstream w_ofs(w_name.str().c_str());
         w_ofs.precision(8);
         w_gf.Save(w_ofs);
         w_ofs.close();
      }

      if (last_step || (ti % vis_steps) == 0)
      {
         double el = oper.ElectricLosses(E_gf);

         if (mpi.Root())
         {
            cout << fixed;
            cout << "step " << setw(6) << ti << ",\tt = " << setw(6)
                 << setprecision(3) << t
                 << ",\tdot(E, J) = " << setprecision(8) << el << endl;
         }

         // Make sure all ranks have sent their 'v' solution before initiating
         // another set of GLVis connections (one from each rank):
         MPI_Barrier(pmesh->GetComm());

         if (visualization)
         {
            int Wx = 0, Wy = 0; // window position
            int Ww = 350, Wh = 350; // window size
            int offx = Ww+10, offy = Wh+45; // window offsets

            miniapps::VisualizeField(vis_P, vishost, visport,
                                     P_gf, "Electric Potential (Phi)", Wx, Wy, Ww, Wh);
            Wx += offx;

            miniapps::VisualizeField(vis_E, vishost, visport,
                                     E_gf, "Electric Field (E)", Wx, Wy, Ww, Wh);
            Wx += offx;

            miniapps::VisualizeField(vis_B, vishost, visport,
                                     B_gf, "Magnetic Field (B)", Wx, Wy, Ww, Wh);

            Wx = 0;
            Wy += offy;

            miniapps::VisualizeField(vis_w, vishost, visport,
                                     w_gf, "Joule Heating", Wx, Wy, Ww, Wh);

            Wx += offx;

            miniapps::VisualizeField(vis_T, vishost, visport,
                                     T_gf, "Temperature", Wx, Wy, Ww, Wh);
         }

         if (visit)
         {
            visit_dc.SetCycle(ti);
            visit_dc.SetTime(t);
            visit_dc.Save();
         }
      }
   }
   if (visualization)
   {
      vis_T.close();
      vis_E.close();
      vis_B.close();
      vis_w.close();
      vis_P.close();
   }

   // 16. Free the used memory.
   delete ode_solver;
   delete pmesh;

   return 0;
}
Example #9
0
int main(int argc, char *argv[])
{
    // 1. Initialize MPI.
    int num_procs, myid;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);

    // 2. Parse command-line options.
    const char *mesh_file = "../data/beam-tet.mesh";
    int ser_ref_levels = 2;
    int par_ref_levels = 1;
    int order = 1;
    int nev = 5;
    bool visualization = 1;

    OptionsParser args(argc, argv);
    args.AddOption(&mesh_file, "-m", "--mesh",
                   "Mesh file to use.");
    args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
                   "Number of times to refine the mesh uniformly in serial.");
    args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
                   "Number of times to refine the mesh uniformly in parallel.");
    args.AddOption(&order, "-o", "--order",
                   "Finite element order (polynomial degree) or -1 for"
                   " isoparametric space.");
    args.AddOption(&nev, "-n", "--num-eigs",
                   "Number of desired eigenmodes.");
    args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                   "--no-visualization",
                   "Enable or disable GLVis visualization.");
    args.Parse();
    if (!args.Good())
    {
        if (myid == 0)
        {
            args.PrintUsage(cout);
        }
        MPI_Finalize();
        return 1;
    }
    if (myid == 0)
    {
        args.PrintOptions(cout);
    }

    // 3. Read the (serial) mesh from the given mesh file on all processors. We
    //    can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
    //    and volume meshes with the same code.
    Mesh *mesh;
    ifstream imesh(mesh_file);
    if (!imesh)
    {
        if (myid == 0)
        {
            cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
        }
        MPI_Finalize();
        return 2;
    }
    mesh = new Mesh(imesh, 1, 1);
    imesh.close();
    int dim = mesh->Dimension();

    // 4. Refine the serial mesh on all processors to increase the resolution. In
    //    this example we do 'ref_levels' of uniform refinement (2 by default, or
    //    specified on the command line with -rs).
    for (int lev = 0; lev < ser_ref_levels; lev++)
    {
        mesh->UniformRefinement();
    }

    // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
    //    this mesh further in parallel to increase the resolution (1 time by
    //    default, or specified on the command line with -rp). Once the parallel
    //    mesh is defined, the serial mesh can be deleted.
    ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
    delete mesh;
    for (int lev = 0; lev < par_ref_levels; lev++)
    {
        pmesh->UniformRefinement();
    }

