void CompNovoIdentificationBase::getCIDSpectrumLight_(PeakSpectrum & spec, const String & sequence, DoubleReal prefix, DoubleReal suffix)
  {
    static DoubleReal h2o_mass = EmpiricalFormula("H2O").getMonoWeight();
    Peak1D p;
    DoubleReal b_pos(0.0 + prefix);
    DoubleReal y_pos(h2o_mass + suffix);
    for (Size i = 0; i != sequence.size() - 1; ++i)
    {
      char aa(sequence[i]);
      b_pos += aa_to_weight_[aa];

      char aa2(sequence[sequence.size() - i - 1]);
      y_pos += aa_to_weight_[aa2];

      if (b_pos > min_mz_ && b_pos < max_mz_)
      {
        p.setPosition(b_pos + Constants::PROTON_MASS_U);
        p.setIntensity(1.0f);
        spec.push_back(p);
      }

      if (y_pos > min_mz_ && y_pos < max_mz_)
      {
        p.setPosition(y_pos + Constants::PROTON_MASS_U);
        p.setIntensity(1.0f);
        spec.push_back(p);
      }
    }

    spec.sortByPosition();
    return;
  }
Example #2
0
void CompNovoIdentificationCID::getIdentification(PeptideIdentification & id, const PeakSpectrum & CID_spec)
{
    //if (CID_spec.getPrecursors().begin()->getMZ() > 1000.0)
    //{
    //cerr << "Weight of precursor has been estimated to exceed 2000.0 Da which is the current limit" << endl;
    //return;
    //}

    PeakSpectrum new_CID_spec(CID_spec);
    windowMower_(new_CID_spec, 0.3, 1);

    Param zhang_param;
    zhang_param = zhang_.getParameters();
    zhang_param.setValue("tolerance", fragment_mass_tolerance_);
    zhang_param.setValue("use_gaussian_factor", "true");
    zhang_param.setValue("use_linear_factor", "false");
    zhang_.setParameters(zhang_param);


    Normalizer normalizer;
    Param n_param(normalizer.getParameters());
    n_param.setValue("method", "to_one");
    normalizer.setParameters(n_param);
    normalizer.filterSpectrum(new_CID_spec);

    Size charge(2);
    double precursor_weight(0);     // [M+H]+
    if (!CID_spec.getPrecursors().empty())
    {
        // believe charge of spectrum?
        if (CID_spec.getPrecursors().begin()->getCharge() != 0)
        {
            charge = CID_spec.getPrecursors().begin()->getCharge();
        }
        else
        {
            // TODO estimate charge state
        }
        precursor_weight = CID_spec.getPrecursors().begin()->getMZ() * charge - ((charge - 1) * Constants::PROTON_MASS_U);
    }

    //cerr << "charge=" << charge << ", [M+H]=" << precursor_weight << endl;

    // now delete all peaks that are right of the estimated precursor weight
    Size peak_counter(0);
    for (PeakSpectrum::ConstIterator it = new_CID_spec.begin(); it != new_CID_spec.end(); ++it, ++peak_counter)
    {
        if (it->getPosition()[0] > precursor_weight)
        {
            break;
        }
    }
    if (peak_counter < new_CID_spec.size())
    {
        new_CID_spec.resize(peak_counter);
    }


    static double oxonium_mass = EmpiricalFormula("H2O+").getMonoWeight();

    Peak1D p;
    p.setIntensity(1);
    p.setPosition(oxonium_mass);

    new_CID_spec.push_back(p);

    p.setPosition(precursor_weight);
    new_CID_spec.push_back(p);

    // add complement to spectrum
    /*
    for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
    {
    // get m/z of complement
    double mz_comp = precursor_weight - it1->getPosition()[0] + Constants::PROTON_MASS_U;

    // search if peaks are available that have similar m/z values
    Size count(0);
    bool found(false);
    for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2, ++count)
    {
    if (fabs(mz_comp - it2->getPosition()[0]) < fragment_mass_tolerance)
    {
      // add peak intensity to corresponding peak in new_CID_spec
      new_CID_spec[count].setIntensity(new_CID_spec[count].getIntensity());
    }
    }
    if (!found)
    {
    // infer this peak
    Peak1D p;
    p.setIntensity(it1->getIntensity());
    p.setPosition(mz_comp);
    new_CID_spec.push_back(p);
    }
    }*/

