int main() { Vectors3DSOA points, dirs, intermediatepoints, intermediatedirs; StructOfCoord rpoints, rintermediatepoints, rdirs, rintermediatedirs; int np=1024; int NREPS = 1000; points.alloc(np); dirs.alloc(np); // generate benchmark cases TransformationMatrix const * identity = new TransformationMatrix(0,0,0,0,0,0); // the world volume is a tube double worlddx = 100.; double worlddy = 100; double worlddz = 10.; BoxParameters * worldp = new BoxParameters(worlddx, worlddy, worlddz); PhysicalVolume * world = GeoManager::MakePlacedBox( worldp , identity ); double volworld = worldp->GetVolume(); BoxParameters * cellparams = new BoxParameters( worlddx/20., worlddy/20., worlddz/4 ); BoxParameters * waiverparams = new BoxParameters( worlddx/3., worlddy/3., worlddz/2 ); double volcell = cellparams->GetVolume(); double volwaiver = waiverparams->GetVolume(); PhysicalVolume *waiver = GeoManager::MakePlacedBox( waiverparams, identity); // this just adds daughters which have been created in a placed way waiver->AddDaughter(GeoManager::MakePlacedBox( cellparams, new TransformationMatrix( -waiverparams->GetDX()/2., waiverparams->GetDY()/2., 0, 0, 0, 0) )); waiver->AddDaughter(GeoManager::MakePlacedBox( cellparams, new TransformationMatrix( waiverparams->GetDX()/2., waiverparams->GetDY()/2., 0, 0, 0, 45) )); waiver->AddDaughter(GeoManager::MakePlacedBox( cellparams, new TransformationMatrix( waiverparams->GetDX()/2., -waiverparams->GetDY()/2., 0, 0, 0, 0) )); waiver->AddDaughter(GeoManager::MakePlacedBox( cellparams, new TransformationMatrix( -waiverparams->GetDX()/2., -waiverparams->GetDY()/2., 0, 0, 0, 45))); // at this moment the waiver is not yet placed into the world; this will be done now with the new interface // we are basically replacing the waiver by using its existing parameters and daughterlist // TODO: the future interface will hide much of the details here world->PlaceDaughter(GeoManager::MakePlacedBox(waiverparams, new TransformationMatrix( worlddx/2., worlddy/2., 0, 0, 0, 45 )), waiver->GetDaughterList()); world->PlaceDaughter(GeoManager::MakePlacedBox(waiverparams, new TransformationMatrix( -worlddx/2., worlddy/2., 0, 0, 0, 0 )), waiver->GetDaughterList()); world->PlaceDaughter(GeoManager::MakePlacedBox(waiverparams, new TransformationMatrix( -worlddx/2., -worlddy/2., 0, 0, 0, 45 )), waiver->GetDaughterList()); world->PlaceDaughter(GeoManager::MakePlacedBox(waiverparams, new TransformationMatrix( worlddx/2., -worlddy/2., 0, 0, 0, 0 )), waiver->GetDaughterList()); world->fillWithRandomPoints(points,np); world->fillWithBiasedDirections(points, dirs, np, 9/10.); std::cerr << " Number of daughters " << world->GetNumberOfDaughters() << std::endl; // try to locate a global point StopWatch timer; timer.Start(); VolumePath path(4), newpath(4); std::map<PhysicalVolume const *, int> volcounter; int total=0; TransformationMatrix * globalm=new TransformationMatrix(); TransformationMatrix * globalm2 = new TransformationMatrix(); SimpleVecNavigator nav(1, world); Vector3D displacementvector( worlddx/20, 0., 0. ); int counter[2]={0,0}; for(int i=0;i<1000000;i++) { globalm->SetToIdentity(); globalm2->SetToIdentity(); Vector3D point; Vector3D localpoint; Vector3D newlocalpoint; Vector3D cmppoint; PhysicalVolume::samplePoint( point, worlddx, worlddy, worlddz, 1 ); // PhysicalVolume const * deepestnode = nav.LocateGlobalPoint( world, point, localpoint, path, globalm2 ); localpoint.x = point.x; localpoint.y = point.y; localpoint.z = point.z; PhysicalVolume const * deepestnode = nav.LocateGlobalPoint( world, point, localpoint, path ); /* if(volcounter.find(deepestnode) == volcounter.end()) { volcounter[deepestnode]=1; } else { volcounter[deepestnode]++; } */ // do the cross check // Vector3D localpoint; // check one thing localpoint.x = localpoint.x + displacementvector.x; localpoint.y = localpoint.y + displacementvector.y; localpoint.z = localpoint.z + displacementvector.z; PhysicalVolume const * newnode = nav.LocateLocalPointFromPath( localpoint, path, newpath, globalm2 ); if( newnode == deepestnode ) { counter[0]++; } else { counter[1]++; } // path.GetGlobalMatrixFromPath(globalm); // globalm->LocalToMaster(localpoint, cmppoint); // std::cerr << " ######################## " << std::endl; // point.print(); // globalm->print(); // cmppoint.print(); // std::cerr << " ------------------------ " << std::endl; /* std::cerr << " ######################## " << std::endl; globalm->print(); std::cerr << " ;;;;;;; " << std::endl; globalm2->print(); std::cerr << " ------------------- " << std::endl; //globalm2->MasterToLocal<1,-1>( point, localpoint ); PhysicalVolume const * cmpnode = nav.LocateLocalPointFromPath( localpoint, path, newpath ); //assert( cmpnode == deepestnode ); */ // path.Print(); path.Clear(); newpath.Clear(); // deepestnode->printInfo(); } timer.Stop(); std::cerr << " step took " << timer.getDeltaSecs() << " seconds " << std::endl; std::cerr << counter[0] << std::endl; std::cerr << counter[1] << std::endl; for(auto k=volcounter.begin();k!=volcounter.end();k++) { total+=k->second; } for(auto k=volcounter.begin();k!=volcounter.end();k++) { std::cerr << k->first << " " << k->second << " " << k->second/(1.*total) << std::endl; } std::cerr << 4*volcell/volworld << std::endl; std::cerr << volwaiver/volworld << std::endl; std::cerr << (volworld-4*volwaiver)/volworld << std::endl; }
int main() { Vectors3DSOA points, dirs, intermediatepoints, intermediatedirs; int np=1024; int NREPS = 1000; points.alloc(np); dirs.alloc(np); // generate benchmark cases TransformationMatrix const * identity = new TransformationMatrix(0,0,0,0,0,0); double L = 10.; double Lz = 10.; const double Sqrt2 = sqrt(2.); BoxParameters * worldp = new BoxParameters(L, L, Lz ); PhysicalVolume * world = GeoManager::MakePlacedBox( worldp , identity ); double volworld = worldp->GetVolume(); BoxParameters * boxlevel2 = new BoxParameters( Sqrt2*L/2./2., Sqrt2*L/2./2., Lz ); BoxParameters * boxlevel3 = new BoxParameters( L/2./2. ,L/2./2., Lz); BoxParameters * boxlevel1 = new BoxParameters( L/2., L/2., Lz ); PhysicalVolume * box2 = GeoManager::MakePlacedBox(boxlevel2, new TransformationMatrix(0,0,0,0,0,45)); PhysicalVolume * box3 = GeoManager::MakePlacedBox( boxlevel3, new TransformationMatrix(0,0,0,0,0,-45)); box2->AddDaughter( box3 ); // rotated 45 degree around z axis PhysicalVolume * box1 = GeoManager::MakePlacedBox(boxlevel1, identity); box1->AddDaughter( box2 ); PhysicalVolume const * box1left = world->PlaceDaughter(GeoManager::MakePlacedBox(boxlevel1, new TransformationMatrix(-L/2.,0.,0.,0.,0.,0)), box1->GetDaughters()); PhysicalVolume const * box1right = world->PlaceDaughter(GeoManager::MakePlacedBox(boxlevel1, new TransformationMatrix(+L/2.,0.,0.,0.,0.,0)), box1->GetDaughters()); // perform basic tests SimpleVecNavigator nav(1, world); Vector3D result; VolumePath path(4); PhysicalVolume const * vol; { // point should be in world Vector3D