Example #1
0
// Prevents agglomeration in a single cluster.
void HDCluster::determineSubStability(const unsigned int& minPts, Progress& p) {
#ifdef DEBUG
	if (sz < minPts && parent != nullptr) throw Rcpp::exception("Condense failed.");
#endif
	stability = sum_lambda_p - (lambda_birth * fallenPoints.size());
	if (left != nullptr) {
			const double childStabilities = left->determineStability(minPts, p) +
																			right->determineStability(minPts, p);
			if (childStabilities > stability) stability = childStabilities;
	} else {
		p.increment(sz);
	}
}
Example #2
0
	void thread(Progress& progress, const uword& batchSize) {
		coordinatetype * const holder = new coordinatetype[D * 2];

		while (rho >= 0) {
			const double localRho = rho;
			innerLoop(localRho, batchSize, holder);
#ifdef _OPENMP
#pragma omp atomic
#endif
			rho -= (rhoIncrement * batchSize);
			if (!progress.increment()) break;
		}
		delete[] holder;
	}
Example #3
0
void HDCluster::extract( int* clusters,
                         double* lambdas,
                         int& selectedClusterCnt,
                         int currentSelectedCluster,
                         Progress& p) const {
	if (selected) currentSelectedCluster = selectedClusterCnt++;
	std::for_each(fallenPoints.begin(), fallenPoints.end(),
               [&clusters, &lambdas, &currentSelectedCluster](const std::pair<arma::uword, double>& it) {
               	clusters[it.first] = (currentSelectedCluster == 0) ? NA_INTEGER : currentSelectedCluster;
               	lambdas[it.first] = it.second;
               });
	if (left != nullptr) {
		left->extract(clusters, lambdas, selectedClusterCnt, currentSelectedCluster, p);
		right->extract(clusters, lambdas, selectedClusterCnt, currentSelectedCluster, p);
	} else {
		p.increment(sz);
	}
}
Example #4
0
double HDCluster::determineStability(const unsigned int& minPts, Progress& p) {
#ifdef DEBUG
	if (sz < minPts && parent != nullptr) throw Rcpp::exception("Condense failed.");
#endif
	stability = sum_lambda_p - (lambda_birth * fallenPoints.size());
	if (left == nullptr) { // leaf node
		if (sz >= minPts) selected = true; // Otherwise, this is a parent singleton smaller than minPts.
		p.increment();
	} else {
		const double childStabilities = left->determineStability(minPts, p) +
			right->determineStability(minPts, p);
		stability += lambda_death * (left->sz + right->sz);

		if (stability > childStabilities) {
			selected = true;
			left->deselect();
			right->deselect();
		} else stability = childStabilities;
	}
	return stability;
}
Example #5
0
/*
 * Converts the specified registry file.  The specified file is
 * removed if the conversion is successful.  If conversion_count
 * is not NULL, the total number of Articles converted will be
 * passed back.
 */
int
wsreg_convert_registry(const char *filename, int *conversion_count,
    Progress_function progress_callback)
{
	File_util *futil = _wsreg_fileutil_initialize();

	if (initialized == WSREG_NOT_INITIALIZED) {
		return (WSREG_NOT_INITIALIZED);
	}

	if (!futil->exists(filename)) {
		/*
		 * Bad filename.
		 */
		return (WSREG_FILE_NOT_FOUND);
	}
	if (futil->can_read(filename) && futil->can_write(filename)) {
		/*
		 * The registry file can be read and removed.
		 */
		if (wsreg_can_access_registry(O_RDWR)) {
			/*
			 * The conversion permissions are appropriate.
			 * Perform the conversion.
			 */
			int result;
			int article_count = 0;
			Progress *progress =
			    _wsreg_progress_create(
				    (Progress_callback)*progress_callback);
			int count = 0;
			Unz_article_input_stream *ain = NULL;
			Conversion *c = NULL;

			/*
			 * The first progress section represents the
			 * unzipping of the data file.
			 */
			progress->set_section_bounds(progress, 5, 1);
			ain = _wsreg_uzais_open(filename, &result);
			progress->finish_section(progress);
			if (result != WSREG_SUCCESS) {
				/*
				 * The open failed.  Clean up and
				 * return the error code.
				 */
				if (ain != NULL) {
					ain->close(ain);
				}
				progress->free(progress);
				return (result);
			}

			c = _wsreg_conversion_create(progress);

			/*
			 * The second progress section represents
			 * the reading of articles.
			 */
			article_count = ain->get_article_count(ain);
			progress->set_section_bounds(progress, 8,
			    article_count);
			while (ain->has_more_articles(ain)) {
				Article *a = ain->get_next_article(ain);
				if (a != NULL) {
					c->add_article(c, a);
				}
				progress->increment(progress);
			}
			progress->finish_section(progress);
			ain->close(ain);