    CompNovoIonScoringCID ion_scoring;
    Param ion_scoring_param(ion_scoring.getParameters());
    ion_scoring_param.setValue("fragment_mass_tolerance", fragment_mass_tolerance_);
    ion_scoring_param.setValue("precursor_mass_tolerance", precursor_mass_tolerance_);
    ion_scoring_param.setValue("decomp_weights_precision", decomp_weights_precision_);
    ion_scoring_param.setValue("double_charged_iso_threshold", (double)param_.getValue("double_charged_iso_threshold"));
    ion_scoring_param.setValue("max_isotope_to_score", param_.getValue("max_isotope_to_score"));
    ion_scoring_param.setValue("max_isotope", max_isotope_);
    ion_scoring.setParameters(ion_scoring_param);

    Map<double, IonScore> ion_scores;
    ion_scoring.scoreSpectrum(ion_scores, new_CID_spec, precursor_weight, charge);

    new_CID_spec.sortByPosition();

    /*
    cerr << "Size of ion_scores " << ion_scores.size() << endl;
    for (Map<double, IonScore>::const_iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
        cerr << it->first << " " << it->second.score << endl;
    }*/

#ifdef WRITE_SCORED_SPEC
    PeakSpectrum filtered_spec(new_CID_spec);
    filtered_spec.clear();
    for (Map<double, CompNovoIonScoringCID::IonScore>::const_iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
        Peak1D p;
        p.setIntensity(it->second.score);
        p.setPosition(it->first);
        filtered_spec.push_back(p);
    }
    DTAFile().store("spec_scored.dta", filtered_spec);
#endif

    set<String> sequences;
    getDecompositionsDAC_(sequences, 0, new_CID_spec.size() - 1, precursor_weight, new_CID_spec, ion_scores);

