ExitCodes main_(int, const char**) { //------------------------------------------------------------- // parsing parameters //------------------------------------------------------------- String in(getStringOption_("in")); String out(getStringOption_("out")); String pair_in(getStringOption_("pair_in")); String feature_out(getStringOption_("feature_out")); double precursor_mass_tolerance(getDoubleOption_("precursor_mass_tolerance")); double RT_tolerance(getDoubleOption_("RT_tolerance")); double expansion_range(getDoubleOption_("expansion_range")); Size max_isotope(getIntOption_("max_isotope")); Int debug(getIntOption_("debug")); //------------------------------------------------------------- // reading input //------------------------------------------------------------- PeakMap exp; MzMLFile().load(in, exp); exp.sortSpectra(); exp.updateRanges(); // read pair file ifstream is(pair_in.c_str()); String line; vector<SILAC_pair> pairs; while (getline(is, line)) { line.trim(); if (line.empty() || line[0] == '#') { continue; } vector<String> split; line.split(' ', split); if (split.size() != 4) { cerr << "missformated line ('" << line << "') should be (space separated) 'm/z-light m/z-heavy charge rt'" << endl; } SILAC_pair p; p.mz_light = split[0].toDouble(); p.mz_heavy = split[1].toDouble(); p.charge = split[2].toInt(); p.rt = split[3].toDouble(); pairs.push_back(p); } is.close(); //------------------------------------------------------------- // calculations //------------------------------------------------------------- ConsensusMap results_map; results_map.getFileDescriptions()[0].label = "light"; results_map.getFileDescriptions()[0].filename = in; results_map.getFileDescriptions()[1].label = "heavy"; results_map.getFileDescriptions()[1].filename = in; FeatureFinderAlgorithmIsotopeWavelet iso_ff; Param ff_param(iso_ff.getParameters()); ff_param.setValue("max_charge", 3); ff_param.setValue("intensity_threshold", -1.0); iso_ff.setParameters(ff_param); FeatureFinder ff; ff.setLogType(ProgressLogger::NONE); vector<SILACQuantitation> quantlets; FeatureMap all_features; for (PeakMap::ConstIterator it = exp.begin(); it != exp.end(); ++it) { if (it->size() == 0 || it->getMSLevel() != 1 || !it->getInstrumentSettings().getZoomScan()) { continue; } PeakSpectrum new_spec = *it; // get spacing from data double min_spacing(numeric_limits<double>::max()); double last_mz(0); for (PeakSpectrum::ConstIterator pit = new_spec.begin(); pit != new_spec.end(); ++pit) { if (pit->getMZ() - last_mz < min_spacing) { min_spacing = pit->getMZ() - last_mz; } last_mz = pit->getMZ(); } writeDebug_("Min-spacing=" + String(min_spacing), 1); // split the spectrum into two subspectra, by using different hypothesis of // the SILAC pairs Size idx = 0; for (vector<SILAC_pair>::const_iterator pit = pairs.begin(); pit != pairs.end(); ++pit, ++idx) { // in RT window? if (fabs(it->getRT() - pit->rt) >= RT_tolerance) { continue; } // now excise the two ranges for the pair, complete isotope distributions of both, light and heavy PeakSpectrum light_spec, heavy_spec; light_spec.setRT(it->getRT()); heavy_spec.setRT(it->getRT()); for (PeakSpectrum::ConstIterator sit = it->begin(); sit != it->end(); ++sit) { double mz(sit->getMZ()); if (mz - (pit->mz_light - precursor_mass_tolerance) > 0 && (pit->mz_light + (double)max_isotope * Constants::NEUTRON_MASS_U / (double)pit->charge + precursor_mass_tolerance) - mz > 0) { light_spec.push_back(*sit); } if (mz - (pit->mz_heavy - precursor_mass_tolerance) > 0 && (pit->mz_heavy + (double)max_isotope * Constants::NEUTRON_MASS_U / (double)pit->charge + precursor_mass_tolerance) - mz > 0) { heavy_spec.push_back(*sit); } } // expand light spectrum Peak1D p; p.setIntensity(0); if (light_spec.size() > 0) { double lower_border = light_spec.begin()->getMZ() - expansion_range; for (double pos = light_spec.begin()->getMZ(); pos > lower_border; pos -= min_spacing) { p.setMZ(pos); light_spec.insert(light_spec.begin(), p); } double