void MeshGenerator :: generatePointCloudMesh(const RGBDImage& image,
                                               const Pose3D& depth_pose,
                                               const Pose3D& rgb_pose)
  {
    m_mesh.clear();
    m_mesh.vertices.reserve(image.depth().rows*image.depth().cols);
    m_mesh.colors.reserve(image.depth().rows*image.depth().cols);
    m_mesh.normals.reserve(image.depth().rows*image.depth().cols);

    const cv::Mat1f& depth_im = image.depth();
    const cv::Mat1b& mask_im = image.depthMask();
    cv::Mat3f voxels (depth_im.size());
    cv::Mat3f rgb_points (depth_im.size());

    cv::Mat1b subsample_mask(mask_im.size());
    subsample_mask = 0;
    for (float r = 0; r < subsample_mask.rows-1; r += 1.0/m_resolution_factor)
      for (float c = 0; c < subsample_mask.cols-1; c += 1.0/m_resolution_factor)
        subsample_mask(ntk::math::rnd(r),ntk::math::rnd(c)) = 1;
    subsample_mask = mask_im & subsample_mask;

    depth_pose.unprojectFromImage(depth_im, subsample_mask, voxels);
    if (m_use_color && image.hasRgb())
      rgb_pose.projectToImage(voxels, subsample_mask, rgb_points);

    for (int r = 0; r < voxels.rows; ++r)
    {
      Vec3f* voxels_data = voxels.ptr<Vec3f>(r);
      const uchar* mask_data = subsample_mask.ptr<uchar>(r);
      for (int c = 0; c < voxels.cols; ++c)
      {
        if (!mask_data[c])
          continue;

        Vec3b color (0,0,0);
        if (m_use_color)
        {
          Point3f prgb = rgb_points(r,c);
          int i_y = ntk::math::rnd(prgb.y);
          int i_x = ntk::math::rnd(prgb.x);
          if (is_yx_in_range(image.rgb(), i_y, i_x))
          {
            Vec3b bgr = image.rgb()(i_y, i_x);
            color = Vec3b(bgr[2], bgr[1], bgr[0]);
          }
        }
        else
        {
          int g = 0;
          if (image.intensity().data)
            g = image.intensity()(r,c);
          else
            g = 255 * voxels_data[c][2] / 10.0;
          color = Vec3b(g,g,g);
        }

        m_mesh.vertices.push_back(voxels_data[c]);
        m_mesh.colors.push_back(color);
      }
    }
  }
  void MeshGenerator :: generateTriangleMesh(const RGBDImage& image,
                                             const Pose3D& depth_pose,
                                             const Pose3D& rgb_pose)
  {
    const Mat1f& depth_im = image.depth();
    const Mat1b& mask_im = image.depthMask();
    m_mesh.clear();
    if (m_use_color)
      image.rgb().copyTo(m_mesh.texture);
    else if (image.intensity().data)
      toMat3b(normalize_toMat1b(image.intensity())).copyTo(m_mesh.texture);
    else
    {
      m_mesh.texture.create(depth_im.size());
      m_mesh.texture = Vec3b(255,255,255);
    }
    m_mesh.vertices.reserve(depth_im.cols*depth_im.rows);
    m_mesh.texcoords.reserve(depth_im.cols*depth_im.rows);
    m_mesh.colors.reserve(depth_im.cols*depth_im.rows);
    Mat1i vertice_map(depth_im.size());
    vertice_map = -1;
    for_all_rc(depth_im)
    {
      if (!mask_im(r,c))
        continue;
      double depth = depth_im(r,c);
      Point3f p3d = depth_pose.unprojectFromImage(Point3f(c,r,depth));
      Point3f p2d_rgb;
      Point2f texcoords;
      if (m_use_color)
      {
        p2d_rgb = rgb_pose.projectToImage(p3d);
        texcoords = Point2f(p2d_rgb.x/image.rgb().cols, p2d_rgb.y/image.rgb().rows);
      }
      else
      {
        p2d_rgb = Point3f(c,r,depth);
        texcoords = Point2f(p2d_rgb.x/image.intensity().cols, p2d_rgb.y/image.intensity().rows);
      }
      vertice_map(r,c) = m_mesh.vertices.size();
      m_mesh.vertices.push_back(p3d);
      // m_mesh.colors.push_back(bgr_to_rgb(im.rgb()(p2d_rgb.y, p2d_rgb.x)));
      m_mesh.texcoords.push_back(texcoords);
    }