#ifdef SPIKE_IN
    sequences.insert("AFCVDGEGR");
    sequences.insert("APEFAAPWPDFVPR");
    sequences.insert("AVKQFEESQGR");
    sequences.insert("CCTESLVNR");
    sequences.insert("DAFLGSFLYEYSR");
    sequences.insert("DAIPENLPPLTADFAEDK");
    sequences.insert("DDNKVEDIWSFLSK");
    sequences.insert("DDPHACYSTVFDK");
    sequences.insert("DEYELLCLDGSR");
    sequences.insert("DGAESYKELSVLLPNR");
    sequences.insert("DGASCWCVDADGR");
    sequences.insert("DLFIPTCLETGEFAR");
    sequences.insert("DTHKSEIAHR");
    sequences.insert("DVCKNYQEAK");
    sequences.insert("EACFAVEGPK");
    sequences.insert("ECCHGDLLECADDR");
    sequences.insert("EFLGDKFYTVISSLK");
    sequences.insert("EFTPVLQADFQK");
    sequences.insert("ELFLDSGIFQPMLQGR");
    sequences.insert("ETYGDMADCCEK");
    sequences.insert("EVGCPSSSVQEMVSCLR");
    sequences.insert("EYEATLEECCAK");
    sequences.insert("FADLIQSGTFQLHLDSK");
    sequences.insert("FFSASCVPGATIEQK");
    sequences.insert("FLANVSTVLTSK");
    sequences.insert("FLSGSDYAIR");
    sequences.insert("FTASCPPSIK");
    sequences.insert("GAIEWEGIESGSVEQAVAK");
    sequences.insert("GDVAFIQHSTVEENTGGK");
    sequences.insert("GEPPSCAEDQSCPSER");
    sequences.insert("GEYVPTSLTAR");
    sequences.insert("GQEFTITGQKR");
    sequences.insert("GTFAALSELHCDK");
    sequences.insert("HLVDEPQNLIK");
    sequences.insert("HQDCLVTTLQTQPGAVR");
    sequences.insert("HTTVNENAPDQK");
    sequences.insert("ILDCGSPDTEVR");
    sequences.insert("KCPSPCQLQAER");
    sequences.insert("KGTEFTVNDLQGK");
    sequences.insert("KQTALVELLK");
    sequences.insert("KVPQVSTPTLVEVSR");
    sequences.insert("LALQFTTNAKR");
    sequences.insert("LCVLHEKTPVSEK");
    sequences.insert("LFTFHADICTLPDTEK");
    sequences.insert("LGEYGFQNALIVR");
    sequences.insert("LHVDPENFK");
    sequences.insert("LKECCDKPLLEK");
    sequences.insert("LKHLVDEPQNLIK");
    sequences.insert("LKPDPNTLCDEFK");
    sequences.insert("LLGNVLVVVLAR");
    sequences.insert("LLVVYPWTQR");
    sequences.insert("LRVDPVNFK");
    sequences.insert("LTDEELAFPPLSPSR");
    sequences.insert("LVNELTEFAK");
    sequences.insert("MFLSFPTTK");
    sequences.insert("MPCTEDYLSLILNR");
    sequences.insert("NAPYSGYSGAFHCLK");
    sequences.insert("NECFLSHKDDSPDLPK");
    sequences.insert("NEPNKVPACPGSCEEVK");
    sequences.insert("NLQMDDFELLCTDGR");
    sequences.insert("QAGVQAEPSPK");
    sequences.insert("RAPEFAAPWPDFVPR");
    sequences.insert("RHPEYAVSVLLR");
    sequences.insert("RPCFSALTPDETYVPK");
    sequences.insert("RSLLLAPEEGPVSQR");
    sequences.insert("SAFPPEPLLCSVQR");
    sequences.insert("SAGWNIPIGTLLHR");
    sequences.insert("SCWCVDEAGQK");
    sequences.insert("SGNPNYPHEFSR");
    sequences.insert("SHCIAEVEK");
    sequences.insert("SISSGFFECER");
    sequences.insert("SKYLASASTMDHAR");
    sequences.insert("SLHTLFGDELCK");
    sequences.insert("SLLLAPEEGPVSQR");
    sequences.insert("SPPQCSPDGAFRPVQCK");
    sequences.insert("SREGDPLAVYLK");
    sequences.insert("SRQIPQCPTSCER");
    sequences.insert("TAGTPVSIPVCDDSSVK");
    sequences.insert("TCVADESHAGCEK");
    sequences.insert("TQFGCLEGFGR");
    sequences.insert("TVMENFVAFVDK");
    sequences.insert("TYFPHFDLSHGSAQVK");
    sequences.insert("TYMLAFDVNDEK");
    sequences.insert("VDEVGGEALGR");
    sequences.insert("VDLLIGSSQDDGLINR");
    sequences.insert("VEDIWSFLSK");
    sequences.insert("VGGHAAEYGAEALER");
    sequences.insert("VGTRCCTKPESER");
    sequences.insert("VKVDEVGGEALGR");
    sequences.insert("VKVDLLIGSSQDDGLINR");
    sequences.insert("VLDSFSNGMK");
    sequences.insert("VLSAADKGNVK");
    sequences.insert("VPQVSTPTLVEVSR");
    sequences.insert("VTKCCTESLVNR");
    sequences.insert("VVAASDASQDALGCVK");
    sequences.insert("VVAGVANALAHR");
    sequences.insert("YICDNQDTISSK");
    sequences.insert("YLASASTMDHAR");
    sequences.insert("YNGVFQECCQAEDK");
#endif

    SpectrumAlignmentScore spectra_zhang;
    spectra_zhang.setParameters(zhang_param);

    vector<PeptideHit> hits;
    Size missed_cleavages = param_.getValue("missed_cleavages");
    for (set<String>::const_iterator it = sequences.begin(); it != sequences.end(); ++it)
    {

        Size num_missed = countMissedCleavagesTryptic_(*it);
        if (missed_cleavages < num_missed)
        {
            //cerr << "Two many missed cleavages: " << *it << ", found " << num_missed << ", allowed " << missed_cleavages << endl;
            continue;
        }
        PeakSpectrum CID_sim_spec;
        getCIDSpectrum_(CID_sim_spec, *it, charge);

        //normalizer.filterSpectrum(CID_sim_spec);

        double cid_score = zhang_(CID_sim_spec, CID_spec);

        PeptideHit hit;
        hit.setScore(cid_score);

        hit.setSequence(getModifiedAASequence_(*it));
        hit.setCharge((Int)charge);   //TODO unify charge interface: int or size?
        hits.push_back(hit);
        //cerr << getModifiedAASequence_(*it) << " " << cid_score << " " << endl;
    }

    // rescore the top hits
    id.setHits(hits);
    id.assignRanks();

    hits = id.getHits();

    SpectrumAlignmentScore alignment_score;
    Param align_param(alignment_score.getParameters());
    align_param.setValue("tolerance", fragment_mass_tolerance_);
    align_param.setValue("use_linear_factor", "true");
    alignment_score.setParameters(align_param);

