Example #1
0
static AllocationTypes CheckAllocationType(const CXXStaticCastExpr* castNode)
{
    QualType targetType = castNode->getTypeAsWritten();
    if (const IdentifierInfo* info = targetType.getBaseTypeIdentifier())
    {
        return info->getName().equals("Recycler") ?
                AllocationTypes::Recycler : AllocationTypes::NonRecycler;
    }
    else
    {
        // Unknown template dependent allocator types
        return AllocationTypes::Unknown;
    }
}
Example #2
0
bool TeslaVisitor::VisitFunctionDecl(FunctionDecl *F) {
    // Only analyse non-deleted definitions (i.e. definitions with bodies).
    if (!F->doesThisDeclarationHaveABody())
        return true;


    // We only parse functions that return __tesla_automaton_description*.
    const Type *RetTy = F->getResultType().getTypePtr();
    if (!RetTy->isPointerType())
        return true;

    QualType Pointee = RetTy->getPointeeType();
    auto TypeID = Pointee.getBaseTypeIdentifier();
    if (!TypeID)
        return true;

    OwningPtr<Parser> P;
    StringRef FnName = F->getName();

    // Build a Parser appropriate to what we're parsing.
    string RetTypeName = TypeID->getName();
    if (RetTypeName == AUTOMATON_DESC)
        P.reset(Parser::AutomatonParser(F, *Context));

    else if ((RetTypeName == AUTOMATON_USAGE) && (FnName != AUTOMATON_USES))
        P.reset(Parser::MappingParser(F, *Context));

    else
        return true;


    // Actually parse the function.
    if (!P)
        return false;

    OwningPtr<AutomatonDescription> Description;
    OwningPtr<Usage> Use;
    if (!P->Parse(Description, Use))
        return false;

    if (Description)
        Automata.push_back(Description.take());

    if (Use)
        Roots.push_back(Use.take());

    return true;
}
/// \brief If the new variable name conflicts with any type used in the loop,
/// then we mark that variable name as taken.
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
  QualType QType = TL.getType();

  // Check if our name conflicts with a type, to handle for typedefs.
  if (QType.getAsString() == Name) {
    Found = true;
    return false;
  }
  // Check for base type conflicts. For example, when a struct is being
  // referenced in the body of the loop, the above getAsString() will return the
  // whole type (ex. "struct s"), but will be caught here.
  if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
    if (Ident->getName() == Name) {
      Found = true;
      return false;
    }
  }
  return true;
}
void ExprEngine::VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred,
                                   ExplodedNodeSet &Dst) {
  // FIXME: Much of this should eventually migrate to CXXAllocatorCall.
  // Also, we need to decide how allocators actually work -- they're not
  // really part of the CXXNewExpr because they happen BEFORE the
  // CXXConstructExpr subexpression. See PR12014 for some discussion.

  unsigned blockCount = currBldrCtx->blockCount();
  const LocationContext *LCtx = Pred->getLocationContext();
  DefinedOrUnknownSVal symVal = UnknownVal();
  FunctionDecl *FD = CNE->getOperatorNew();

  bool IsStandardGlobalOpNewFunction = false;
  if (FD && !isa<CXXMethodDecl>(FD) && !FD->isVariadic()) {
    if (FD->getNumParams() == 2) {
      QualType T = FD->getParamDecl(1)->getType();
      if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
        // NoThrow placement new behaves as a standard new.
        IsStandardGlobalOpNewFunction = II->getName().equals("nothrow_t");
    }
    else
      // Placement forms are considered non-standard.
      IsStandardGlobalOpNewFunction = (FD->getNumParams() == 1);
  }

  // We assume all standard global 'operator new' functions allocate memory in
  // heap. We realize this is an approximation that might not correctly model
  // a custom global allocator.
  if (IsStandardGlobalOpNewFunction)
    symVal = svalBuilder.getConjuredHeapSymbolVal(CNE, LCtx, blockCount);
  else
    symVal = svalBuilder.conjureSymbolVal(nullptr, CNE, LCtx, CNE->getType(),
                                          blockCount);