p1(0, 9*L/10., 0); path.Clear(); vol=nav.LocatePoint( world, p1, result, path ); assert(vol==world); } { // outside world check Vector3D p2(-2*L, 9*L/10., 0); path.Clear(); vol=nav.LocatePoint( world, p2, result, path ); assert(vol==NULL); } { // inside box3 check Vector3D p3(-L/2., 0., 0.); path.Clear(); vol=nav.LocatePoint( world, p3, result, path ); assert(vol==box3); std::cerr << path.GetCurrentLevel() << std::endl; assert(path.GetCurrentLevel( ) == 4); assert(result == Vector3D(0.,0.,0)); } { // inside box3 check iterative Vector3D p3(-L/2., 0., 0.); path.Clear(); TransformationMatrix * m = new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); path.Print(); assert(vol==box3); std::cerr << path.GetCurrentLevel() << std::endl; assert(path.GetCurrentLevel( ) == 4); assert(result == Vector3D(0.,0.,0)); } { // inside box3 check ( but second box ) Vector3D p3(L/2., 0., 0.); path.Clear(); TransformationMatrix * m1, * m2; m1=new TransformationMatrix(); m2=new TransformationMatrix(); vol=nav.LocatePoint( world, p3, result, path, m1 ); assert(vol==box3); std::cerr << path.GetCurrentLevel() << std::endl; assert(path.GetCurrentLevel( ) == 4); assert(result == Vector3D(0.,0.,0)); path.GetGlobalMatrixFromPath( m2 ); assert( m1->Equals(m2) ); delete m1; delete m2; } { // inside box2 check Vector3D p4(-L/2., 9*L/2./10., 0.); path.Clear(); vol=nav.LocatePoint( world, p4, result, path ); assert(vol==box2); } { // inside box2 check ( on other side ) Vector3D p4(L/2., 9*L/2./10., 0.); path.Clear(); vol=nav.LocatePoint( world, p4, result, path ); assert(vol==box2); } { // inside box1 check Vector3D p5(-9.*L/10., 9*L/2./10., 0.); path.Clear(); vol=nav.LocatePoint( world, p5, result, path ); assert(vol == box1left ); } { // inside box1 check Vector3D p6(9.*L/10., 9*L/2./10., 0.); path.Clear(); vol=nav.LocatePoint( world, p6, result, path ); assert(vol == box1right ); assert(path.GetCurrentLevel( ) == 2); // this means actuall "next" free level } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(9*L/2./10.,0,0); TransformationMatrix * m=new TransformationMatrix(); TransformationMatrix * m2=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); assert(vol==box3); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box2 ); path.Print(); assert( path.GetCurrentLevel() == 3 ); // check the global transformation matrix path.GetGlobalMatrixFromPath( m2 ); assert( m->Equals( m2 ) ); delete m; delete m2; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(0.1,0.,0.); TransformationMatrix * m=new TransformationMatrix(); TransformationMatrix * m2=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box3 ); assert( path.GetCurrentLevel() == 4 ); path.GetGlobalMatrixFromPath( m2 ); assert(m2->Equals(m)); // testing new point also assert(newpoint == d); delete m; delete m2; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(Sqrt2*L/4.+0.1,Sqrt2*L/4.+0.1,0); TransformationMatrix * m=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box1left ); assert( path.GetCurrentLevel() == 2 ); delete m; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(Sqrt2*L/2.+0.1,Sqrt2*L/2.