    // 6. Define a parallel finite element space on the parallel mesh. Here we
    //    use the Nedelec finite elements of the specified order.
    FiniteElementCollection *fec = new ND_FECollection(order, dim);
    ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
    HYPRE_Int size = fespace->GlobalTrueVSize();
    if (myid == 0)
    {
        cout << "Number of unknowns: " << size << endl;
    }

    // 7. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
    //    element space. The first corresponds to the curl curl, while the second
    //    is a simple mass matrix needed on the right hand side of the
    //    generalized eigenvalue problem below. The boundary conditions are
    //    implemented by marking all the boundary attributes from the mesh as
    //    essential. The corresponding degrees of freedom are eliminated with
    //    special values on the diagonal to shift the Dirichlet eigenvalues out
    //    of the computational range. After serial and parallel assembly we
    //    extract the corresponding parallel matrices A and M.
    ConstantCoefficient one(1.0);
    Array<int> ess_bdr;
    if (pmesh->bdr_attributes.Size())
    {
        ess_bdr.SetSize(pmesh->bdr_attributes.Max());
        ess_bdr = 1;
    }

    ParBilinearForm *a = new ParBilinearForm(fespace);
    a->AddDomainIntegrator(new CurlCurlIntegrator(one));
    if (pmesh->bdr_attributes.Size() == 0)
    {
        // Add a mass term if the mesh has no boundary, e.g. periodic mesh or
        // closed surface.
        a->AddDomainIntegrator(new VectorFEMassIntegrator(one));
    }
    a->Assemble();
    a->EliminateEssentialBCDiag(ess_bdr, 1.0);
    a->Finalize();

    ParBilinearForm *m = new ParBilinearForm(fespace);
    m->AddDomainIntegrator(new VectorFEMassIntegrator(one));
    m->Assemble();
    // shift the eigenvalue corresponding to eliminated dofs to a large value
    m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<double>::min());
    m->Finalize();

    HypreParMatrix *A = a->ParallelAssemble();
    HypreParMatrix *M = m->ParallelAssemble();

    delete a;
    delete m;

    // 8. Define and configure the AME eigensolver and the AMS preconditioner for
    //    A to be used within the solver. Set the matrices which define the
    //    generalized eigenproblem A x = lambda M x.
    HypreAMS *ams = new HypreAMS(*A,fespace);
    ams->SetPrintLevel(0);
    ams->SetSingularProblem();

    HypreAME *ame = new HypreAME(MPI_COMM_WORLD);
    ame->SetNumModes(nev);
    ame->SetPreconditioner(*ams);
    ame->SetMaxIter(100);
    ame->SetTol(1e-8);
    ame->SetPrintLevel(1);
    ame->SetMassMatrix(*M);
    ame->SetOperator(*A);

    // 9. Compute the eigenmodes and extract the array of eigenvalues. Define a
    //    parallel grid function to represent each of the eigenmodes returned by
    //    the solver.
    Array<double> eigenvalues;
    ame->Solve();
    ame->GetEigenvalues(eigenvalues);
    ParGridFunction x(fespace);

    // 10. Save the refined mesh and the modes in parallel. This output can be
    //     viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
    {
        ostringstream mesh_name, mode_name;
        mesh_name << "mesh." << setfill('0') << setw(6) << myid;

        ofstream mesh_ofs(mesh_name.str().c_str());
        mesh_ofs.precision(8);
        pmesh->Print(mesh_ofs);

        for (int i=0; i<nev; i++)
        {
            // convert eigenvector from HypreParVector to ParGridFunction
            x = ame->GetEigenvector(i);

            mode_name << "mode_" << setfill('0') << setw(2) << i << "."
                      << setfill('0') << setw(6) << myid;

            ofstream mode_ofs(mode_name.str().c_str());
            mode_ofs.precision(8);
            x.Save(mode_ofs);
            mode_name.str("");
        }
    }

    // 11. Send the solution by socket to a GLVis server.
    if (visualization)
    {
        char vishost[] = "localhost";
        int  visport   = 19916;
        socketstream mode_sock(vishost, visport);
        mode_sock.precision(8);

        for (int i=0; i<nev; i++)
        {
            if ( myid == 0 )
            {
                cout << "Eigenmode " << i+1 << '/' << nev
                     << ", Lambda = " << eigenvalues[i] << endl;
            }