  ProgramStateRef State = Pred->getState();
  CallEventManager &CEMgr = getStateManager().getCallEventManager();
  CallEventRef<CXXAllocatorCall> Call =
    CEMgr.getCXXAllocatorCall(CNE, State, LCtx);

  // Invalidate placement args.
  // FIXME: Once we figure out how we want allocators to work,
  // we should be using the usual pre-/(default-)eval-/post-call checks here.
  State = Call->invalidateRegions(blockCount);
  if (!State)
    return;

  // If this allocation function is not declared as non-throwing, failures
  // /must/ be signalled by exceptions, and thus the return value will never be
  // NULL. -fno-exceptions does not influence this semantics.
  // FIXME: GCC has a -fcheck-new option, which forces it to consider the case
  // where new can return NULL. If we end up supporting that option, we can
  // consider adding a check for it here.
  // C++11 [basic.stc.dynamic.allocation]p3.
  if (FD) {
    QualType Ty = FD->getType();
    if (const FunctionProtoType *ProtoType = Ty->getAs<FunctionProtoType>())
      if (!ProtoType->isNothrow(getContext()))
        State = State->assume(symVal, true);
  }

  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);

  if (CNE->isArray()) {
    // FIXME: allocating an array requires simulating the constructors.
    // For now, just return a symbolicated region.
    const MemRegion *NewReg = symVal.castAs<loc::MemRegionVal>().getRegion();
    QualType ObjTy = CNE->getType()->getAs<PointerType>()->getPointeeType();
    const ElementRegion *EleReg =
      getStoreManager().GetElementZeroRegion(NewReg, ObjTy);
    State = State->BindExpr(CNE, Pred->getLocationContext(),
                            loc::MemRegionVal(EleReg));
    Bldr.generateNode(CNE, Pred, State);
    return;
  }

  // FIXME: Once we have proper support for CXXConstructExprs inside
  // CXXNewExpr, we need to make sure that the constructed object is not
  // immediately invalidated here. (The placement call should happen before
  // the constructor call anyway.)
  SVal Result = symVal;
  if (FD && FD->isReservedGlobalPlacementOperator()) {
    // Non-array placement new should always return the placement location.
    SVal PlacementLoc = State->getSVal(CNE->getPlacementArg(0), LCtx);
    Result = svalBuilder.evalCast(PlacementLoc, CNE->getType(),
                                  CNE->getPlacementArg(0)->getType());
  }

  // Bind the address of the object, then check to see if we cached out.
  State = State->BindExpr(CNE, LCtx, Result);
  ExplodedNode *NewN = Bldr.generateNode(CNE, Pred, State);
  if (!NewN)
    return;

  // If the type is not a record, we won't have a CXXConstructExpr as an
  // initializer. Copy the value over.
  if (const Expr *Init = CNE->getInitializer()) {
    if (!isa<CXXConstructExpr>(Init)) {
      assert(Bldr.getResults().size() == 1);
      Bldr.takeNodes(NewN);
      evalBind(Dst, CNE, NewN, Result, State->getSVal(Init, LCtx),
               /*FirstInit=*/IsStandardGlobalOpNewFunction);
    }
  }
}
Example #5
0
bool ScanfSpecifier::fixType(QualType QT, const LangOptions &LangOpt)
{
  if (!QT->isPointerType())
    return false;

  QualType PT = QT->getPointeeType();
  const BuiltinType *BT = PT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Pointer to a character.
  if (PT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::sArg);
    if (PT->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);
    return true;
  }

  // Figure out the length modifier.
  switch (BT->getKind()) {
    // no modifier
    case BuiltinType::UInt:
    case BuiltinType::Int:
    case BuiltinType::Float:
      LM.setKind(LengthModifier::None);
      break;

    // hh
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::Char_S:
    case BuiltinType::SChar:
      LM.setKind(LengthModifier::AsChar);
      break;

    // h
    case BuiltinType::Short:
    case BuiltinType::UShort:
      LM.setKind(LengthModifier::AsShort);
      break;

    // l
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::Double:
      LM.setKind(LengthModifier::AsLong);
      break;