    for_all_rc(vertice_map)
    {
      if (vertice_map(r,c) < 0)
        continue;

      if ((c < vertice_map.cols - 1) &&  (r < vertice_map.rows - 1) &&
          (vertice_map(r+1,c)>=0) && (vertice_map(r,c+1) >= 0) &&
          (std::abs(depth_im(r,c) - depth_im(r+1, c)) < m_max_delta_depth) &&
          (std::abs(depth_im(r,c) - depth_im(r, c+1)) < m_max_delta_depth))
      {
        Face f;
        f.indices[2] = vertice_map(r,c);
        f.indices[1] = vertice_map(r,c+1);
        f.indices[0] = vertice_map(r+1,c);
        m_mesh.faces.push_back(f);
      }

      if ((c > 0) &&  (r < vertice_map.rows - 1) &&
          (vertice_map(r+1,c)>=0) && (vertice_map(r+1,c-1) >= 0) &&
          (std::abs(depth_im(r,c) - depth_im(r+1, c)) < m_max_delta_depth) &&
          (std::abs(depth_im(r,c) - depth_im(r+1, c-1)) < m_max_delta_depth))
      {
        Face f;
        f.indices[2] = vertice_map(r,c);
        f.indices[1] = vertice_map(r+1,c);
        f.indices[0] = vertice_map(r+1,c-1);
        m_mesh.faces.push_back(f);
      }
    }
    m_mesh.computeNormalsFromFaces();
  }
  void MeshGenerator :: generateSurfelsMesh(const RGBDImage& image,
                                            const Pose3D& depth_pose,
                                            const Pose3D& rgb_pose)
  {
    double min_val = 0, max_val = 0;
    if (image.amplitude().data)
      minMaxLoc(image.amplitude(), &min_val, &max_val);

    m_mesh.clear();

    const cv::Mat1f& depth_im = image.depth();
    const cv::Mat1b& mask_im = image.depthMask();

    for_all_rc(depth_im)
    {
      int i_r = r;
      int i_c = c;
      if (!is_yx_in_range(depth_im, i_r, i_c))
        continue;

      if (!mask_im(r,c))
        continue;

      double depth = depth_im(i_r,i_c);
      cv::Point3f p = depth_pose.unprojectFromImage(Point2f(c,r), depth);

      Point3f normal = image.normal().data ? image.normal()(i_r, i_c) : Vec3f(0,0,1);

      Vec3b color (0,0,0);
      if (m_use_color)
      {
        cv::Point3f prgb = rgb_pose.projectToImage(p);
        int i_y = ntk::math::rnd(prgb.y);
        int i_x = ntk::math::rnd(prgb.x);
        if (is_yx_in_range(image.rgb(), i_y, i_x))
        {
          Vec3b bgr = image.rgb()(i_y, i_x);
          color = Vec3b(bgr[2], bgr[1], bgr[0]);
        }
      }
      else
      {
        int g = 0;
        if (image.amplitude().data)
          g = 255.0 * (image.amplitude()(i_r,i_c) - min_val) / (max_val-min_val);
        else
          g = 255 * depth / 10.0;
        color = Vec3b(g,g,g);
      }

      Surfel s;
      s.color = color;
      s.confidence = 0;
      s.location = p;
      s.normal = normal;
      s.n_views = 1;
      double normal_z = std::max(normal.z, 0.5f);
      s.radius = m_resolution_factor * ntk::math::sqrt1_2 * depth
          / (depth_pose.focalX() * normal_z);
      m_mesh.addSurfel(s);
    }
  }
void calibrate_kinect_depth(std::vector< std::vector<Point2f> >& stereo_corners,
                            std::vector< DepthCalibrationPoint >& depth_values)
{
  std::vector< std::vector<Point2f> > good_corners;
  stereo_corners.resize(global::images_list.size());
  for (int i_image = 0; i_image < global::images_list.size(); ++i_image)
  {
    QString filename = global::images_list[i_image];
    QDir cur_image_dir (global::images_dir.absoluteFilePath(filename));