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        //cerr << "Pre: " << it->getRank() << " " << it->getSequence() << " " << it->getScore() << " " << endl;
    }

    Size number_of_prescoring_hits = param_.getValue("number_of_prescoring_hits");
    if (hits.size() > number_of_prescoring_hits)
    {
        hits.resize(number_of_prescoring_hits);
    }

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        PeakSpectrum CID_sim_spec;
        getCIDSpectrum_(CID_sim_spec, getModifiedStringFromAASequence_(it->getSequence()), charge);

        normalizer.filterSpectrum(CID_sim_spec);

        //DTAFile().store("sim_specs/" + it->getSequence().toUnmodifiedString() + "_sim_CID.dta", CID_sim_spec);

        //double cid_score = spectra_zhang(CID_sim_spec, CID_spec);
        double cid_score = alignment_score(CID_sim_spec, CID_spec);

        //cerr << "Final: " << it->getSequence() << " " << cid_score << endl;

        it->setScore(cid_score);
    }

    id.setHits(hits);
    id.assignRanks();
    hits = id.getHits();

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        //cerr << "Fin: " << it->getRank() << " " << it->getSequence() << " " << it->getScore() << " " << endl;
    }

    Size number_of_hits = param_.getValue("number_of_hits");
    if (id.getHits().size() > number_of_hits)
    {
        hits.resize(number_of_hits);
    }

    id.setHits(hits);
    id.assignRanks();

    return;
}
  ExitCodes main_(int, const char**)
  {
    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------

    StringList in_spec = getStringList_("in");
    StringList out = getStringList_("out");
    String in_lib = getStringOption_("lib");
    String compare_function = getStringOption_("compare_function");
    Int precursor_mass_multiplier = getIntOption_("round_precursor_to_integer");
    float precursor_mass_tolerance = getDoubleOption_("precursor_mass_tolerance");
    //Int min_precursor_charge = getIntOption_("min_precursor_charge");
    //Int max_precursor_charge = getIntOption_("max_precursor_charge");
    float remove_peaks_below_threshold = getDoubleOption_("filter:remove_peaks_below_threshold");
    UInt min_peaks = getIntOption_("filter:min_peaks");
    UInt max_peaks = getIntOption_("filter:max_peaks");
    Int cut_peaks_below = getIntOption_("filter:cut_peaks_below");
    StringList fixed_modifications = getStringList_("fixed_modifications");
    StringList variable_modifications = getStringList_("variable_modifications");
    Int top_hits  = getIntOption_("top_hits");
    if (top_hits < -1)
    {
      writeLog_("top_hits (should be  >= -1 )");
      return ILLEGAL_PARAMETERS;
    }
    //-------------------------------------------------------------
    // loading input
    //-------------------------------------------------------------
    if (out.size() != in_spec.size())
    {
      writeLog_("out (should be as many as input files)");
      return ILLEGAL_PARAMETERS;
    }

    time_t prog_time = time(NULL);
    MSPFile spectral_library;
    RichPeakMap query, library;
    //spectrum which will be identified
    MzMLFile spectra;
    spectra.setLogType(log_type_);

    time_t start_build_time = time(NULL);
    //-------------------------------------------------------------
    //building map for faster search
    //-------------------------------------------------------------

    //library containing already identified peptide spectra
    vector<PeptideIdentification> ids;
    spectral_library.load(in_lib, ids, library);

    map<Size, vector<PeakSpectrum> > MSLibrary;
    {
      RichPeakMap::iterator s;
      vector<PeptideIdentification>::iterator i;
      ModificationsDB* mdb = ModificationsDB::getInstance();
      for (s = library.begin(), i = ids.begin(); s < library.end(); ++s, ++i)
      {
        double precursor_MZ = (*s).getPrecursors()[0].getMZ();
        Size MZ_multi = (Size)precursor_MZ * precursor_mass_multiplier;
        map<Size, vector<PeakSpectrum> >::iterator found;
        found = MSLibrary.find(MZ_multi);