upper_border = light_spec.begin()->getMZ() - expansion_range; for (double pos = light_spec.rbegin()->getMZ(); pos < upper_border; pos += min_spacing) { p.setMZ(pos); light_spec.push_back(p); } } if (heavy_spec.size() > 0) { // expand heavy spectrum double lower_border = heavy_spec.begin()->getMZ() - expansion_range; for (double pos = heavy_spec.begin()->getMZ(); pos > lower_border; pos -= min_spacing) { p.setMZ(pos); heavy_spec.insert(heavy_spec.begin(), p); } double upper_border = heavy_spec.begin()->getMZ() - expansion_range; for (double pos = heavy_spec.rbegin()->getMZ(); pos < upper_border; pos += min_spacing) { p.setMZ(pos); heavy_spec.push_back(p); } } // create experiments for feature finding PeakMap new_exp_light, new_exp_heavy; new_exp_light.addSpectrum(light_spec); new_exp_heavy.addSpectrum(heavy_spec); if (debug > 9) { MzMLFile().store(String(it->getRT()) + "_debugging_light.mzML", new_exp_light); MzMLFile().store(String(it->getRT()) + "_debugging_heavy.mzML", new_exp_heavy); } writeDebug_("Spectrum-id: " + it->getNativeID() + " @ " + String(it->getRT()) + "s", 1); new_exp_light.updateRanges(); new_exp_heavy.updateRanges(); FeatureMap feature_map_light, feature_map_heavy, seeds; if (light_spec.size() > 0) { ff.run("isotope_wavelet", new_exp_light, feature_map_light, ff_param, seeds); } writeDebug_("#light_features=" + String(feature_map_light.size()), 1); if (heavy_spec.size() > 0) { ff.run("isotope_wavelet", new_exp_heavy, feature_map_heavy, ff_param, seeds); } writeDebug_("#heavy_features=" + String(feature_map_heavy.size()), 1); // search if feature maps to m/z value of pair vector<MatchedFeature> light, heavy; for (FeatureMap::const_iterator fit = feature_map_light.begin(); fit != feature_map_light.end(); ++fit) { all_features.push_back(*fit); light.push_back(MatchedFeature(*fit, idx)); } for (FeatureMap::const_iterator fit = feature_map_heavy.begin(); fit != feature_map_heavy.end(); ++fit) { all_features.push_back(*fit); heavy.push_back(MatchedFeature(*fit, idx)); } if (!heavy.empty() && !light.empty()) { writeDebug_("Finding best feature pair out of " + String(light.size()) + " light and " + String(heavy.size()) + " heavy matching features.", 1); // now find "good" matches, means the pair with the smallest m/z deviation Feature best_light, best_heavy; double best_deviation(numeric_limits<double>::max()); Size best_idx(pairs.size()); for (vector<MatchedFeature>::const_iterator fit1 = light.begin(); fit1 != light.end(); ++fit1) { for (vector<MatchedFeature>::const_iterator fit2 = heavy.begin(); fit2 != heavy.end(); ++fit2) { if (fit1->idx != fit2->idx || fit1->f.getCharge() != fit2->f.getCharge() || fabs(fit1->f.getMZ() - pairs[fit1->idx].mz_light) > precursor_mass_tolerance || fabs(fit2->f.getMZ() - pairs[fit2->idx].mz_heavy) > precursor_mass_tolerance) { continue; } double deviation(0); deviation = fabs((fit1->f.getMZ() - pairs[fit1->idx].mz_light) - (fit2->f.getMZ() - pairs[fit2->idx].mz_heavy)); if (deviation < best_deviation && deviation < precursor_mass_tolerance) { best_light = fit1->f; best_heavy = fit2->f; best_idx = fit1->idx; } } } if (best_idx == pairs.size()) { continue; } writeDebug_("Ratio: " + String(best_heavy.getIntensity() / best_light.getIntensity()), 1); ConsensusFeature SILAC_feature; SILAC_feature.setMZ((best_light.getMZ() + best_heavy.getMZ()) / 2.0); SILAC_feature.setRT((best_light.getRT() + best_heavy.getRT()) / 2.0); SILAC_feature.insert(0, best_light); SILAC_feature.insert(1, best_heavy); results_map.push_back(SILAC_feature); quantlets.push_back(SILACQuantitation(best_light.getIntensity(), best_heavy.getIntensity(), best_idx)); } } } // now calculate the final quantitation values from the quantlets Map<Size, vector<SILACQuantitation> > idx_to_quantlet; for (vector<SILACQuantitation>::const_iterator it = quantlets.begin(); it != quantlets.end(); ++it) { idx_to_quantlet[it->idx].push_back(*it); } for (Map<Size, vector<SILACQuantitation> >::ConstIterator it1 = idx_to_quantlet.begin(); it1 != idx_to_quantlet.end(); ++it1) { SILAC_pair silac_pair = pairs[it1->first]; // simply add up all intensities and calculate the final ratio double light_sum(0), heavy_sum(0); vector<double> light_ints, heavy_ints, ratios; for (vector<SILACQuantitation>::const_iterator it2 = it1->second.begin(); it2 != it1->second.end(); ++it2) { light_sum += it2->light_intensity; light_ints.push_back(it2->light_intensity); heavy_sum += it2->heavy_intensity; heavy_ints.push_back(it2->heavy_intensity); ratios.push_back(it2->heavy_intensity / it2->light_intensity * (it2->heavy_intensity + it2->light_intensity)); } double absdev_ratios = Math::absdev(ratios.begin(), ratios.begin() + (ratios.size()) / (heavy_sum + light_sum)); cout << "Ratio: " << silac_pair.mz_light << " <-> " << silac_pair.mz_heavy << " @ " << silac_pair.rt << " s, ratio(h/l) " << heavy_sum / light_sum << " +/- " << absdev_ratios << " (#scans for quantation: " << String(it1->second.size()) << " )" << endl; } //------------------------------------------------------------- // writing output //------------------------------------------------------------- if (feature_out != "") { FeatureXMLFile().store(feature_out, all_features); } writeDebug_("Writing output", 1); ConsensusXMLFile().store(out, results_map); return EXECUTION_OK; }
ExitCodes main_(int, const char**) { // parsing parameters String in(getStringOption_("in")); String feature_in(getStringOption_("feature_in")); String out(getStringOption_("out")); double precursor_mass_tolerance(getDoubleOption_("precursor_mass_tolerance")); // reading input FileHandler fh; FileTypes::Type in_type = fh.getType(in); PeakMap exp; fh.loadExperiment(in, exp, in_type, log_type_, false, false); exp.sortSpectra(); FeatureMap feature_map; if (feature_in != "") { FeatureXMLFile().load(feature_in, feature_map); } // calculations FeatureFinderAlgorithmIsotopeWavelet iso_ff; Param ff_param(iso_ff.getParameters()); ff_param.setValue("max_charge", getIntOption_("max_charge")); ff_param.setValue("intensity_threshold", getDoubleOption_("intensity_threshold")); iso_ff.setParameters(ff_param); FeatureFinder ff; ff.setLogType(ProgressLogger::NONE); PeakMap exp2 = exp; exp2.clear(false); for (PeakMap::ConstIterator it = exp.begin(); it != exp.end(); ++it) { if (it->size() != 0) { exp2.addSpectrum(*it); } } exp = exp2; exp.updateRanges(); // TODO check MS2 and MS1 counts ProgressLogger progresslogger; progresslogger.setLogType(log_type_); progresslogger.startProgress(0, exp.size(), "Correcting precursor masses"); for (PeakMap::Iterator it = exp.begin(); it != exp.end(); ++it) { progresslogger.setProgress(exp.end() - it); if (it->getMSLevel() != 2) { continue; } // find first MS1 scan of the MS/MS scan PeakMap::Iterator ms1_it = it; while (ms1_it != exp.begin() && ms1_it->getMSLevel() != 1) { --ms1_it; } if (ms1_it == exp.begin() && ms1_it->getMSLevel() != 1) { writeLog_("Did not find a MS1 scan to the MS/MS scan at RT=" + String(it->getRT())); continue; } if (ms1_it->size() == 0) { writeDebug_("No peaks in scan at RT=" + String(ms1_it->getRT()) + String(", skipping"), 1); continue; } PeakMap::Iterator ms2_it = ms1_it; ++ms2_it; while (ms2_it != exp.end() && ms2_it->getMSLevel() == 2) { // first: error checks if (ms2_it->getPrecursors().empty()) { writeDebug_("Warning: found no precursors of spectrum RT=" + String(ms2_it->getRT()) + ", skipping it.", 1); ++ms2_it; continue; } else if (ms2_it->getPrecursors().size() > 1) { writeLog_("Warning: found more than one precursor of spectrum RT=" + String(ms2_it->getRT()) + ", using first one."); } Precursor prec = *ms2_it->getPrecursors().begin(); double prec_pos = prec.getMZ(); PeakMap new_exp; // now excise small region from the MS1 spec for the feature finder (isotope pattern must be covered...) PeakSpectrum zoom_spec; for (PeakSpectrum::ConstIterator pit = ms1_it->begin(); pit != ms1_it->end(); ++pit) { if (pit->getMZ() > prec_pos - 3 && pit->getMZ() < prec_pos + 