    // ll
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
      LM.setKind(LengthModifier::AsLongLong);
      break;

    // L
    case BuiltinType::LongDouble:
      LM.setKind(LengthModifier::AsLongDouble);
      break;

    // Don't know.
    default:
      return false;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(PT) && (LangOpt.C99 || LangOpt.CPlusPlus0x)) {
    const IdentifierInfo *Identifier = QT.getBaseTypeIdentifier();
    if (Identifier->getName() == "size_t") {
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "ssize_t") {
      // Not C99, but common in Unix.
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "intmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "uintmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "ptrdiff_t") {
      LM.setKind(LengthModifier::AsPtrDiff);
    }
  }

  // Figure out the conversion specifier.
  if (PT->isRealFloatingType())
    CS.setKind(ConversionSpecifier::fArg);
  else if (PT->isSignedIntegerType())
    CS.setKind(ConversionSpecifier::dArg);
  else if (PT->isUnsignedIntegerType()) {
    // Preserve the original formatting, e.g. 'X', 'o'.
    if (!CS.isUIntArg()) {
      CS.setKind(ConversionSpecifier::uArg);
    }
  } else
    llvm_unreachable("Unexpected type");

  return true;
}
Example #6
0
bool PrintfSpecifier::fixType(QualType QT, const LangOptions &LangOpt) {
  // Handle strings first (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);

    return true;
  }

  // We can only work with builtin types.
  const BuiltinType *BT = QT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Set length modifier
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::WChar_U:
  case BuiltinType::WChar_S:
  case BuiltinType::Char16:
  case BuiltinType::Char32:
  case BuiltinType::UInt128:
  case BuiltinType::Int128:
  case BuiltinType::Half:
    // Various types which are non-trivial to correct.
    return false;

#define SIGNED_TYPE(Id, SingletonId)
#define UNSIGNED_TYPE(Id, SingletonId)
#define FLOATING_TYPE(Id, SingletonId)
#define BUILTIN_TYPE(Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
    // Misc other stuff which doesn't make sense here.
    return false;

  case BuiltinType::UInt:
  case BuiltinType::Int:
  case BuiltinType::Float:
  case BuiltinType::Double:
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::Char_U:
  case BuiltinType::UChar:
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    LM.setKind(LengthModifier::AsChar);
    break;

  case BuiltinType::Short:
  case BuiltinType::UShort:
    LM.setKind(LengthModifier::AsShort);
    break;

  case BuiltinType::Long:
  case BuiltinType::ULong:
    LM.setKind(LengthModifier::AsLong);
    break;

  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    LM.setKind(LengthModifier::AsLongLong);
    break;

  case BuiltinType::LongDouble:
    LM.setKind(LengthModifier::AsLongDouble);
    break;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(QT) && (LangOpt.C99 || LangOpt.CPlusPlus0x)) {
    const IdentifierInfo *Identifier = QT.getBaseTypeIdentifier();
    if (Identifier->getName() == "size_t") {
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "ssize_t") {
      // Not C99, but common in Unix.
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "intmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "uintmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "ptrdiff_t") {
      LM.setKind(LengthModifier::AsPtrDiff);
    }
  }

  // Set conversion specifier and disable any flags which do not apply to it.
  // Let typedefs to char fall through to int, as %c is silly for uint8_t.
  if (isa<TypedefType>(QT) && QT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::cArg);
    LM.setKind(LengthModifier::None);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
  else if (QT->isRealFloatingType()) {
    CS.setKind(ConversionSpecifier::fArg);
  }
  else if (QT->isSignedIntegerType()) {
    CS.setKind(ConversionSpecifier::dArg);
    HasAlternativeForm = 0;
  }
  else if (QT->isUnsignedIntegerType()) {
    // Preserve the original formatting, e.g. 'X', 'o'.
    if (!cast<PrintfConversionSpecifier>(CS).isUIntArg())
      CS.setKind(ConversionSpecifier::uArg);
    HasAlternativeForm = 0;
    HasPlusPrefix = 0;
  } else {
    llvm_unreachable("Unexpected type");
  }

