int main(int argc, char **argv) { int num_segments = 3; vector<double> segment_times = generateSegmentTimes(num_segments); double x0 = uniform(generator); double xd0 = uniform(generator); double xf = uniform(generator); double xdf = uniform(generator); double x1 = uniform(generator); double x2 = uniform(generator); PiecewisePolynomial<double> result = twoWaypointCubicSpline(segment_times, x0, xd0, xf, xdf, x1, x2); for (int i = 0; i < num_segments; i++) { valuecheck(segment_times[i], result.getStartTime(i)); } valuecheck(segment_times[num_segments], result.getEndTime(num_segments - 1)); // check value constraints double tol = 1e-10; PiecewisePolynomial<double> derivative = result.derivative(); PiecewisePolynomial<double> second_derivative = derivative.derivative(); valuecheck(result.value(result.getStartTime(0)), x0, tol); valuecheck(derivative.value(result.getStartTime(0)), xd0, tol); valuecheck(result.value(result.getEndTime(num_segments - 1)), xf, tol); valuecheck(derivative.value(result.getEndTime(num_segments - 1)), xdf, tol); valuecheck(result.value(result.getStartTime(1)), x1, tol); valuecheck(result.value(result.getStartTime(2)), x2, tol); // check continuity constraints double eps = 1e-10; int num_knots = num_segments - 1; for (int i = 0; i < num_knots; i++) { double t_knot = result.getEndTime(i); valuecheck(result.value(t_knot - eps), result.value(t_knot + eps), 1e-8); valuecheck(derivative.value(t_knot - eps), derivative.value(t_knot + eps), 1e-8); valuecheck(second_derivative.value(t_knot - eps), second_derivative.value(t_knot + eps), 1e-8); } #if !defined(WIN32) && !defined(WIN64) int ntests = 1000; cout << "time: " << measure<chrono::microseconds>::execution(randomSpeedTest, ntests) / (double) ntests << " microseconds." << endl; #endif cout << "test passed" << endl; return 0; }
void testIntegralAndDerivative() { vector<Polynomial<CoefficientType>> polynomials; int num_coefficients = 5; int num_segments = 3; typedef typename Polynomial<CoefficientType>::CoefficientsType CoefficientsType; for (int i = 0; i < num_segments; ++i) { CoefficientsType coefficients = CoefficientsType::Random(num_coefficients); polynomials.push_back(Polynomial<CoefficientType>(coefficients)); } // differentiate integral, get original back PiecewisePolynomial<CoefficientType> piecewise(polynomials, generateSegmentTimes(num_segments)); PiecewisePolynomial<CoefficientType> piecewise_back = piecewise.integral().derivative(); if (!piecewise.isApprox(piecewise_back, 1e-10)) throw runtime_error("wrong"); // check value at start time double value_at_t0 = uniform(generator); PiecewisePolynomial<CoefficientType> integral = piecewise.integral(value_at_t0); valuecheck(value_at_t0, integral.value(piecewise.getStartTime()), 1e-10); // check continuity at knot points for (int i = 0; i < piecewise.getNumberOfSegments() - 1; ++i) { valuecheck(integral.getPolynomial(i).value(integral.getDuration(i)), integral.getPolynomial(i + 1).value(0.0)); } }
double randomSpeedTest(int ntests) { double ret = 0.0; int num_segments = 3; vector<double> segment_times = generateSegmentTimes(num_segments); for (int i = 0; i < ntests; i++) { double x0 = uniform(generator); double xd0 = uniform(generator); double xf = uniform(generator); double xdf = uniform(generator); double x1 = uniform(generator); double x2 = uniform(generator); PiecewisePolynomial<double> result = twoWaypointCubicSpline(segment_times, x0, xd0, xf, xdf, x1, x2); ret += result.value(0.0); } return ret; }