3) { zoom_spec.push_back(*pit); } } new_exp.addSpectrum(zoom_spec); new_exp.updateRanges(); FeatureMap features, seeds; ff.run("isotope_wavelet", new_exp, features, ff_param, seeds); if (features.empty()) { writeDebug_("No features found for scan RT=" + String(ms1_it->getRT()), 1); ++ms2_it; continue; } double max_int(numeric_limits<double>::min()); double min_dist(numeric_limits<double>::max()); Size max_int_feat_idx(0); for (Size i = 0; i != features.size(); ++i) { if (fabs(features[i].getMZ() - prec_pos) < precursor_mass_tolerance && features[i].getIntensity() > max_int) { max_int_feat_idx = i; max_int = features[i].getIntensity(); min_dist = fabs(features[i].getMZ() - prec_pos); } } writeDebug_(" max_int=" + String(max_int) + " mz=" + String(features[max_int_feat_idx].getMZ()) + " charge=" + String(features[max_int_feat_idx].getCharge()), 5); if (min_dist < precursor_mass_tolerance) { prec.setMZ(features[max_int_feat_idx].getMZ()); prec.setCharge(features[max_int_feat_idx].getCharge()); vector<Precursor> precs; precs.push_back(prec); ms2_it->setPrecursors(precs); writeDebug_("Correcting precursor mass of spectrum RT=" + String(ms2_it->getRT()) + " from " + String(prec_pos) + " to " + String(prec.getMZ()) + " (z=" + String(prec.getCharge()) + ")", 1); } ++ms2_it; } it = --ms2_it; } progresslogger.endProgress(); // writing output fh.storeExperiment(out, exp, log_type_); return EXECUTION_OK; }
ExitCodes main_(int, const char **) { //input and output file names .. String in = getStringOption_("in"); String out = getStringOption_("out"); //prevent loading of fragment spectra PeakFileOptions options; options.setMSLevels(vector<Int>(1, 1)); //reading input data MzMLFile f; f.getOptions() = options; f.setLogType(log_type_); PeakMap exp; f.load(in, exp); exp.updateRanges(); //no seeds supported FeatureMap<> seeds; //setup of FeatureFinder FeatureFinder ff; ff.setLogType(log_type_); // A map for the resulting features FeatureMap<> features; // get parameters specific for the feature finder Param feafi_param = getParam_().copy("algorithm:", true); writeDebug_("Parameters passed to FeatureFinder", feafi_param, 3); // Apply the feature finder ff.run(FeatureFinderAlgorithmIsotopeWavelet<Peak1D, Feature>::getProductName(), exp, features, feafi_param, seeds); features.applyMemberFunction(&UniqueIdInterface::setUniqueId); // DEBUG if (debug_level_ > 10) { FeatureMap<>::Iterator it; for (it = features.begin(); it != features.end(); ++it) { if (!it->isMetaEmpty()) { vector<String> keys; it->getKeys(keys); LOG_INFO << "Feature " << it->getUniqueId() << endl; for (Size i = 0; i < keys.size(); i++) { LOG_INFO << " " << keys[i] << " = " << it->getMetaValue(keys[i]) << endl; } } } } //------------------------------------------------------------- // writing files //------------------------------------------------------------- //annotate output with data processing info addDataProcessing_(features, getProcessingInfo_(DataProcessing::QUANTITATION)); // write features to user specified output file FeatureXMLFile map_file; map_file.store(out, features); return EXECUTION_OK; }
ExitCodes main_(int, const char**) { //input file names String in = getStringOption_("in"); String out = getStringOption_("out"); String out_mzq = getStringOption_("out_mzq"); //prevent loading of fragment spectra PeakFileOptions options; options.setMSLevels(vector<Int>(1, 1)); //reading input data MzMLFile f; f.getOptions() = options; f.setLogType(log_type_); PeakMap exp; f.load(in, exp); exp.updateRanges(); if (exp.getSpectra().empty()) { throw OpenMS::Exception::FileEmpty(__FILE__, __LINE__, __FUNCTION__, "Error: No MS1 spectra in input file."); } // determine type of spectral data (profile or centroided) SpectrumSettings::SpectrumType spectrum_type = exp[0].getType(); if (spectrum_type == SpectrumSettings::RAWDATA) { if (!getFlag_("force")) { throw OpenMS::Exception::IllegalArgument(__FILE__, __LINE__, __FUNCTION__, "Error: Profile data provided but centroided spectra expected. To