  return true;
}
Example #7
0
		/*
		   this helper function is called when the traversal reaches a node of type Stmt
		 */
		void StmtHelper(Stmt *x){
			//variable used for <cond> </cond>
			//bool condition = false;
			bool isElse = false;
			if(x != NULL){
				string output = "";
				//find current level and next level
				int intLevel = getLevelStmt(x); int intNextLevel = intLevel+1;
				//convert them both to strings to use for output
				string level; string nextLevel;
				stringstream ss;
				ss << intLevel;
				level = ss.str();
				stringstream ss2;
				ss2 << intNextLevel;
				nextLevel = ss2.str();

				const Stmt* parent = getStmtParent(x, Context);
				//PROBLEM
				if(x->getStmtClassName() != std::string("ForStmt") && isFlowControl(x, Context)){
					//return;
				}

				//if the parent is calling any type of funciton then this node should be enclosed in <args> </args>
				string filename;
				if(callStackDebug && !callStack.empty()){
					cerr << "stmt: call stack top: " << callStack.top()->getStmtClassName() << endl;
				}

				while(!callStack.empty() && numClosingArgsNeeded > 0
						&& !isParentStmt(parent, callStack.top()->getStmtClassName())){

					if(debugPrint){
						cerr << "adding args" << endl;
					}
					numClosingArgsNeeded--;
					output += "</args,1>\n";

					callStack.pop();

					if(callStackDebug){
						cerr << "popping" << endl;
						printCallStack();
					}
				}

				if(isParentStmtInCurFile(x,"CXXConstructExpr") && isParentStmt(x, "CXXConstructExpr")){

					if(debugPrint){
						cerr << "setting previousConstructorCall to true" << endl;
					}

				}else if(isParentStmtInCurFile(x,"CXXTemporaryObjectExpr") && isParentStmt(x, "CXXTemporaryObjectExpr")){

					if(debugPrint){
						cerr << "setting previousTempConstructorCallArg" << endl;
					}


				}else if(isParentStmt(x, "CallExpr")){

					if(debugPrint){
						cerr << "setting previousCallArgs to true" << endl;
					}


				}else if(isParentStmt(x, "CXXMemberCallExpr")){

					if(debugPrint){
						cerr << "setting previousMemberCallArgs to true" << endl;
					}

				}

				//if the parent is a variable declaration then this node should be encolsed in <decl> </decl>
				if(isParentStmt(x, "Var")){
					previousRhsDecl = true;
					if(debugPrint){
						cout << "setting prev var to true" << endl;
					}

				}else if(previousRhsDecl && numClosingVarsNeeded > 0){
					//if the current node is not a child of a variable declaration 
					//but the previous node was a child of a variable declation 
					//then we know to print a </decl>
					output +="</variableDecl,1>\n";
					numClosingVarsNeeded--;
					previousRhsDecl = false;
				}


				if(parent != NULL && strcmp(parent->getStmtClassName(), "IfStmt") == 0){
					if(debugPrint){
						cerr << "possibly an if statement" << endl;
					}
					//find the first child of the if statemt
					const Stmt* firstChild = NULL;
					auto children = parent->children();
					for(const Stmt* child : children){
						if(child != NULL){
							firstChild = child;
							break;
						}
					}

					//if the first child is the current node, then we know it is part of the condition
					if(firstChild != NULL  && x->getLocStart() == firstChild->getLocStart()){
						if(debugPrint){
							cerr << "part of the condition" << endl;
						}
						prevCondition = true;
					}else if(prevCondition){
						output +="</cond,1>\n";
						prevCondition = false;
					}


					//find if else
					const IfStmt* ifstmt = (IfStmt*) parent;
					const Stmt* elseStmt = ifstmt->getElse();
					if(elseStmt != NULL){
						if(debugPrint){
							cout << "checking if " << x->getLocStart().printToString(Context->getSourceManager());
							cout << " == " << elseStmt->getLocStart().printToString(Context->getSourceManager());
							cout << " : " << (x->getLocStart() == elseStmt->getLocStart()) << endl;
						}
						if(x->getLocStart() == elseStmt->getLocStart()){
							isElse = true;
						}
					}