            // convert eigenvector from HypreParVector to ParGridFunction
            x = ame->GetEigenvector(i);

            mode_sock << "parallel " << num_procs << " " << myid << "\n"
                      << "solution\n" << *pmesh << x << flush
                      << "window_title 'Eigenmode " << i+1 << '/' << nev
                      << ", Lambda = " << eigenvalues[i] << "'" << endl;

            char c;
            if (myid == 0)
            {
                cout << "press (q)uit or (c)ontinue --> " << flush;
                cin >> c;
            }
            MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);

            if (c != 'c')
            {
                break;
            }
        }
        mode_sock.close();
    }
Example #10
0
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   const char *mesh_file = "../data/beam-tri.mesh";
   int order = 1;
   int nev = 5;
   bool visualization = 1;
   bool amg_elast = 0;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&nev, "-n", "--num-eigs",
                  "Number of desired eigenmodes.");
   args.AddOption(&amg_elast, "-elast", "--amg-for-elasticity", "-sys",
                  "--amg-for-systems",
                  "Use the special AMG elasticity solver (GM/LN approaches), "
                  "or standard AMG for systems (unknown approach).");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
      {
         args.PrintUsage(cout);
      }
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
   {
      args.PrintOptions(cout);
   }

   // 3. Read the (serial) mesh from the given mesh file on all processors. We
   //    can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
   //    and volume meshes with the same code.
   Mesh *mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();

   if (mesh->attributes.Max() < 2)
   {
      if (myid == 0)
         cerr << "\nInput mesh should have at least two materials!"
              << " (See schematic in ex12p.cpp)\n"
              << endl;
      MPI_Finalize();
      return 3;
   }

   // 4. Select the order of the finite element discretization space. For NURBS
   //    meshes, we increase the order by degree elevation.
   if (mesh->NURBSext && order > mesh->NURBSext->GetOrder())
   {
      mesh->DegreeElevate(order - mesh->NURBSext->GetOrder());
   }

   // 5. Refine the serial mesh on all processors to increase the resolution. In
   //    this example we do 'ref_levels' of uniform refinement. We choose
   //    'ref_levels' to be the largest number that gives a final mesh with no
   //    more than 1,000 elements.
   {
      int ref_levels =
         (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
      {
         mesh->UniformRefinement();
      }
   }

   // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted.
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   {
      int par_ref_levels = 1;
      for (int l = 0; l < par_ref_levels; l++)
      {
         pmesh->UniformRefinement();
      }
   }

   // 7. Define a parallel finite element space on the parallel mesh. Here we
   //    use vector finite elements, i.e. dim copies of a scalar finite element
   //    space. We use the ordering by vector dimension (the last argument of
   //    the FiniteElementSpace constructor) which is expected in the systems
   //    version of BoomerAMG preconditioner. For NURBS meshes, we use the
   //    (degree elevated) NURBS space associated with the mesh nodes.
   FiniteElementCollection *fec;
   ParFiniteElementSpace *fespace;
   const bool use_nodal_fespace = pmesh->NURBSext && !amg_elast;
   if (use_nodal_fespace)
   {
      fec = NULL;
      fespace = (ParFiniteElementSpace *)pmesh->GetNodes()->FESpace();
   }
   else
   {
      fec = new H1_FECollection(order, dim);
      fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byVDIM);
   }
   HYPRE_Int size = fespace->GlobalTrueVSize();
   if (myid == 0)
   {
      cout << "Number of unknowns: " << size << endl
           << "Assembling: " << flush;
   }

   // 8. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
   //    element space corresponding to the linear elasticity integrator with
   //    piece-wise constants coefficient lambda and mu, a simple mass matrix
   //    needed on the right hand side of the generalized eigenvalue problem
   //    below. The boundary conditions are implemented by marking only boundary
   //    attribute 1 as essential. We use special values on the diagonal to
   //    shift the Dirichlet eigenvalues out of the computational range. After
   //    serial/parallel assembly we extract the corresponding parallel matrices
   //    A and M.
   Vector lambda(pmesh->attributes.Max());
   lambda = 1.0;
   lambda(0) = lambda(1)*50;
   PWConstCoefficient lambda_func(lambda);
   Vector mu(pmesh->attributes.Max());
   mu = 1.0;
   mu(0) = mu(1)*50;
   PWConstCoefficient mu_func(mu);