void evaluateXYZExpmapCubicSpline(double t, const PiecewisePolynomial<double> &spline, Isometry3d &body_pose_des, Vector6d &xyzdot_angular_vel, Vector6d &xyzddot_angular_accel) { Vector6d xyzexp = spline.value(t); auto derivative = spline.derivative(); Vector6d xyzexpdot = derivative.value(t); Vector6d xyzexpddot = derivative.derivative().value(t); xyzdot_angular_vel.head<3>() = xyzexpdot.head<3>(); xyzddot_angular_accel.head<3>() = xyzexpddot.head<3>(); Vector3d expmap = xyzexp.tail<3>(); auto quat_grad = expmap2quat(expmap,2); Vector4d quat = quat_grad.value(); body_pose_des.linear() = quat2rotmat(quat); body_pose_des.translation() = xyzexp.head<3>(); Vector4d quat_dot = quat_grad.gradient().value() * xyzexpdot.tail<3>(); quat_grad.gradient().gradient().value().resize(12,3); Matrix<double,12,3> dE = quat_grad.gradient().gradient().value(); Vector3d expdot = xyzexpdot.tail<3>(); Matrix<double,4,3> Edot = matGradMult(dE,expdot); Vector4d quat_ddot = quat_grad.gradient().value()*xyzexpddot.tail<3>() + Edot*expdot; Matrix<double,3,4> M; Matrix<double,12,4> dM; quatdot2angularvelMatrix(quat,M,&dM); xyzdot_angular_vel.tail<3>() = M*quat_dot; xyzddot_angular_accel.tail<3>() = M*quat_ddot + matGradMult(dM,quat_dot)*quat_dot; }
void evaluateXYZExpmapCubicSpline(double t, const PiecewisePolynomial<double> &spline, Isometry3d &body_pose_des, Vector6d &xyzdot_angular_vel, Vector6d &xyzddot_angular_accel) { Vector6d xyzexp = spline.value(t); auto derivative = spline.derivative(); Vector6d xyzexpdot = derivative.value(t); Vector6d xyzexpddot = derivative.derivative().value(t); // translational part body_pose_des.translation() = xyzexp.head<3>(); xyzdot_angular_vel.head<3>() = xyzexpdot.head<3>(); xyzddot_angular_accel.head<3>() = xyzexpddot.head<3>(); // rotational part auto expmap = xyzexp.tail<3>(); auto expmap_dot = xyzexpdot.tail<3>(); auto expmap_ddot = xyzexpddot.tail<3>(); // construct autodiff version of expmap // autodiff derivatives represent first and second derivative w.r.t. time // TODO(tkoolen): should use 1 instead of dynamic, but causes issues // with eigen on MSVC 32 bit; should be fixed in 3.3 typedef AutoDiffScalar<Matrix<double, Dynamic, 1>> ADScalar; // TODO(tkoolen): should use 1 instead of dynamic, but causes issues // with eigen on MSVC 32 bit; should be fixed in 3.3 typedef AutoDiffScalar<Matrix<ADScalar, Dynamic, 1>> ADScalarSecondDeriv; Matrix<ADScalarSecondDeriv, 3, 1> expmap_autodiff; for (int i = 0; i < expmap_autodiff.size(); i++) { expmap_autodiff(i).value() = expmap(i); expmap_autodiff(i).derivatives().resize(1); expmap_autodiff(i).derivatives()(0) = expmap_dot(i); expmap_autodiff(i).derivatives()(0).derivatives().resize(1); expmap_autodiff(i).derivatives()(0).derivatives()(0) = expmap_ddot(i); } auto quat_autodiff = expmap2quat(expmap_autodiff); Vector4d quat = autoDiffToValueMatrix(autoDiffToValueMatrix(quat_autodiff)); body_pose_des.linear() = quat2rotmat(quat); // angular velocity and acceleration are computed from quaternion derivative // meaning of derivative vectors remains the same: first and second // derivatives w.r.t. time