				}

				string node = x->getStmtClassName();
				if(node == "ReturnStmt"){
					output += "<return";
				}else if(node == "ForStmt"){
					output += "<forLoop";
				}else if(node == "WhileStmt"){
					output += "<whileLoop";
				}else if(node == "DoStmt"){
					output += "<do";		
				}else if(node == "IfStmt"){
                                        if(parent->getStmtClassName() != std::string("IfStmt")){
						stringstream ssminus;
						ssminus << (intLevel-1);
						output += "<ifBlock," + ssminus.str() + ">\n";
						intLevel += 1;
						stringstream ssif;
						ssif << intLevel;
						level = ssif.str();
					}
					output += "<ifStatement";
				}else if(node == "SwitchStmt"){
					output += "<switch";
				}else if(node == "CaseStmt"){
					output += "<case";
				}else if(node == "CXXMemberCallExpr"){
					CXXMemberCallExpr* ce = (CXXMemberCallExpr*) x;
					Expr* obj = ce->getImplicitObjectArgument();
					CallExpr* expr = (CallExpr*) x;
					output += "<object: ";
					QualType qt = obj->getType();
					output += qt.getBaseTypeIdentifier()->getName().str();
					output += "; calling func: ";
					output += expr->getDirectCallee()->getNameInfo().getAsString();
					output += ", " + level + ">\n";
					output += "<args";
					numClosingArgsNeeded++;
					callStack.push(x);

					if(callStackDebug){
						cerr << "pushing" << endl;
						printCallStack();								
					}

				}else if(node == "CallExpr"){
					CallExpr* expr = (CallExpr*) x;
					output += "<calling func: ";
					output += expr->getDirectCallee()->getNameInfo().getAsString();
					output += ", " + level + ">\n";
					output += "<args";
					numClosingArgsNeeded++;
					callStack.push(x);
					if(callStackDebug){
						cerr << "pushing" << endl;
						printCallStack();								
					}

				}else if(node == "CXXConstructExpr"){
					CXXConstructExpr* ce = (CXXConstructExpr*) x;
					//Decl* CD = ce->getConstructor();

					string filename;
					//if(isInCurFile(Context, CD, filename)){
						CXXMethodDecl* MD =  ce->getConstructor();
						output += "<calling func: ";
						output += MD->getNameInfo().getAsString();
						output += "," + level + ">\n";
						output += "<args";
						numClosingArgsNeeded++;
						callStack.push(x);
						if(callStackDebug){
							cerr << "pushing" << endl;
							printCallStack();								
						}

					//}

				}else if(node == "BinaryOperator"){
					BinaryOperator* binaryOp = (BinaryOperator*) x;
					if(binaryOp->isAssignmentOp()){
						output += "<assignment";
					}else if(binaryOp->isComparisonOp()){
						output += "<comparison";
					}else{
						output += "<binaryOp";
					}
				}else if(node == "UnaryOperator"){
					UnaryOperator* uo = (UnaryOperator*) x;
					string op = uo->getOpcodeStr(uo->getOpcode()).str();
					if(op != "-"){
						output += "<unaryOp";
					}
				}else if(node == "CompoundAssignOperator"){
					output += "<augAssign";
				}else if(node == "CompoundStmt"){
					if(isElse){
						output += "<elseStatement";
					}else{
						output += "<compoundStmt";
					}
				}else if(node == "CXXThrowExpr"){
					output += "<raisingException";
				}else if(node == "CXXTryStmt"){
					output += "<try";
				}else if(node == "CXXCatchStmt"){
					output += "<except";
				}else if(node == "CXXOperatorCallExpr"){
					CXXOperatorCallExpr* ce = (CXXOperatorCallExpr*) x;
					if(ce->isAssignmentOp()){
						output += "<assignment";
					}
				}else if(node == "CXXTemporaryObjectExpr"){
					CXXTemporaryObjectExpr* ce = (CXXTemporaryObjectExpr*) x;
					Decl* CD = ce->getConstructor();



					string filename;
					if(isInCurFile(Context, CD, filename)){
						CXXMethodDecl* MD =  ce->getConstructor();
						output += "<calling func: ";
						output += MD->getNameInfo().getAsString();
						output += "," + level + ">\n";
						output += "<args";
						numClosingArgsNeeded++;
						callStack.push(x);
						if(callStackDebug){
							cerr << "pushing" << endl;
							printCallStack();								
						}