    std::string full_filename;
    cv::Mat3b image;
    load_intensity_file(cur_image_dir.path().toStdString(), full_filename, image);
    ntk_ensure(image.data, "Could not load color image");

    kinect_shift_ir_to_depth(image);

    std::vector<Point2f> current_view_corners;
    calibrationCorners(full_filename, "corners",
                       global::opt_pattern_width(), global::opt_pattern_height(),
                       current_view_corners, image, 1);

    if (current_view_corners.size() == global::opt_pattern_height()*global::opt_pattern_width())
    {
      good_corners.push_back(current_view_corners);
      stereo_corners[i_image] = current_view_corners;
      showCheckerboardCorners(image, current_view_corners, 1);
    }
    else
    {
      ntk_dbg(0) << "Warning: corners not detected";
      stereo_corners[i_image].resize(0);
    }
  }

  std::vector< std::vector<Point3f> > pattern_points;
  calibrationPattern(pattern_points,
                     global::opt_pattern_width(),  global::opt_pattern_height(), global::opt_square_size(),
                     good_corners.size());

  ntk_assert(pattern_points.size() == good_corners.size(), "Invalid points size");

  std::vector<Mat> rvecs, tvecs;

  int flags = 0;
  if (global::opt_ignore_distortions())
    flags = CV_CALIB_ZERO_TANGENT_DIST;

  double error = calibrateCamera(pattern_points, good_corners, global::image_size,
                                 global::depth_intrinsics, global::depth_distortion,
                                 rvecs, tvecs, flags);

  if (global::opt_ignore_distortions())
    global::depth_distortion = 0.f;

  ntk_dbg_print(error, 1);
  int good_i = 0;
  foreach_idx(stereo_i, stereo_corners)
  {
    if (stereo_corners[stereo_i].size() > 0)
    {
      QString filename = global::images_list[stereo_i];
      QDir cur_image_dir (global::images_dir.absoluteFilePath(filename));
      std::string full_filename;
      cv::Mat3b image;
      load_intensity_file(cur_image_dir.path().toStdString(), full_filename, image);
      ntk_ensure(image.data, "Could not load intensity image");
      kinect_shift_ir_to_depth(image);

      cv::Mat1f depth_image;

      if (is_file(cur_image_dir.absoluteFilePath("raw/depth.yml").toStdString()))
      {
        full_filename = cur_image_dir.absoluteFilePath("raw/depth.yml").toStdString();
        depth_image = imread_yml(full_filename);
      }
      else if (is_file(cur_image_dir.absoluteFilePath("raw/depth.raw").toStdString()))
      {
        full_filename = cur_image_dir.absoluteFilePath("raw/depth.raw").toStdString();
        depth_image = imread_Mat1f_raw(full_filename);
      }
      ntk_ensure(depth_image.data, "Could not load depth image");

      cv::Mat3b undistorted_image;
      if (global::opt_ignore_distortions())
        image.copyTo(undistorted_image);
      else
        undistort(image, undistorted_image, global::depth_intrinsics, global::depth_distortion);

      std::vector<Point2f> current_view_corners;
      calibrationCorners(full_filename, "corners",
                         global::opt_pattern_width(), global::opt_pattern_height(),
                         current_view_corners, undistorted_image, 1);

      if (current_view_corners.size() == (global::opt_pattern_width()*global::opt_pattern_height()))
      {
        stereo_corners[stereo_i] = current_view_corners;
        showCheckerboardCorners(undistorted_image, stereo_corners[stereo_i], 200);
      }
      else
      {
        stereo_corners[stereo_i].resize(0);
        continue;
      }

      // Generate calibration points
      {
        // FIXME: why rvecs and tvecs from calibrateCamera seems to be nonsense ?
        // calling findExtrinsics another time to get good chessboard estimations.