+0.1,0); TransformationMatrix * m=new TransformationMatrix(); TransformationMatrix * m2=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; path.Print(); assert( vol==world ); assert( path.GetCurrentLevel() == 1 ); path.GetGlobalMatrixFromPath( m2 ); assert( m2->Equals( m ) ); delete m; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(4*L,4*L,0); TransformationMatrix * m=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==NULL ); delete m; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(L,0,0); TransformationMatrix * m=new TransformationMatrix(); TransformationMatrix * m2=new TransformationMatrix(); vol=nav.LocatePoint_iterative( world, p3, result, path, m ); assert( vol==box3 ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative_Iterative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box3 ); assert( path.GetCurrentLevel() == 4 ); path.GetGlobalMatrixFromPath( m2 ); assert( m2->Equals(m) ); assert(newpoint==Vector3D(0,0,0)); delete m; delete m2; } // now do location and transportation { Vector3D p3(-L/2., 0., 0.); path.Clear(); Vector3D newpoint; Vector3D d(L+9*L/20.,0,0); TransformationMatrix * m=new TransformationMatrix(); vol=nav.LocatePoint( world, p3, result, path ); assert( vol==box3 ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box2 ); assert( path.GetCurrentLevel() == 3 ); delete m; } // now do location and transportation { Vector3D p3(-9*L/10., -9*L/20., 0.); path.Clear(); Vector3D newpoint; Vector3D d(L/2.,L/2.,0); TransformationMatrix * m=new TransformationMatrix(); vol=nav.LocatePoint( world, p3, result, path ); assert( vol==box1left ); // move point in local reference frame Vector3D p = result+d; vol=nav.LocateLocalPointFromPath_Relative( p, newpoint, path, m ); // LocateLocalPointFromPath_Relative(Vector3D const & point, Vector3D & localpoint, VolumePath & path, TransformationMatrix * ) const; assert( vol==box3 ); assert( path.GetCurrentLevel() == 4 ); delete m; } // testing the NavigationAndStepInterface { // setup point in world Vector3D p(-L/2, 9*L/10., 0 ); Vector3D d(0,-1,0); Vector3D resultpoint; VolumePath path(4), newpath(4); TransformationMatrix *m = new TransformationMatrix(); TransformationMatrix *m2 = new TransformationMatrix(); vol = nav.LocatePoint_iterative( world, p, resultpoint, path, m ); assert(vol==world); // do one step double step; nav.FindNextBoundaryAndStep_iterative(m, p, d, path, newpath, resultpoint, step); newpath.Print(); resultpoint.print(); std::cerr << " step " << step << std::endl; std::cerr << " current global point " << resultpoint << std::endl; // at this moment we can do some tests assert( newpath.Top() == box2 ); newpath.GetGlobalMatrixFromPath(m2); assert( m2->Equals(m) ); // go on with navigation ( enter daughter here ( from box2 to box3 ) ) p=resultpoint; path=newpath; nav.FindNextBoundaryAndStep_iterative(m, p, d, path, newpath, resultpoint, step); std::cerr << " step " << step << std::endl; std::cerr << " current global point " << resultpoint << std::endl; newpath.Print(); newpath.GetGlobalMatrixFromPath(m2); assert( m2->Equals(m) ); assert( newpath.Top() == box3 ); // go on with navigation p = resultpoint; path=newpath; nav.FindNextBoundaryAndStep(m, p, d, path, newpath, resultpoint, step); std::cerr << " step " << step << std::endl; std::cerr << " current global point " << resultpoint << std::endl; assert( newpath.Top() == box2 ); // go on with navigation p = resultpoint; path=newpath; nav.FindNextBoundaryAndStep(m, p, d, path, newpath, resultpoint, step); std::cerr << " step " << step << std::endl; std::cerr << " current global point " << resultpoint << std::endl; assert( newpath.Top() == world ); // go on with navigation ( particle should now leave the world ) p = resultpoint; path=newpath; newpath.Clear(); nav.FindNextBoundaryAndStep(m, p, d, path, newpath, resultpoint, step); std::cerr << " step " << step << std::endl; std::cerr << " current global point " << resultpoint << std::endl; assert( newpath.Top() == NULL ); } std::cout << " ALL tests passed " << std::endl; }