					}

				}else if(node == "DeclRefExpr"){
                                        if(parent != NULL && parent->getStmtClassName() == std::string("ImplicitCastExpr")){
						DeclRefExpr* dr = (DeclRefExpr*) x;
						ValueDecl* d = (ValueDecl*) dr->getDecl();
						//cout << d->getQualType().getAsString() << endl;
						if(d != NULL){
							QualType qt = d->getType();
							//cout << qt.getAsString() << endl;
							if(qt.getAsString() == "std::vector<int, class std::allocator<int> >::const_reference (std::vector::size_type) const noexcept"){
								//string type = io->getName().str();
								//cout << type << endl;

								//if(type == "vector"){
								output += "<expr";
								//}
							}
						}
					}
				}else{
					if(allNodes){
						output += "<";
						output += node;
						output += ">";

					}
				}


				if(output.size() != 0 && !endsIn(output, "</cond,1>\n") && 
						!endsIn(output,"</variableDecl,1>\n") && !endsIn(output,"</args,1>\n") 
						&& !endsIn(output,">") && !endsIn(output, ">\n")){

					output += ", " + level + ">";
					cout << output << endl;
					output = "";
				}else if(output.size() != 0){
					cout << output << endl;
					output = "";
					if(debugPrint){
						cerr << "printing output" << endl;
					}
				}	


			}
		}
Example #8
0
		/*
		   this helper function is called when the traversal reaches a node of type Decl
		 */
		bool DeclHelper(Decl *D){

			const Stmt* parent = getStmtParent(D, Context);
			//const Stmt* parentsParent = getStmtParent(parent, Context);

			//if it is part of the (init; condition; increment) of a for loop, we don't care about it
			if(isFlowControl(D, Context)){
				return false;
			}


			//supresses the catch stmt's arguments
			if(parent != NULL && strcmp(parent->getStmtClassName(), "CXXCatchStmt") == 0){
				return true;
			}


			string filename;
			if(!isInCurFile(Context, D, filename) && filename.size() != 0){
				return false;
			}else if(filename.size() == 0){
				return true;
			}



			string output = "";
			//get the name of the node type
			string node = D->getDeclKindName();
			//calculate the current level, nextLevel, and previousLevel
			int intLevel = getLevelDecl(D);int intNextLevel = intLevel+1;
			int intNextNextLevel = intLevel+2; int intPrevLevel = intLevel-1;
			//create string values for the levels to use as output
			string level; string nextLevel;
			string nextNextLevel; string prevLevel;
			stringstream ss; stringstream ss2; stringstream ss3; stringstream ss4;
			ss << intLevel;
			level = ss.str();
			ss2 << intNextLevel;
			nextLevel = ss2.str();
			ss3 << intPrevLevel;
			prevLevel = ss3.str();
			ss4 << intNextNextLevel;
			nextNextLevel = ss4.str();



			if(callStackDebug && !callStack.empty()){
				cerr << "decl: call stack top: " << callStack.top()->getStmtClassName() << endl;
			}

			//if top of stack is no longer a parent
			while(!callStack.empty() && numClosingArgsNeeded > 0
					&& !isParentDecl(D, callStack.top()->getStmtClassName())){

				if(debugPrint){
					cerr << "adding args" << endl;
				}
				numClosingArgsNeeded--;
				output += "</args,1>\n";

				callStack.pop();
				if(callStackDebug){
					cerr << "poping" << endl;
					printCallStack();
				}
			}


			//add new calls to stack
			if(isParentDeclInCurFile(D,"CXXConstructExpr") && isParentDecl(D, "CXXConstructExpr")){

				if(debugPrint){
					cerr << "setting previousConstructorCall to true" << endl;
				}


