void SSurface::EdgeNormalsWithinSurface(Point2d auv, Point2d buv, Vector *pt, Vector *enin, Vector *enout, Vector *surfn, uint32_t auxA, SShell *shell, SShell *sha, SShell *shb) { // the midpoint of the edge Point2d muv = (auv.Plus(buv)).ScaledBy(0.5); *pt = PointAt(muv); // If this edge just approximates a curve, then refine our midpoint so // so that it actually lies on that curve too. Otherwise stuff like // point-on-face tests will fail, since the point won't actually lie // on the other face. hSCurve hc = { auxA }; SCurve *sc = shell->curve.FindById(hc); if(sc->isExact && sc->exact.deg != 1) { double t; sc->exact.ClosestPointTo(*pt, &t, false); *pt = sc->exact.PointAt(t); ClosestPointTo(*pt, &muv); } else if(!sc->isExact) { SSurface *trimmedA = sc->GetSurfaceA(sha, shb), *trimmedB = sc->GetSurfaceB(sha, shb); *pt = trimmedA->ClosestPointOnThisAndSurface(trimmedB, *pt); ClosestPointTo(*pt, &muv); } *surfn = NormalAt(muv.x, muv.y); // Compute the edge's inner normal in xyz space. Vector ab = (PointAt(auv)).Minus(PointAt(buv)), enxyz = (ab.Cross(*surfn)).WithMagnitude(SS.ChordTolMm()); // And based on that, compute the edge's inner normal in uv space. This // vector is perpendicular to the edge in xyz, but not necessarily in uv. Vector tu, tv; TangentsAt(muv.x, muv.y, &tu, &tv); Point2d enuv; enuv.x = enxyz.Dot(tu) / tu.MagSquared(); enuv.y = enxyz.Dot(tv) / tv.MagSquared(); // Compute the inner and outer normals of this edge (within the srf), // in xyz space. These are not necessarily antiparallel, if the // surface is curved. Vector pin = PointAt(muv.Minus(enuv)), pout = PointAt(muv.Plus(enuv)); *enin = pin.Minus(*pt), *enout = pout.Minus(*pt); }
double Point2d::DistanceToLine(Point2d p0, Point2d dp, bool segment) { double m = dp.x*dp.x + dp.y*dp.y; if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE; // Let our line be p = p0 + t*dp, for a scalar t from 0 to 1 double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m; if((t < 0 || t > 1) && segment) { // The closest point is one of the endpoints; determine which. double d0 = DistanceTo(p0); double d1 = DistanceTo(p0.Plus(dp)); return min(d1, d0); } else { Point2d closest = p0.Plus(dp.ScaledBy(t)); return DistanceTo(closest); } }
//----------------------------------------------------------------------------- // Find all points where a line through a and b intersects our surface, and // add them to the list. If seg is true then report only intersections that // lie within the finite line segment (not including the endpoints); otherwise // we work along the infinite line. And we report either just intersections // inside the trim curve, or any intersection with u, v in [0, 1]. And we // either disregard or report tangent points. //----------------------------------------------------------------------------- void SSurface::AllPointsIntersecting(Vector a, Vector b, List<SInter> *l, bool seg, bool trimmed, bool inclTangent) { if(LineEntirelyOutsideBbox(a, b, seg)) return; Vector ba = b.Minus(a); double bam = ba.Magnitude(); List<Inter> inters; ZERO(&inters); // All the intersections between the line and the surface; either special // cases that we can quickly solve in closed form, or general numerical. Vector center, axis, start, finish; double radius; if(degm == 1 && degn == 1) { // Against a plane, easy. Vector n = NormalAt(0, 0).WithMagnitude(1); double d = n.Dot(PointAt(0, 0)); // Trim to line segment now if requested, don't generate points that // would just get discarded later. if(!seg || (n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) || (n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS)) { Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL); Inter inter; ClosestPointTo(p, &(inter.p.x), &(inter.p.y)); inters.Add(&inter); } } else if(IsCylinder(&axis, ¢er, &radius, &start, &finish)) { // This one can be solved in closed form too. Vector ab = b.Minus(a); if(axis.Cross(ab).Magnitude() < LENGTH_EPS) { // edge is parallel to axis of cylinder, no intersection points return; } // A coordinate system centered at the center of the circle, with // the edge under test horizontal Vector u, v, n = axis.WithMagnitude(1); u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1); v = n.Cross(u); Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(), bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(), sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(), fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy(); double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x); Point2d ip[2]; int ip_n = 0; if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) { // tangent if(inclTangent) { ip[0] = Point2d::From(0, ap.y); ip_n = 1; } } else if(fabs(ap.y) < radius) { // two intersections double xint = sqrt(radius*radius - ap.y*ap.y); ip[0] = Point2d::From(-xint, ap.y); ip[1] = Point2d::From( xint, ap.y); ip_n = 2; } int i; for(i = 0; i < ip_n; i++) { double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap)); // This is a point on the circle; but is it on the arc? Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t)); double theta = atan2(pp.y, pp.x); double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI), df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI); double tol = LENGTH_EPS/radius; if((df > 0 && ((dp < -tol) || (dp > df + tol))) || (df < 0 && ((dp > tol) || (dp < df - tol)))) { continue; } Vector p = a.Plus((b.Minus(a)).ScaledBy(t)); Inter inter; ClosestPointTo(p, &(inter.p.x), &(inter.p.y)); inters.Add(&inter); } } else { // General numerical solution by subdivision, fallback int cnt = 0, level = 0; AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this); } // Remove duplicate intersection points inters.ClearTags(); int i, j; for(i = 0; i < inters.n; i++) { for(j = i + 1; j < inters.n; j++) { if(inters.elem[i].p.Equals(inters.elem[j].p)) { inters.elem[j].tag = 1; } } } inters.RemoveTagged(); for(i = 0; i < inters.n; i++) { Point2d puv = inters.elem[i].p; // Make sure the point lies within the finite line segment Vector pxyz = PointAt(puv.x, puv.y); double t = (pxyz.Minus(a)).DivPivoting(ba); if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) { continue; } // And that it lies inside our trim region Point2d dummy = { 0, 0 }; int c = bsp->ClassifyPoint(puv, dummy, this); if(trimmed && c == SBspUv::OUTSIDE) { continue; } // It does, so generate the intersection SInter si; si.p = pxyz; si.surfNormal = NormalAt(puv.x, puv.y); si.pinter = puv; si.srf = this; si.onEdge = (c != SBspUv::INSIDE); l->Add(&si); } inters.Clear(); }