// sets the positions of the nodes in a largest face of G in the form // of a regular k-gon. The corresponding nodes and their positions are // stored in nodes and pos, respectively. void TutteLayout::setFixedNodes( const Graph &G, List<node>& nodes, List<DPoint>& pos, double radius) { // compute faces of a copy of G GraphCopy GC(G); PlanarModule pm; // compute a planar embedding if \a G is planar if(pm.planarityTest(G)) pm.planarEmbed(GC); CombinatorialEmbedding E(GC); E.computeFaces(); // search for largest face face maxFace = E.maximalFace(); // delete possible old entries in nodes and pos nodes.clear(); pos.clear(); // set nodes and pos NodeArray<bool> addMe(GC,true); adjEntry adj; List<node> maxNodes; forall_face_adj(adj,maxFace) { maxNodes.pushBack(adj->theNode()); }
bool CconnectClusterPlanar::preProcess(ClusterGraph &C,Graph &G) { if (!isCConnected(C)) { ogdf::sprintf(errorCode,124,"Graph is not C-connected \n"); m_errorCode = nonCConnected; return false; } PlanarModule Pm; if (!Pm.planarityTest(C)) { ogdf::sprintf(errorCode,124,"Graph is not planar\n"); m_errorCode = nonPlanar; return false; } cluster c; SListPure<node> selfLoops; makeLoopFree(G,selfLoops); c = C.rootCluster(); bool cPlanar = planarityTest(C,c,G); return cPlanar; }
Module::ReturnType SubgraphPlanarizer::doCall(PlanRep &PG, int cc, const EdgeArray<int> &cost, const EdgeArray<bool> &forbid, const EdgeArray<unsigned int> &subgraphs, int& crossingNumber) { OGDF_ASSERT(m_permutations >= 1); OGDF_ASSERT(!(useSubgraphs()) || useCost()); // ersetze durch exception handling double startTime; usedTime(startTime); if(m_setTimeout) m_subgraph.get().timeLimit(m_timeLimit); List<edge> deletedEdges; PG.initCC(cc); EdgeArray<int> costPG(PG); edge e; forall_edges(e,PG) costPG[e] = cost[PG.original(e)]; ReturnType retValue = m_subgraph.get().call(PG, costPG, deletedEdges); if(isSolution(retValue) == false) return retValue; for(ListIterator<edge> it = deletedEdges.begin(); it.valid(); ++it) *it = PG.original(*it); bool foundSolution = false; CrossingStructure cs; for(int i = 1; i <= m_permutations; ++i) { const int nG = PG.numberOfNodes(); for(ListConstIterator<edge> it = deletedEdges.begin(); it.valid(); ++it) PG.delCopy(PG.copy(*it)); deletedEdges.permute(); if(m_setTimeout) m_inserter.get().timeLimit( (m_timeLimit >= 0) ? max(0.0,m_timeLimit - usedTime(startTime)) : -1); ReturnType ret; if(useForbid()) { if(useCost()) { if(useSubgraphs()) ret = m_inserter.get().call(PG, cost, forbid, deletedEdges, subgraphs); else ret = m_inserter.get().call(PG, cost, forbid, deletedEdges); } else ret = m_inserter.get().call(PG, forbid, deletedEdges); } else { if(useCost()) { if(useSubgraphs()) ret = m_inserter.get().call(PG, cost, deletedEdges, subgraphs); else ret = m_inserter.get().call(PG, cost, deletedEdges); } else ret = m_inserter.get().call(PG, deletedEdges); } if(isSolution(ret) == false) continue; // no solution found, that's bad... if(!useCost()) crossingNumber = PG.numberOfNodes() - nG; else { crossingNumber = 0; node n; forall_nodes(n, PG) { if(PG.original(n) == 0) { // dummy found -> calc cost edge e1 = PG.original(n->firstAdj()->theEdge()); edge e2 = PG.original(n->lastAdj()->theEdge()); if(useSubgraphs()) { int subgraphCounter = 0; for(int i=0; i<32; i++) { if(((subgraphs[e1] & (1<<i))!=0) && ((subgraphs[e2] & (1<<i)) != 0)) subgraphCounter++; } crossingNumber += (subgraphCounter*cost[e1] * cost[e2]); } else crossingNumber += cost[e1] * cost[e2]; } } } if(i == 1 || crossingNumber < cs.weightedCrossingNumber()) { foundSolution = true; cs.init(PG, crossingNumber); } if(localLogMode() == LM_STATISTIC) { if(m_permutations <= 200 || i <= 10 || (i <= 30 && (i % 2) == 0) || (i > 30 && i <= 100 && (i % 5) == 0) || ((i % 10) == 0)) sout() << "\t" << cs.weightedCrossingNumber(); } PG.initCC(cc); if(m_timeLimit >= 0 && usedTime(startTime) >= m_timeLimit) { if(foundSolution == false) return retTimeoutInfeasible; // not able to find a solution... break; } } cs.restore(PG,cc); // restore best solution in PG crossingNumber = cs.weightedCrossingNumber(); PlanarModule pm; OGDF_ASSERT(pm.planarityTest(PG) == true); return retFeasible; }