			}else if(isParentDeclInCurFile(D,"CXXTemporaryObjectExpr") && isParentDecl(D, "CXXTemporaryObjectExpr")){

				if(debugPrint){
					cerr << "setting previousTempConstructorCallArg" << endl;
				}


			}else if(isParentDecl(D, "CallExpr")){

				if(debugPrint){
					cerr << "setting previousCallArgs to true" << endl;
				}


			}else if(isParentDecl(D, "CXXMemberCallExpr")){

				if(debugPrint){
					cerr << "setting previousMemberCallArg to true" << endl;
				}

			}


			if(isParentDecl(getDeclParent(D, Context), "Var")){
				previousRhsDecl = true;
				if(debugPrint){
					cout << "setting prev var to true" << endl;
				}
			}else if(previousRhsDecl && numClosingVarsNeeded > 0){
				//if the current node is not a child of a variable declaration 
				//but the previous node was a child of a variable declation 
				//then we know to print a </decl>
				output +="</variableDecl,1>\n";
				numClosingVarsNeeded--;
				previousRhsDecl = false;
			}


			if(node == "Var"){
				output += "<variableDecl, " + prevLevel +  ">";
				numClosingVarsNeeded++;
				VarDecl* VD = (VarDecl*) D;
				if(!VD->hasInit()){
					output +="\n</variableDecl,1>\n";
					numClosingVarsNeeded--;
				}
			}else if(node == "Function"){
				FunctionDecl* FD = (FunctionDecl*) D; 
				output += "<functionDef," + level +">";
				//add function name to the output
				output += "\n<name: " + FD->getNameInfo().getAsString()
					+ "," + nextLevel + ">";

			}else if(node == "CXXRecord"){
				const Decl* parent = getDeclParent(D, Context);
				if(parent && strcmp(parent->getDeclKindName(), "CXXRecord") != 0){
					CXXRecordDecl* CD = (CXXRecordDecl*) D;
					output += "<classDef," + level + ">";
					output += "\n<name: " + CD->getNameAsString() + "," + nextLevel + ">";
					output += "\n<bases," + nextLevel + ">";

					//iterate over all bases and add them to the output
					CXXRecordDecl::base_class_iterator basesItr =  CD->bases_begin();
					while(basesItr != CD->bases_end()){
						QualType qt = basesItr->getType();
						output +=  "\n<base: " +  qt.getBaseTypeIdentifier()->getName().str();
						output +=  "," + nextNextLevel + ">";
						basesItr++;
					}

					//iterate over all of the virtual bases and add them to the output
					auto vBasesItr = CD->vbases_begin();
					while(vBasesItr != CD->vbases_end()){
						QualType qt = vBasesItr->getType();
						output +=  "\n<base: " +  qt.getBaseTypeIdentifier()->getName().str();
						output +=  "," + nextNextLevel + ">";
						vBasesItr++;
					}

				}
			}else if(node == "CXXDestructor"){
				CXXDestructorDecl* CD = (CXXDestructorDecl*) D;
				if(!CD->isImplicit()){
					output += "<functionDef," + level +">";
					//add function name to the output
					output += "\n<name: ~" + CD->getNameInfo().getAsString()
						+ "," + nextLevel + ">";
				}


			}else if(node == "CXXConstructor"){
				CXXConstructorDecl* CD = (CXXConstructorDecl*) D;
				if(!CD->isImplicit()){
					output += "<functionDef," + level +">";
					//add function name to the output
					output += "\n<name: " + CD->getNameInfo().getAsString()
						+ "," + nextLevel + ">";
				}
			}else if(node == "CXXMethod"){
				CXXMethodDecl* CM = (CXXMethodDecl*) D;
				if(!CM->isImplicit()){
					output += "<functionDef," + level +">";
					//add function name to the output
					output += "\n<name: " + CM->getNameInfo().getAsString()
						+ "," + nextLevel + ">";
				}
			}else{

				if(debugPrint){
					output += "<";
					output += node;
					output += ">";
				}
			}

			if(output.size() != 0){
				cout << output << endl;
			}

			return true;
		}