Example #1
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project local densities only (Frozen species)
// ---------------------------------------------------------------------------------------------------------------------
void Projector3D4Order::basic( double *rhoj, Particles &particles, unsigned int ipart, unsigned int type )
{
    //Warning : this function is used for frozen species or initialization only and doesn't use the standard scheme.
    //rho type = 0
    //Jx type = 1
    //Jy type = 2
    //Jz type = 3
    
    // -------------------------------------
    // Variable declaration & initialization
    // -------------------------------------
    
    int iloc, jloc;
    int ny( nprimy ), nz( nprimz ), nyz;
    // (x,y,z) components of the current density for the macro-particle
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    
    if( type > 0 ) {
        charge_weight *= 1./sqrt( 1.0 + particles.momentum( 0, ipart )*particles.momentum( 0, ipart )
                                  + particles.momentum( 1, ipart )*particles.momentum( 1, ipart )
                                  + particles.momentum( 2, ipart )*particles.momentum( 2, ipart ) );
                                  
        if( type == 1 ) {
            charge_weight *= particles.momentum( 0, ipart );
        } else if( type == 2 ) {
            charge_weight *= particles.momentum( 1, ipart );
            ny ++;
        } else {
            charge_weight *= particles.momentum( 2, ipart );
            nz ++;
        }
    }
    nyz = ny*nz;
    
    // variable declaration
    double xpn, ypn, zpn;
    double delta, delta2, delta3, delta4;
    double Sx1[7], Sy1[7], Sz1[7]; // arrays used for the Esirkepov projection method
    
// Initialize all current-related arrays to zero
    for( unsigned int i=0; i<7; i++ ) {
        Sx1[i] = 0.;
        Sy1[i] = 0.;
        Sz1[i] = 0.;
    }
    
    // --------------------------------------------------------
    // Locate particles & Calculate Esirkepov coef. S, DS and W
    // --------------------------------------------------------
    
    // locate the particle on the primal grid at current time-step & calculate coeff. S1
    xpn = particles.position( 0, ipart ) * dx_inv_;
    int ip = round( xpn+ 0.5*( type==1 ) );
    delta  = xpn - ( double )ip;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sx1[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx1[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx1[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    ypn = particles.position( 1, ipart ) * dy_inv_;
    int jp = round( ypn+ 0.5*( type==2 ) );
    delta  = ypn - ( double )jp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sy1[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy1[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy1[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    zpn = particles.position( 2, ipart ) * dz_inv_;
    int kp = round( zpn+ 0.5*( type==3 ) );
    delta  = zpn - ( double )kp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sz1[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sz1[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz1[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sz1[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz1[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    // ---------------------------
    // Calculate the total charge
    // ---------------------------
    ip -= i_domain_begin + 3;
    jp -= j_domain_begin + 3;
    kp -= k_domain_begin + 3;
    
    for( unsigned int i=0 ; i<7 ; i++ ) {
        iloc = ( i+ip )*nyz;
        for( unsigned int j=0 ; j<7 ; j++ ) {
            jloc = ( jp+j )*nz;
            for( unsigned int k=0 ; k<7 ; k++ ) {
                rhoj[iloc+jloc+kp+k] += charge_weight * Sx1[i]*Sy1[j]*Sz1[k];
            }
        }
    }//i
    
} // END Project local current densities (Frozen species)
Example #2
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project local current densities (sort)
// ---------------------------------------------------------------------------------------------------------------------
void Projector3D4Order::currentsAndDensity( double *Jx, double *Jy, double *Jz, double *rho, Particles &particles, unsigned int ipart, double invgf, int *iold, double *deltaold )
{
    int nparts = particles.size();
    
    // -------------------------------------
    // Variable declaration & initialization
    // -------------------------------------
    
    // (x,y,z) components of the current density for the macro-particle
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    double crx_p = charge_weight*dx_ov_dt;
    double cry_p = charge_weight*dy_ov_dt;
    double crz_p = charge_weight*dz_ov_dt;
    
    // variable declaration
    double xpn, ypn, zpn;
    double delta, delta2, delta3, delta4;
    // arrays used for the Esirkepov projection method
    double Sx0[7], Sx1[7], Sy0[7], Sy1[7], Sz0[7], Sz1[7], DSx[7], DSy[7], DSz[7];
    double tmpJx[7][7], tmpJy[7][7], tmpJz[7][7];
    
    for( unsigned int i=0; i<7; i++ ) {
        Sx1[i] = 0.;
        Sy1[i] = 0.;
        Sz1[i] = 0.;
    }
    
    for( unsigned int j=0; j<7; j++ )
        for( unsigned int k=0; k<7; k++ ) {
            tmpJx[j][k] = 0.;
        }
    for( unsigned int i=0; i<7; i++ )
        for( unsigned int k=0; k<7; k++ ) {
            tmpJy[i][k] = 0.;
        }
    for( unsigned int i=0; i<7; i++ )
        for( unsigned int j=0; j<7; j++ ) {
            tmpJz[i][j] = 0.;
        }
    // --------------------------------------------------------
    // Locate particles & Calculate Esirkepov coef. S, DS and W
    // --------------------------------------------------------
    