int main(int argc, char * argv[]) { bool iterative=true; if(argc>1) iterative=false; Vectors3DSOA points, dirs, intermediatepoints, intermediatedirs; int np=1024; int NREPS = 1000; points.alloc(np); dirs.alloc(np); // generate benchmark cases TransformationMatrix const * identity = new TransformationMatrix(0,0,0,0,0,0); double L = 10.; double Lz = 10.; const double Sqrt2 = sqrt(2.); BoxParameters * worldp = new BoxParameters(L, L, Lz ); PhysicalVolume * world = GeoManager::MakePlacedBox( worldp , identity ); double volworld = worldp->GetVolume(); BoxParameters * boxlevel2 = new BoxParameters( Sqrt2*L/2./2., Sqrt2*L/2./2., Lz ); BoxParameters * boxlevel3 = new BoxParameters( L/2./2. ,L/2./2., Lz); BoxParameters * boxlevel1 = new BoxParameters( L/2., L/2., Lz ); PhysicalVolume * box2 = GeoManager::MakePlacedBox(boxlevel2, new TransformationMatrix(0,0,0,0,0,45)); PhysicalVolume * box3 = GeoManager::MakePlacedBox( boxlevel3, new TransformationMatrix(0,0,0,0,0,-45)); box2->AddDaughter( box3 ); // rotated 45 degree around z axis PhysicalVolume * box1 = GeoManager::MakePlacedBox(boxlevel1, identity); box1->AddDaughter( box2 ); PhysicalVolume const * box1left = world->PlaceDaughter(GeoManager::MakePlacedBox(boxlevel1, new TransformationMatrix(-L/2.,0.,0.,0.,0.,0)), box1->GetDaughters()); PhysicalVolume const * box1right = world->PlaceDaughter(GeoManager::MakePlacedBox(boxlevel1, new TransformationMatrix(+L/2.,0.,0.,0.,0.,0)), box1->GetDaughters()); // perform basic tests SimpleVecNavigator nav(1, world); StopWatch timer; // some object which are expensive to create FastTransformationMatrix * m = new FastTransformationMatrix(); VolumePath path(4); VolumePath newpath(4); timer.Start(); int stepsdone=0; for(int n=0;n<1000;n++) { for(int i=0;i<100000;i++) // testing the NavigationAndStepInterface { int localstepsdone=0; double distancetravelled=0.; Vector3DFast p; PhysicalVolume::samplePoint( p, worldp->GetDX(), worldp->GetDY(), worldp->GetDZ(), 1. ); #ifdef DEBUG std::cerr << p << " " << worldp->GetDX()-p.GetX() << " "; #endif // setup point in world Vector3DFast d(1,0,0); Vector3DFast resultpoint; m->SetToIdentity(); PhysicalVolume const * vol; #ifdef ITERATIVE vol = nav.LocatePoint_iterative( world, p, resultpoint, path, m ); #else vol = nav.LocatePoint( world, p, resultpoint, path, m ); #endif while( vol!=NULL ) { localstepsdone++; // do one step double step; #ifdef ITERATIVE nav.FindNextBoundaryAndStep_iterative(m, p, d, path, newpath, resultpoint, step); #else nav.FindNextBoundaryAndStep(m, p, d, path, newpath, resultpoint, step); #endif distancetravelled+=step; #ifdef DEBUG std::cerr << " proposed step: " << step << std::endl; std::cerr << " next point " << resultpoint << std::endl; std::cerr << " in vol " << newpath.Top() << std::endl; #endif // go on with navigation p = resultpoint; path=newpath; vol=path.Top(); } #ifdef DEBUG std::cerr << localstepsdone << " " << distancetravelled << std::endl; #endif stepsdone+=localstepsdone; } } timer.Stop(); std::cout << " time for 100000 particles " << timer.getDeltaSecs( ) << std::endl; std::cout << " average steps done " << stepsdone / 100000. << std::endl; std::cout << " time per step " << timer.getDeltaSecs()/stepsdone << std::endl; delete m; }