        cv::Mat1f H;
        estimate_checkerboard_pose(pattern_points[0],
                                   current_view_corners,
                                   global::depth_intrinsics,
                                   H);
        Pose3D pose;
        pose.setCameraParametersFromOpencv(global::depth_intrinsics);
        ntk_dbg_print(pose, 1);
        pose.setCameraTransform(H);

        foreach_idx(pattern_i, pattern_points[0])
        {
          ntk_dbg_print(pattern_points[0][pattern_i], 1);
          Point3f p = pose.projectToImage(pattern_points[0][pattern_i]);
          ntk_dbg_print(p, 1);
          double kinect_raw = depth_image(p.y, p.x);
          if (!(kinect_raw < 2047)) continue;
          ntk_dbg_print(kinect_raw, 1);
          double linear_depth = 1.0 / (kinect_raw * -0.0030711016 + 3.3309495161);
          const float k1 = 1.1863;
          const float k2 = 2842.5;
          const float k3 = 0.1236;
          double tan_depth = k3 * tanf(kinect_raw/k2 + k1);
          ntk_dbg_print(linear_depth, 1);
          ntk_dbg_print(tan_depth, 1);
          depth_values.push_back(DepthCalibrationPoint(kinect_raw, p.z));
        }
      }

      ++good_i;
    }
bool SurfelsRGBDModeler :: addNewView(const RGBDImage& image_, Pose3D& depth_pose)
{
    ntk::TimeCount tc("SurfelsRGBDModeler::addNewView", 1);
    const float max_camera_normal_angle = ntk::deg_to_rad(90);

    RGBDImage image;
    image_.copyTo(image);
    if (!image_.normal().data)
    {
        OpenniRGBDProcessor processor;
        processor.computeNormalsPCL(image);
    }

    Pose3D rgb_pose = depth_pose;
    rgb_pose.toRightCamera(image.calibration()->rgb_intrinsics, image.calibration()->R, image.calibration()->T);

    Pose3D world_to_camera_normal_pose;
    world_to_camera_normal_pose.applyTransformBefore(cv::Vec3f(0,0,0), depth_pose.cvEulerRotation());
    Pose3D camera_to_world_normal_pose = world_to_camera_normal_pose;
    camera_to_world_normal_pose.invert();

    const Mat1f& depth_im = image.depth();
    Mat1b covered_pixels (depth_im.size());
    covered_pixels = 0;

    std::list<Surfel> surfels_to_reinsert;

    // Surfel updating.
    for (SurfelMap::iterator next_it = m_surfels.begin(); next_it != m_surfels.end(); )
    {
        SurfelMap::iterator surfel_it = next_it;
        ++next_it;

        Surfel& surfel = surfel_it->second;
        if (!surfel.enabled())
            continue;

        Point3f surfel_2d = depth_pose.projectToImage(surfel.location);
        bool surfel_deleted = false;
        int r = ntk::math::rnd(surfel_2d.y);
        int c = ntk::math::rnd(surfel_2d.x);
        int d = ntk::math::rnd(surfel_2d.z);
        if (!is_yx_in_range(depth_im, r, c)
                || !image.depthMask()(r, c)
                || !image.isValidNormal(r,c))
            continue;

        const float update_max_dist = getCompatibilityDistance(depth_im(r,c));

        Vec3f camera_normal = image.normal()(r, c);
        normalize(camera_normal);

        Vec3f world_normal = camera_to_world_normal_pose.cameraTransform(camera_normal);
        normalize(world_normal);

        Vec3f eyev = camera_eye_vector(depth_pose, r, c);
        double camera_angle = acos(camera_normal.dot(-eyev));

        if (camera_angle > max_camera_normal_angle)
            continue;

        float normal_angle = acos(world_normal.dot(surfel.normal));
        // Surfels have different normals, maybe two different faces of the same object.
        if (normal_angle > (m_update_max_normal_angle*M_PI/180.0))
        {
            // Removal check. If a surfel has a different normal and is closer to the camera
            // than the new scan, remove it.
            if ((-surfel_2d.z) < depth_im(r,c) && surfel.n_views < 3)
            {
                m_surfels.erase(surfel_it);
                surfel_deleted = true;
            }
            continue;
        }

        // If existing surfel is far from new depth value:
        // - If existing one had a worst point of view, and was seen only once, remove it.
        // - Otherwise do not include the new one.
        if (std::abs(surfel_2d.z - depth_im(r,c)) > update_max_dist)
        {
            if (surfel.min_camera_angle > camera_angle && surfel.n_views < 3)
            {
                m_surfels.erase(surfel_it);
                surfel_deleted = true;
            }
            else
                covered_pixels(r,c) = 1;
            continue;
        }