   Array<int> ess_bdr(pmesh->bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1;

   ParBilinearForm *a = new ParBilinearForm(fespace);
   a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func));
   if (myid == 0)
   {
      cout << "matrix ... " << flush;
   }
   a->Assemble();
   a->EliminateEssentialBCDiag(ess_bdr, 1.0);
   a->Finalize();

   ParBilinearForm *m = new ParBilinearForm(fespace);
   m->AddDomainIntegrator(new VectorMassIntegrator());
   m->Assemble();
   // shift the eigenvalue corresponding to eliminated dofs to a large value
   m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<double>::min());
   m->Finalize();
   if (myid == 0)
   {
      cout << "done." << endl;
   }

   HypreParMatrix *A = a->ParallelAssemble();
   HypreParMatrix *M = m->ParallelAssemble();

   delete a;
   delete m;

   // 9. Define and configure the LOBPCG eigensolver and the BoomerAMG
   //    preconditioner for A to be used within the solver. Set the matrices
   //    which define the generalized eigenproblem A x = lambda M x.
   HypreBoomerAMG * amg = new HypreBoomerAMG(*A);
   amg->SetPrintLevel(0);
   if (amg_elast)
   {
      amg->SetElasticityOptions(fespace);
   }
   else
   {
      amg->SetSystemsOptions(dim);
   }

   HypreLOBPCG * lobpcg = new HypreLOBPCG(MPI_COMM_WORLD);
   lobpcg->SetNumModes(nev);
   lobpcg->SetPreconditioner(*amg);
   lobpcg->SetMaxIter(100);
   lobpcg->SetTol(1e-8);
   lobpcg->SetPrecondUsageMode(1);
   lobpcg->SetPrintLevel(1);
   lobpcg->SetMassMatrix(*M);
   lobpcg->SetOperator(*A);

   // 10. Compute the eigenmodes and extract the array of eigenvalues. Define a
   //     parallel grid function to represent each of the eigenmodes returned by
   //     the solver.
   Array<double> eigenvalues;
   lobpcg->Solve();
   lobpcg->GetEigenvalues(eigenvalues);
   ParGridFunction x(fespace);

   // 11. For non-NURBS meshes, make the mesh curved based on the finite element
   //     space. This means that we define the mesh elements through a fespace
   //     based transformation of the reference element. This allows us to save
   //     the displaced mesh as a curved mesh when using high-order finite
   //     element displacement field. We assume that the initial mesh (read from
   //     the file) is not higher order curved mesh compared to the chosen FE
   //     space.
   if (!use_nodal_fespace)
   {
      pmesh->SetNodalFESpace(fespace);
   }

   // 12. Save the refined mesh and the modes in parallel. This output can be
   //     viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
   {
      ostringstream mesh_name, mode_name;
      mesh_name << "mesh." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);

      for (int i=0; i<nev; i++)
      {
         // convert eigenvector from HypreParVector to ParGridFunction
         x = lobpcg->GetEigenvector(i);

         mode_name << "mode_" << setfill('0') << setw(2) << i << "."
                   << setfill('0') << setw(6) << myid;

         ofstream mode_ofs(mode_name.str().c_str());
         mode_ofs.precision(8);
         x.Save(mode_ofs);
         mode_name.str("");
      }
   }

   // 13. Send the above data by socket to a GLVis server. Use the "n" and "b"
   //     keys in GLVis to visualize the displacements.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream mode_sock(vishost, visport);

      for (int i=0; i<nev; i++)
      {
         if ( myid == 0 )
         {
            cout << "Eigenmode " << i+1 << '/' << nev
                 << ", Lambda = " << eigenvalues[i] << endl;
         }

         // convert eigenvector from HypreParVector to ParGridFunction
         x = lobpcg->GetEigenvector(i);

         mode_sock << "parallel " << num_procs << " " << myid << "\n"
                   << "solution\n" << *pmesh << x << flush
                   << "window_title 'Eigenmode " << i+1 << '/' << nev
                   << ", Lambda = " << eigenvalues[i] << "'" << endl;

         char c;
         if (myid == 0)
         {
            cout << "press (q)uit or (c)ontinue --> " << flush;
            cin >> c;
         }
         MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);

         if (c != 'c')
         {
            break;
         }
      }
      mode_sock.close();
   }