        PeakSpectrum librar;
        bool variable_modifications_ok = true;
        bool fixed_modifications_ok = true;
        const AASequence& aaseq = i->getHits()[0].getSequence();
        //variable fixed modifications
        if (!fixed_modifications.empty())
        {
          for (Size i = 0; i < aaseq.size(); ++i)
          {
            const   Residue& mod  = aaseq.getResidue(i);
            for (Size s = 0; s < fixed_modifications.size(); ++s)
            {
              if (mod.getOneLetterCode() == mdb->getModification(fixed_modifications[s]).getOrigin() && fixed_modifications[s] != mod.getModification())
              {
                fixed_modifications_ok = false;
                break;
              }
            }
          }
        }
        //variable modifications
        if (aaseq.isModified() && (!variable_modifications.empty()))
        {
          for (Size i = 0; i < aaseq.size(); ++i)
          {
            if (aaseq.isModified(i))
            {
              const   Residue& mod  = aaseq.getResidue(i);
              for (Size s = 0; s < variable_modifications.size(); ++s)
              {
                if (mod.getOneLetterCode() == mdb->getModification(variable_modifications[s]).getOrigin() && variable_modifications[s] != mod.getModification())
                {
                  variable_modifications_ok = false;
                  break;
                }
              }
            }
          }
        }
        if (variable_modifications_ok && fixed_modifications_ok)
        {
          PeptideIdentification& translocate_pid = *i;
          librar.getPeptideIdentifications().push_back(translocate_pid);
          librar.setPrecursors(s->getPrecursors());
          //library entry transformation
          for (UInt l = 0; l < s->size(); ++l)
          {
            Peak1D peak;
            if ((*s)[l].getIntensity() >  remove_peaks_below_threshold)
            {
              const String& info = (*s)[l].getMetaValue("MSPPeakInfo");
              if (info[0] == '?')
              {
                peak.setIntensity(sqrt(0.2 * (*s)[l].getIntensity()));
              }
              else
              {
                peak.setIntensity(sqrt((*s)[l].getIntensity()));
              }

              peak.setMZ((*s)[l].getMZ());
              peak.setPosition((*s)[l].getPosition());
              librar.push_back(peak);
            }
          }
          if (found != MSLibrary.end())
          {
            found->second.push_back(librar);
          }
          else
          {
            vector<PeakSpectrum> tmp;
            tmp.push_back(librar);
            MSLibrary.insert(make_pair(MZ_multi, tmp));
          }
        }
      }
    }
    time_t end_build_time = time(NULL);
    cout << "Time needed for preprocessing data: " << (end_build_time - start_build_time) << "\n";
    //compare function
    PeakSpectrumCompareFunctor* comparor = Factory<PeakSpectrumCompareFunctor>::create(compare_function);
    //-------------------------------------------------------------
    // calculations
    //-------------------------------------------------------------
    double score;
    StringList::iterator in, out_file;
    for (in  = in_spec.begin(), out_file  = out.begin(); in < in_spec.end(); ++in, ++out_file)
    {
      time_t start_time = time(NULL);
      spectra.load(*in, query);
      //Will hold valuable hits
      vector<PeptideIdentification> peptide_ids;
      vector<ProteinIdentification> protein_ids;
      // Write parameters to ProteinIdentifcation
      ProteinIdentification prot_id;
      //Parameters of identificaion
      prot_id.setIdentifier("test");
      prot_id.setSearchEngineVersion("SpecLibSearcher");
      prot_id.setDateTime(DateTime::now());
      prot_id.setScoreType(compare_function);
      ProteinIdentification::SearchParameters searchparam;
      searchparam.precursor_tolerance = precursor_mass_tolerance;
      prot_id.setSearchParameters(searchparam);
      /***********SEARCH**********/
      for (UInt j = 0; j < query.size(); ++j)
      {
        //Set identifier for each identifications
        PeptideIdentification pid;
        pid.setIdentifier("test");
        pid.setScoreType(compare_function);
        ProteinHit pr_hit;
        pr_hit.setAccession(j);
        prot_id.insertHit(pr_hit);
        //RichPeak1D to Peak1D transformation for the compare function query
        PeakSpectrum quer;
        bool peak_ok = true;
        query[j].sortByIntensity(true);
        double min_high_intensity = 0;

        if (query[j].empty() || query[j].getMSLevel() != 2)
        {
          continue;
        }
        if (query[j].getPrecursors().empty())
        {
          writeLog_("Warning MS2 spectrum without precursor information");
          continue;
        }

        min_high_intensity = (1 / cut_peaks_below) * query[j][0].getIntensity();