        // Compatible surfel found.
        const float depth = depth_im(r,c) + m_global_depth_offset;

        Point3f p3d = depth_pose.unprojectFromImage(Point2f(c,r), depth);
        cv::Vec3b rgb_color = bgr_to_rgb(image.mappedRgb()(r, c));

        Surfel image_surfel;
        image_surfel.location = p3d;
        image_surfel.normal = world_normal;
        image_surfel.color = rgb_color;
        image_surfel.min_camera_angle = camera_angle;
        image_surfel.n_views = 1;
        image_surfel.radius = computeSurfelRadius(depth, camera_normal[2], depth_pose.meanFocal());
        mergeToLeftSurfel(surfel, image_surfel);

        covered_pixels(r,c) = 1;
        // needs to change the cell?
        Cell new_cell = worldToCell(surfel.location);
        if (new_cell != surfel_it->first)
        {
            surfels_to_reinsert.push_back(surfel);
            m_surfels.erase(surfel_it);
        }
    }

    foreach_const_it(it, surfels_to_reinsert, std::list<Surfel>)
    {
        Cell new_cell = worldToCell(it->location);
        m_surfels.insert(std::make_pair(new_cell, *it));
    }
Example #6
0
void calibrate_kinect_depth(std::vector< DepthCalibrationPoint >& depth_values)
{
    std::vector< std::vector<Point3f> > pattern_points;
    calibrationPattern(pattern_points,
                       global::opt_pattern_width(),  global::opt_pattern_height(), global::opt_square_size(),
                       global::images_list.size());

    for (int i_image = 0; i_image < global::images_list.size(); ++i_image)
    {
        // Generate depth calibration points
        QString filename = global::images_list[i_image];
        QDir cur_image_dir (global::images_dir.absoluteFilePath(filename));
        std::string full_filename = cur_image_dir.absoluteFilePath("raw/color.png").toStdString();
        RGBDImage image;
        OpenniRGBDProcessor processor;
        processor.setFilterFlag(RGBDProcessorFlags::ComputeMapping, true);
        image.loadFromDir(cur_image_dir.absolutePath().toStdString(), &global::calibration, &processor);

        imshow_normalized("mapped depth", image.mappedDepth());
        imshow("color", image.rgb());

        std::vector<Point2f> current_view_corners;
        calibrationCorners(full_filename, "corners",
                           global::opt_pattern_width(), global::opt_pattern_height(),
                           current_view_corners, image.rgb(), 1, global::pattern_type);

        if (current_view_corners.size() != (global::opt_pattern_width()*global::opt_pattern_height()))
        {
            ntk_dbg(1) << "Corners not detected in " << cur_image_dir.absolutePath().toStdString();
            continue;
        }

        // FIXME: why rvecs and tvecs from calibrateCamera seems to be nonsense ?
        // calling findExtrinsics another time to get good chessboard estimations.

        cv::Mat1f H;
        estimate_checkerboard_pose(pattern_points[0],
                                   current_view_corners,
                                   global::calibration.rgb_intrinsics,
                                   H);
        Pose3D pose;
        pose.setCameraParametersFromOpencv(global::calibration.rgb_intrinsics);
        pose.setCameraTransform(H);
        ntk_dbg_print(pose, 1);

        cv::Mat3b debug_img;
        image.rgb().copyTo(debug_img);
        foreach_idx(pattern_i, pattern_points[0])
        {
            Point3f p = pose.projectToImage(pattern_points[0][pattern_i]);
            ntk_dbg_print(p, 1);
            float kinect_raw = image.mappedDepth()(p.y, p.x);
            ntk_dbg_print(kinect_raw, 1);
            if (kinect_raw < 1e-5) continue;
            float err = kinect_raw-p.z;
            cv::putText(debug_img, format("%d", (int)(err*1000)), Point(p.x, p.y), CV_FONT_NORMAL, 0.4, Scalar(255,0,0));
            ntk_dbg_print(pattern_points[0][pattern_i], 1);
            ntk_dbg_print(p, 1);
            ntk_dbg_print(kinect_raw, 1);
            depth_values.push_back(DepthCalibrationPoint(kinect_raw, p.z));
        }
        imshow("errors", debug_img);
        cv::waitKey(0);
    }