enforce processing of the data set the -force flag."); } } //load seeds FeatureMap seeds; if (getStringOption_("seeds") != "") { FeatureXMLFile().load(getStringOption_("seeds"), seeds); } //setup of FeatureFinder FeatureFinder ff; ff.setLogType(log_type_); // A map for the resulting features FeatureMap features; // get parameters specific for the feature finder Param feafi_param = getParam_().copy("algorithm:", true); writeDebug_("Parameters passed to FeatureFinder", feafi_param, 3); // Apply the feature finder ff.run(FeatureFinderAlgorithmPicked::getProductName(), exp, features, feafi_param, seeds); features.applyMemberFunction(&UniqueIdInterface::setUniqueId); // DEBUG if (debug_level_ > 10) { FeatureMap::Iterator it; for (it = features.begin(); it != features.end(); ++it) { if (!it->isMetaEmpty()) { vector<String> keys; it->getKeys(keys); LOG_INFO << "Feature " << it->getUniqueId() << endl; for (Size i = 0; i < keys.size(); i++) { LOG_INFO << " " << keys[i] << " = " << it->getMetaValue(keys[i]) << endl; } } } } //------------------------------------------------------------- // writing files //------------------------------------------------------------- //annotate output with data processing info addDataProcessing_(features, getProcessingInfo_(DataProcessing::QUANTITATION)); // write features to user specified output file FeatureXMLFile map_file; // Remove detailed convex hull information and subordinate features // (unless requested otherwise) to reduce file size of feature files // unless debugging is turned on. if (debug_level_ < 5) { FeatureMap::Iterator it; for (it = features.begin(); it != features.end(); ++it) { it->getConvexHull().expandToBoundingBox(); for (Size i = 0; i < it->getConvexHulls().size(); ++i) { it->getConvexHulls()[i].expandToBoundingBox(); } it->getSubordinates().clear(); } } map_file.store(out, features); if (!out_mzq.trim().empty()) { MSQuantifications msq(features, exp.getExperimentalSettings(), exp[0].getDataProcessing()); msq.assignUIDs(); MzQuantMLFile file; file.store(out_mzq, msq); } return EXECUTION_OK; }
ExitCodes main_(int, const char**) override { ExitCodes ret = TOPPMapAlignerBase::checkParameters_(); if (ret != EXECUTION_OK) return ret; MapAlignmentAlgorithmPoseClustering algorithm; Param algo_params = getParam_().copy("algorithm:", true); algorithm.setParameters(algo_params); algorithm.setLogType(log_type_); StringList in_files = getStringList_("in"); StringList out_files = getStringList_("out"); StringList out_trafos = getStringList_("trafo_out"); Size reference_index = getIntOption_("reference:index"); String reference_file = getStringOption_("reference:file"); FileTypes::Type in_type = FileHandler::getType(in_files[0]); String file; if (!reference_file.empty()) { file = reference_file; reference_index = in_files.size(); // points to invalid index } else if (reference_index > 0) // normal reference (index was checked before) { file = in_files[--reference_index]; // ref. index is 1-based in parameters, but should be 0-based here } else if (reference_index == 0) // no reference given { LOG_INFO << "Picking a reference (by size) ..." << std::flush; // use map with highest number of features as reference: Size max_count(0); FeatureXMLFile f; for (Size i = 0; i < in_files.size(); ++i) { Size s = 0; if (in_type == FileTypes::FEATUREXML) { s = f.loadSize(in_files[i]); } else if (in_type == FileTypes::MZML) // this is expensive! { PeakMap exp; MzMLFile().load(in_files[i], exp); exp.updateRanges(1); s = exp.getSize(); } if (s > max_count) { max_count = s; reference_index = i; } } LOG_INFO << " done" << std::endl; file = in_files[reference_index]; } FeatureXMLFile f_fxml; if (out_files.empty()) // no need to store featureXML, thus we can load only minimum required information { f_fxml.getOptions().setLoadConvexHull(false); f_fxml.getOptions().setLoadSubordinates(false); } if (in_type == FileTypes::FEATUREXML) { FeatureMap map_ref; FeatureXMLFile f_fxml_tmp; // for the