decltype(quat_autodiff) quat_dot_autodiff; for (int i = 0; i < quat_dot_autodiff.size(); i++) { quat_dot_autodiff(i).value() = quat_autodiff(i).derivatives()(0).value(); quat_dot_autodiff(i).derivatives().resize(1); quat_dot_autodiff(i).derivatives()(0).value() = quat_autodiff(i).derivatives()(0).derivatives()(0); quat_dot_autodiff(i).derivatives()(0).derivatives().resize(1); quat_dot_autodiff(i).derivatives()(0).derivatives()(0) = std::numeric_limits<double>::quiet_NaN(); // we're not interested in // second deriv of angular // velocity } auto omega_autodiff = (quatdot2angularvelMatrix(quat_autodiff) * quat_dot_autodiff).eval(); auto omega = xyzdot_angular_vel.tail<3>(); auto omega_dot = xyzddot_angular_accel.tail<3>(); for (int i = 0; i < omega_autodiff.size(); i++) { omega(i) = omega_autodiff(i).value().value(); omega_dot(i) = omega_autodiff(i).derivatives()(0).value(); } }
ExponentialPlusPiecewisePolynomial<double> s1Trajectory(const TVLQRData &sys, const PiecewisePolynomial<double> &zmp_trajectory,const Ref<const MatrixXd> &S) { size_t n = static_cast<size_t>(zmp_trajectory.getNumberOfSegments()); int d = zmp_trajectory.getSegmentPolynomialDegree(0); int k = d + 1; for (size_t i = 1; i < n; i++) { assert(zmp_trajectory.getSegmentPolynomialDegree(i) == d); } VectorXd dt(n); std::vector<double> breaks = zmp_trajectory.getSegmentTimes(); for (size_t i = 0; i < n; i++) { dt(i) = breaks[i + 1] - breaks[i]; } MatrixXd zmp_tf = zmp_trajectory.value(zmp_trajectory.getEndTime()); PiecewisePolynomial<double> zbar_pp = zmp_trajectory - zmp_tf; Matrix2d R1i = sys.R1.inverse(); MatrixXd NB = sys.N.transpose() + sys.B.transpose() * S; //2 x 4 Matrix4d A2 = NB.transpose() * R1i * sys.B.transpose() - sys.A.transpose(); MatrixXd B2 = 2 * (sys.C.transpose() - NB.transpose() * R1i * sys.D) * sys.Qy; //4 x 2 Matrix4d A2i = A2.inverse(); MatrixXd alpha = MatrixXd::Zero(4, n); vector<MatrixXd> beta; VectorXd s1dt; for (size_t i = 0; i < n ; i++) { beta.push_back(MatrixXd::Zero(4, k)); } for (int j = static_cast<int>(n) - 1; j >= 0; j--) { auto poly_mat = zbar_pp.getPolynomialMatrix(j); size_t nq = poly_mat.rows(); MatrixXd poly_coeffs = MatrixXd::Zero(nq, k); for (size_t x = 0; x < nq; x++) { poly_coeffs.row(x) = poly_mat(x).getCoefficients().transpose(); } beta[j].col(k - 1) = -A2i * B2 * poly_coeffs.col(k - 1); for (int i = k - 2; i >= 0; i--) { beta[j].col(i) = A2i * ((i+1) * beta[j].col(i + 1) - B2 * poly_coeffs.col(i)); } if (j == n - 1) { s1dt = VectorXd::Zero(4); } else { s1dt = alpha.col(j+1) + beta[j + 1].col(0); } VectorXd dtpow(k); for (size_t p = 0; p < k; p++) { dtpow(p) = pow(dt(j), static_cast<int>(p)); } alpha.col(j) = (A2*dt(j)).eval().exp().inverse() * (s1dt - beta[j]*dtpow); } vector<PiecewisePolynomial<double>::PolynomialMatrix> polynomial_matrices; for (int segment = 0; segment < n ; segment++) { PiecewisePolynomial<double>::PolynomialMatrix polynomial_matrix(4, 1); for(int row = 0; row < 4; row++) { polynomial_matrix(row) = Polynomial<double>(beta[segment].row(row)); } polynomial_matrices.push_back(polynomial_matrix); } PiecewisePolynomial<double> pp_part = PiecewisePolynomial<double>(polynomial_matrices, breaks); auto s1traj = ExponentialPlusPiecewisePolynomial<double>(Matrix4d::Identity(), A2, alpha, pp_part); return s1traj; }