    // locate the particle on the primal grid at former time-step & calculate coeff. S0
    delta = deltaold[0*nparts];
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sx0[0] = 0.;
    Sx0[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx0[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx0[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx0[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx0[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx0[6] = 0.;
    
    delta = deltaold[1*nparts];
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sy0[0] = 0.;
    Sy0[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy0[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy0[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy0[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy0[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy0[6] = 0.;
    
    delta = deltaold[2*nparts];
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sz0[0] = 0.;
    Sz0[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sz0[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz0[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sz0[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz0[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sz0[6] = 0.;
    
    // locate the particle on the primal grid at current time-step & calculate coeff. S1
    xpn = particles.position( 0, ipart ) * dx_inv_;
    int ip = round( xpn );
    int ipo = iold[0*nparts];
    int ip_m_ipo = ip-ipo-i_domain_begin;
    delta  = xpn - ( double )ip;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sx1[ip_m_ipo+1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx1[ip_m_ipo+2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[ip_m_ipo+3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx1[ip_m_ipo+4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[ip_m_ipo+5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    ypn = particles.position( 1, ipart ) * dy_inv_;
    int jp = round( ypn );
    int jpo = iold[1*nparts];
    int jp_m_jpo = jp-jpo-j_domain_begin;
    delta  = ypn - ( double )jp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sy1[jp_m_jpo+1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy1[jp_m_jpo+2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[jp_m_jpo+3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy1[jp_m_jpo+4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[jp_m_jpo+5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    zpn = particles.position( 2, ipart ) * dz_inv_;
    int kp = round( zpn );
    int kpo = iold[2*nparts];
    int kp_m_kpo = kp-kpo-k_domain_begin;
    delta  = zpn - ( double )kp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    Sz1[kp_m_kpo+1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sz1[kp_m_kpo+2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz1[kp_m_kpo+3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sz1[kp_m_kpo+4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sz1[kp_m_kpo+5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    // computes Esirkepov coefficients
    for( unsigned int i=0; i < 7; i++ ) {
        DSx[i] = Sx1[i] - Sx0[i];
        DSy[i] = Sy1[i] - Sy0[i];
        DSz[i] = Sz1[i] - Sz0[i];
    }
    
    // ---------------------------
    // Calculate the total current
    // ---------------------------
    
    ipo -= 3;   //This minus 3 come from the order 3 scheme, based on a 7 points stencil from -3 to +3.
    // i/j/kpo stored with - i/j/k_domain_begin in Interpolator
    jpo -= 3;
    kpo -= 3;
    
    int iloc, jloc, kloc, linindex;
    
    // Jx^(d,p,p)
    for( unsigned int i=1 ; i<7 ; i++ ) {
        iloc = i+ipo;
        for( unsigned int j=0 ; j<7 ; j++ ) {
            jloc = j+jpo;
            for( unsigned int k=0 ; k<7 ; k++ ) {
                tmpJx[j][k] -= crx_p * DSx[i-1] * ( Sy0[j]*Sz0[k] + 0.5*DSy[j]*Sz0[k] + 0.5*DSz[k]*Sy0[j] + one_third*DSy[j]*DSz[k] );
                kloc = k+kpo;
                linindex = iloc*nprimz*nprimy+jloc*nprimz+kloc;
                Jx [linindex] += tmpJx[j][k]; // iloc = (i+ipo)*nprimy;
            }
        }
    }//i
    
    // Jy^(p,d,p)
    for( unsigned int i=0 ; i<7 ; i++ ) {
        iloc = i+ipo;
        for( unsigned int j=1 ; j<7 ; j++ ) {
            jloc = j+jpo;
            for( unsigned int k=0 ; k<7 ; k++ ) {
                tmpJy[i][k] -= cry_p * DSy[j-1] * ( Sz0[k]*Sx0[i] + 0.5*DSz[k]*Sx0[i] + 0.5*DSx[i]*Sz0[k] + one_third*DSz[k]*DSx[i] );
                kloc = k+kpo;
                linindex = iloc*nprimz*( nprimy+1 )+jloc*nprimz+kloc;
                Jy [linindex] += tmpJy[i][k]; //
            }
        }
    }//i
    
    // Jz^(p,p,d)
    for( unsigned int i=0 ; i<7 ; i++ ) {
        iloc = i+ipo;
        for( unsigned int j=0 ; j<7 ; j++ ) {
            jloc = j+jpo;
            for( unsigned int k=1 ; k<7 ; k++ ) {
                tmpJz[i][j] -= crz_p * DSz[k-1] * ( Sx0[i]*Sy0[j] + 0.5*DSx[i]*Sy0[j] + 0.5*DSy[j]*Sx0[i] + one_third*DSx[i]*DSy[j] );
                kloc = k+kpo;
                linindex = iloc*( nprimz+1 )*nprimy+jloc*( nprimz+1 )+kloc;
                Jz [linindex] += tmpJz[i][j]; //
            }
        }
    }//i
    
    // Rho^(p,p,p)
    for( unsigned int i=0 ; i<7 ; i++ ) {
        iloc = i+ipo;
        for( unsigned int j=0 ; j<7 ; j++ ) {
            jloc = j+jpo;
            for( unsigned int k=0 ; k<7 ; k++ ) {
                kloc = k+kpo;
                linindex = iloc*nprimz*nprimy+jloc*nprimz+kloc;
                rho[linindex] += charge_weight * Sx1[i]*Sy1[j]*Sz1[k];
            }
        }
    }//i
    
} // END Project local densities (Jx, Jy, Jz, rho, sort)