reference, we never need CH or subordinates f_fxml_tmp.getOptions().setLoadConvexHull(false); f_fxml_tmp.getOptions().setLoadSubordinates(false); f_fxml_tmp.load(file, map_ref); algorithm.setReference(map_ref); } else if (in_type == FileTypes::MZML) { PeakMap map_ref; MzMLFile().load(file, map_ref); algorithm.setReference(map_ref); } ProgressLogger plog; plog.setLogType(log_type_); plog.startProgress(0, in_files.size(), "Aligning input maps"); Size progress(0); // thread-safe progress // TODO: it should all work on featureXML files, since we might need them for output anyway. Converting to consensusXML is just wasting memory! #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 1) #endif for (int i = 0; i < static_cast<int>(in_files.size()); ++i) { TransformationDescription trafo; if (in_type == FileTypes::FEATUREXML) { FeatureMap map; // workaround for loading: use temporary FeatureXMLFile since it is not thread-safe FeatureXMLFile f_fxml_tmp; // do not use OMP-firstprivate, since FeatureXMLFile has no copy c'tor f_fxml_tmp.getOptions() = f_fxml.getOptions(); f_fxml_tmp.load(in_files[i], map); if (i == static_cast<int>(reference_index)) trafo.fitModel("identity"); else algorithm.align(map, trafo); if (out_files.size()) { MapAlignmentTransformer::transformRetentionTimes(map, trafo); // annotate output with data processing info addDataProcessing_(map, getProcessingInfo_(DataProcessing::ALIGNMENT)); f_fxml_tmp.store(out_files[i], map); } } else if (in_type == FileTypes::MZML) { PeakMap map; MzMLFile().load(in_files[i], map); if (i == static_cast<int>(reference_index)) trafo.fitModel("identity"); else algorithm.align(map, trafo); if (out_files.size()) { MapAlignmentTransformer::transformRetentionTimes(map, trafo); // annotate output with data processing info addDataProcessing_(map, getProcessingInfo_(DataProcessing::ALIGNMENT)); MzMLFile().store(out_files[i], map); } } if (!out_trafos.empty()) { TransformationXMLFile().store(out_trafos[i], trafo); } #ifdef _OPENMP #pragma omp critical (MAPose_Progress) #endif { plog.setProgress(++progress); // thread safe progress counter } } plog.endProgress(); return EXECUTION_OK; }
ExitCodes main_(int, const char **) override { //------------------------------------------------------------- // parameter handling //------------------------------------------------------------- String in = getStringOption_("in"); String out = getStringOption_("out"); //------------------------------------------------------------- // loading input //------------------------------------------------------------- PeakMap exp; MzMLFile f; f.load(in, exp); //------------------------------------------------------------- // calculations //------------------------------------------------------------- //determine maximum peak exp.updateRanges(); double max = exp.getMaxInt() / 100.0; for (PeakMap::Iterator it = exp.begin(); it != exp.end(); ++it) { if (it->getMSLevel() < 2) { for (PeakMap::SpectrumType::Iterator it2 = it->begin(); it2 != it->end(); ++it2) { it2->setIntensity(it2->getIntensity() / max); } } } /// @todo add chromatogram support for normalization, e.g. for MRM stuff (Andreas) /* vector<MSChromatogram > chroms = exp.getChromatograms(); double sum(0); for (vector<MSChromatogram >::iterator it = chroms.begin(); it != chroms.end(); ++it) { for (MSChromatogram::Iterator it2 = it->begin(); it2 != it->end(); ++it2) { sum += it2->getIntensity(); } } for (vector<MSChromatogram >::iterator it = chroms.begin(); it != chroms.end(); ++it) { for (MSChromatogram::Iterator it2 = it->begin(); it2 != it->end(); ++it2) { it2->setIntensity(it2->getIntensity() / sum * 1000000.0); } } exp.setChromatograms(chroms); */ //------------------------------------------------------------- // writing output //------------------------------------------------------------- //annotate output with data processing info addDataProcessing_(exp, getProcessingInfo_(DataProcessing::NORMALIZATION)); f.store(out, exp); return EXECUTION_OK; }