        query[j].sortByPosition();
        for (UInt k = 0; k < query[j].size() && k < max_peaks; ++k)
        {
          if (query[j][k].getIntensity() >  remove_peaks_below_threshold && query[j][k].getIntensity() >= min_high_intensity)
          {
            Peak1D peak;
            peak.setIntensity(sqrt(query[j][k].getIntensity()));
            peak.setMZ(query[j][k].getMZ());
            peak.setPosition(query[j][k].getPosition());
            quer.push_back(peak);
          }
        }
        if (quer.size() >= min_peaks)
        {
          peak_ok = true;
        }
        else
        {
          peak_ok = false;
        }
        double query_MZ = query[j].getPrecursors()[0].getMZ();
        if (peak_ok)
        {
          bool charge_one = false;
          Int percent = (Int) Math::round((query[j].size() / 100.0) * 3.0);
          Int margin  = (Int) Math::round((query[j].size() / 100.0) * 1.0);
          for (vector<RichPeak1D>::iterator peak = query[j].end() - 1; percent >= 0; --peak, --percent)
          {
            if (peak->getMZ() < query_MZ)
            {
              break;
            }
          }
          if (percent > margin)
          {
            charge_one = true;
          }
          float min_MZ = (query_MZ - precursor_mass_tolerance) * precursor_mass_multiplier;
          float max_MZ = (query_MZ + precursor_mass_tolerance) * precursor_mass_multiplier;
          for (Size mz = (Size)min_MZ; mz <= ((Size)max_MZ) + 1; ++mz)
          {
            map<Size, vector<PeakSpectrum> >::iterator found;
            found = MSLibrary.find(mz);
            if (found != MSLibrary.end())
            {
              vector<PeakSpectrum>& library = found->second;
              for (Size i = 0; i < library.size(); ++i)
              {
                float this_MZ  = library[i].getPrecursors()[0].getMZ() * precursor_mass_multiplier;
                if (this_MZ >= min_MZ && max_MZ >= this_MZ && ((charge_one == true && library[i].getPeptideIdentifications()[0].getHits()[0].getCharge() == 1) || charge_one == false))
                {
                  PeptideHit hit = library[i].getPeptideIdentifications()[0].getHits()[0];
                  PeakSpectrum& librar = library[i];
                  //Special treatment for SpectraST score as it computes a score based on the whole library
                  if (compare_function == "SpectraSTSimilarityScore")
                  {
                    SpectraSTSimilarityScore* sp = static_cast<SpectraSTSimilarityScore*>(comparor);
                    BinnedSpectrum quer_bin = sp->transform(quer);
                    BinnedSpectrum librar_bin = sp->transform(librar);
                    score = (*sp)(quer, librar); //(*sp)(quer_bin,librar_bin);
                    double dot_bias = sp->dot_bias(quer_bin, librar_bin, score);
                    hit.setMetaValue("DOTBIAS", dot_bias);
                  }
                  else
                  {
                    score = (*comparor)(quer, librar);
                  }

                  DataValue RT(library[i].getRT());
                  DataValue MZ(library[i].getPrecursors()[0].getMZ());
                  hit.setMetaValue("RT", RT);
                  hit.setMetaValue("MZ", MZ);
                  hit.setScore(score);
                  PeptideEvidence pe;
                  pe.setProteinAccession(pr_hit.getAccession());
                  hit.addPeptideEvidence(pe);
                  pid.insertHit(hit);
                }
              }
            }
          }
        }
        pid.setHigherScoreBetter(true);
        pid.sort();
        if (compare_function == "SpectraSTSimilarityScore")
        {
          if (!pid.empty() && !pid.getHits().empty())
          {
            vector<PeptideHit> final_hits;
            final_hits.resize(pid.getHits().size());
            SpectraSTSimilarityScore* sp = static_cast<SpectraSTSimilarityScore*>(comparor);
            Size runner_up = 1;
            for (; runner_up < pid.getHits().size(); ++runner_up)
            {
              if (pid.getHits()[0].getSequence().toUnmodifiedString() != pid.getHits()[runner_up].getSequence().toUnmodifiedString() || runner_up > 5)
              {
                break;
              }
            }
            double delta_D = sp->delta_D(pid.getHits()[0].getScore(), pid.getHits()[runner_up].getScore());
            for (Size s = 0; s < pid.getHits().size(); ++s)
            {
              final_hits[s] = pid.getHits()[s];
              final_hits[s].setMetaValue("delta D", delta_D);
              final_hits[s].setMetaValue("dot product", pid.getHits()[s].getScore());
              final_hits[s].setScore(sp->compute_F(pid.getHits()[s].getScore(), delta_D, pid.getHits()[s].getMetaValue("DOTBIAS")));