			/*
			 * The third progress section represents
			 * the conversion and registration of the
			 * resulting components.
			 */
			progress->set_section_bounds(progress, 100,
			    article_count);
			count = c->register_components(c, NULL, FALSE);
			progress->finish_section(progress);

			/*
			 * Pass the count back to the caller.
			 */
			if (conversion_count != NULL) {
				*conversion_count = count;
			}

			/*
			 * Remove the old registry file.
			 */
			futil->remove(filename);

			/*
			 * Cleanup objects.
			 */
			c->free(c);
			progress->free(progress);

			return (WSREG_SUCCESS);
		} else {
			/*
			 * No permission to modify the registry.
			 */
			return (WSREG_NO_REG_ACCESS);
		}
	} else {
		/*
		 * No permission to read and delete the specified file.
		 */
		return (WSREG_NO_FILE_ACCESS);
	}
}
Example #6
0
File: clmm.cpp Project: rforge/cgen
SEXP clmm(SEXP yR, SEXP XR, SEXP par_XR, SEXP list_of_design_matricesR, SEXP par_design_matricesR, SEXP par_mcmcR, SEXP verboseR, SEXP threadsR, SEXP use_BLAS){

int threads = as<int>(threadsR); 
int verbose = as<int>(verboseR); 
bool BLAS = Rcpp::as<bool>(use_BLAS);

Rcpp::List list_of_phenotypes(yR);
Rcpp::List list_of_par_design_matrices(par_design_matricesR);
Rcpp::List list_of_par_mcmc(par_mcmcR);
int p = list_of_phenotypes.size();

//omp_set_dynamic(0);
omp_set_num_threads(threads);

Eigen::setNbThreads(1);
Eigen::initParallel();

int max = p / threads;
if(max < 1) max = 1;
//printer prog(max);

Rcpp::List summary_out;

mcmc_st vec_mcmc_st;
MCMC_abstract * single_mcmc;

Rcpp::List Summary;

bool multiple_phenos = false;

// CV
if(p > 1) {

  multiple_phenos = true;
// fill the container with mcmc_objects
  for(int i=0;i<p;i++) {
  
    vec_mcmc_st.push_back(MCMC<base_methods_st>(list_of_phenotypes[i], XR, par_XR, list_of_design_matricesR ,list_of_par_design_matrices[i], list_of_par_mcmc[i],i));

  }

  for(mcmc_st::iterator it = vec_mcmc_st.begin(); it != vec_mcmc_st.end(); it++) {

    it->initialize();

  }

//  if ((p > 1) & verbose) { prog.initialize(); }

// this looks easy - the work was to allow this step to be parallelized
// verbose
  Progress * prog = new Progress(vec_mcmc_st.size(), verbose);

#pragma omp parallel for 
      for(unsigned int i=0;i<vec_mcmc_st.size();i++){

        if ( ! Progress::check_abort() ) {

          vec_mcmc_st.at(i).gibbs();
          prog->increment();

        }

      }


  for(mcmc_st::iterator it = vec_mcmc_st.begin(); it != vec_mcmc_st.end(); it++) {

    it->summary();
    Summary[it->get_name()] = it->get_summary();     

  }


  delete prog;
  summary_out = Summary;


} else {

// Dont know whether it is possible to control threads for OMP and BLAS seperately
// Single Model Run

    if (threads==1 & !BLAS) { 

      single_mcmc = new MCMC<base_methods_st>(list_of_phenotypes[0], XR, par_XR, list_of_design_matricesR, 
                                              list_of_par_design_matrices[0], list_of_par_mcmc[0],0);

    }

    if (threads>1 & !BLAS) { 

      single_mcmc = new MCMC<base_methods_mp>(list_of_phenotypes[0], XR, par_XR, list_of_design_matricesR, 
                                              list_of_par_design_matrices[0], list_of_par_mcmc[0],0);

    }

    if (BLAS) { 

      single_mcmc = new MCMC<base_methods_BLAS>(list_of_phenotypes[0], XR, par_XR, list_of_design_matricesR, 
                                                list_of_par_design_matrices[0], list_of_par_mcmc[0],0);

    }

    single_mcmc->initialize();
    Progress * prog = new Progress(single_mcmc->get_niter() , single_mcmc->get_verbose());
//    single_mcmc->gibbs(prog);
    single_mcmc->gibbs(prog);
    single_mcmc->summary();
    Summary[single_mcmc->get_name()] = single_mcmc->get_summary();  

    delete single_mcmc; 
    delete prog;
    summary_out = Summary;
  
  }


    
////////////

return summary_out;

}