              //final_hits[s].removeMetaValue("DOTBIAS");
            }
            pid.setHits(final_hits);
            pid.sort();
            pid.setMZ(query[j].getPrecursors()[0].getMZ());
            pid.setRT(query_MZ);
          }
        }
        if (top_hits != -1 && (UInt)top_hits < pid.getHits().size())
        {
          vector<PeptideHit> hits;
          hits.resize(top_hits);
          for (Size i = 0; i < (UInt)top_hits; ++i)
          {
            hits[i] = pid.getHits()[i];
          }
          pid.setHits(hits);
        }
        peptide_ids.push_back(pid);
      }
      protein_ids.push_back(prot_id);
      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------
      IdXMLFile id_xml_file;
      id_xml_file.store(*out_file, protein_ids, peptide_ids);
      time_t end_time = time(NULL);
      cout << "Search time: " << difftime(end_time, start_time) << " seconds for " << *in << "\n";
    }
    time_t end_time = time(NULL);
    cout << "Total time: " << difftime(end_time, prog_time) << " secconds\n";
    return EXECUTION_OK;
  }
Example #4
0
	bool ShiftModel1D::finish()
	{

		if (!isValid())
		{
			return false;
		}
	
		if (!system_)
		{
			Log.info() << "No valid system found!" << std::endl;
			return false;
		}
		
		// compute the shift model if necessary
		if (compute_shifts_)
		{
			BALL::ShiftModel sm(parameters_.getFilename());
			system_->apply(sm);
		}

		String element = "";
		
		// Peter Bayer proposed as peak width  
		// for H      15Hz
		// for N			10hz
		// for C			5Hz

		// peakwidth is meassured in ppm, since
		// experiments were done in Hz, we convert the values 
		// according to the formular
		// 
		// 		offset [Hz] = offset[ppm] * basic frequency
		//
		// for our prediction we assume a basic frequency of 700 MHz
		float peakwidth = 0.0;
		
		switch(type_)
		{
			case H:
			case H_ON_BACKBONE:
				element = "H";
				//peakwidth = 0.02142; // Peter Bayers estimation
				peakwidth = 0.0032; // this is the former BALL estimation
				break;
			case N:
			case N_BACKBONE:
				element = "N";
				peakwidth = 0.01428;
				break;
			case C:
			case C_BACKBONE:  
				element = "C";
				peakwidth = 0.00714;
				break;
		}
		int counter = 0;

		if (element == "" )
			return true;
		
		for (BALL::ResidueIterator r_it = system_->beginResidue(); +r_it; ++r_it)
		{	
			Atom* atom = NULL;

			for (BALL::AtomIterator at_it = r_it->beginAtom(); +at_it; ++at_it)
			{
				if (hasType_(&(*at_it), type_))
				{
					counter++;
					atom = &(*at_it);
					// we have, get the shift
					float shift = atom->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat();
					Peak1D peak;
					
					float pos = shift; 
					peak.setPosition(pos);
				
					peak.setWidth(peakwidth);
					peak.setIntensity(peak.getIntensity()+1);
					//setAtom();
					peaks_.push_back(peak);
				}
			}
		}

		std::cout << "Number of considered atoms: "<< counter << std::endl;
		return true;
	}
  void CompNovoIdentificationBase::getCIDSpectrum_(PeakSpectrum & spec, const String & sequence, Size charge, DoubleReal prefix, DoubleReal suffix)
  {
    static DoubleReal h2o_mass = EmpiricalFormula("H2O").getMonoWeight();
    static DoubleReal nh3_mass = EmpiricalFormula("NH3").getMonoWeight();
    static DoubleReal co_mass = EmpiricalFormula("CO").getMonoWeight();
    Peak1D p;
    DoubleReal b_pos(0 + prefix);
    DoubleReal y_pos(h2o_mass + suffix);
    bool b_H2O_loss(false), b_NH3_loss(false), y_NH3_loss(false);

    for (Size i = 0; i != sequence.size() - 1; ++i)
    {
      char aa(sequence[i]);
      b_pos += aa_to_weight_[aa];

      char aa2(sequence[sequence.size() - i - 1]);
      y_pos += aa_to_weight_[aa2];
      for (Size z = 1; z <= charge && z < 3; ++z)
      {
        // b-ions
        if (b_pos >= min_mz_ && b_pos <= max_mz_)
        {
          for (Size j = 0; j != max_isotope_; ++j)
          {
            if (z == 1 /*|| b_pos > MIN_DOUBLE_MZ*/)
            {
              p.setPosition((b_pos + (DoubleReal)z * Constants::PROTON_MASS_U + (DoubleReal)j + Constants::NEUTRON_MASS_U) / (DoubleReal)z);
              p.setIntensity(isotope_distributions_[(Size)b_pos][j] * 0.8 / (z * z));
              spec.push_back(p);
            }
          }
        }

        // b-ion losses
        if (b_pos - h2o_mass > min_mz_ && b_pos - h2o_mass < max_mz_)
        {
          if (b_H2O_loss || aa == 'S' || aa == 'T' || aa == 'E' || aa == 'D')
          {
            b_H2O_loss = true;
            p.setPosition((b_pos + z * Constants::PROTON_MASS_U - h2o_mass) / z);
            p.setIntensity(0.02 / (DoubleReal)(z * z));
            if (z == 1 /* || b_pos > MIN_DOUBLE_MZ*/)
            {
              spec.push_back(p);
            }
          }
          if (b_NH3_loss || aa == 'Q' || aa == 'N' || aa == 'R' || aa == 'K')
          {
            b_NH3_loss = true;
            p.setPosition((b_pos + z * Constants::PROTON_MASS_U - nh3_mass) / z);
            p.setIntensity(0.02 / (DoubleReal)(z * z));

            if (z == 1 /* || b_pos > MIN_DOUBLE_MZ*/)
            {
              spec.push_back(p);
            }
          }
        }

        // a-ions only for charge 1
        if (z == 1)
        {
          if (b_pos - co_mass > min_mz_ && b_pos - co_mass < max_mz_)
          {
            // a-ions
            p.setPosition((b_pos + z * Constants::PROTON_MASS_U - co_mass) / (DoubleReal)z);
            p.setIntensity(0.1f);
            spec.push_back(p);
          }
        }



        if (y_pos > min_mz_ && y_pos < max_mz_)
        {
          // y-ions
          for (Size j = 0; j != max_isotope_; ++j)
          {
            if (z == 1 /* || y_pos > MIN_DOUBLE_MZ*/)
            {
              p.setPosition((y_pos + (DoubleReal)z * Constants::PROTON_MASS_U + (DoubleReal)j * Constants::NEUTRON_MASS_U) / (DoubleReal)z);
              p.setIntensity(isotope_distributions_[(Size)y_pos][j] / (DoubleReal) (z * z));
              spec.push_back(p);
            }
          }

          // H2O loss
          p.setPosition((y_pos + z * Constants::PROTON_MASS_U - h2o_mass) / (DoubleReal)z);
          p.setIntensity(0.1 / (DoubleReal)(z * z));
          if (aa2 == 'Q')           // pyroglutamic acid formation
          {
            p.setIntensity(0.5f);
          }
          if (z == 1 /* || y_pos > MIN_DOUBLE_MZ*/)
          {
            spec.push_back(p);
          }

          // NH3 loss
          if (y_NH3_loss || aa2 == 'Q' || aa2 == 'N' || aa2 == 'R' || aa2 == 'K')
          {
            y_NH3_loss = true;
            p.setPosition((y_pos + z * Constants::PROTON_MASS_U - nh3_mass) / (DoubleReal)z);
            p.setIntensity(0.1 / (DoubleReal)(z * z));

            if (z == 1 /*|| y_pos > MIN_DOUBLE_MZ*/)
            {
              spec.push_back(p);
            }
          }
        }
      }
    }

    // if Q1 abundant loss of water -> pyroglutamic acid formation

    if (sequence[0] == 'Q' && prefix == 0 && suffix == 0)
    {
      /*
      for (PeakSpectrum::Iterator it = spec.begin(); it != spec.end(); ++it)
      {
          it->setIntensity(it->getIntensity() * 0.5);
      }*/

      /*
      for (Size j = 0; j != max_isotope; ++j)
      {
  p.setPosition((precursor_weight + charge - 1 + j)/(DoubleReal)charge);
  p.setIntensity(isotope_distributions_[(Int)p.getPosition()[0]][j] * 0.1);
  spec.push_back(p);
      }
      */
    }


    spec.sortByPosition();

    return;
  }