Example #1
0
bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) {
  if (rv.isScalar())
    return DominatingLLVMValue::needsSaving(rv.getScalarVal());
  if (rv.isAggregate())
    return DominatingLLVMValue::needsSaving(rv.getAggregateAddr());
  return true;
}
Example #2
0
DominatingValue<RValue>::saved_type
DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) {
  if (rv.isScalar()) {
    llvm::Value *V = rv.getScalarVal();

    // These automatically dominate and don't need to be saved.
    if (!DominatingLLVMValue::needsSaving(V))
      return saved_type(V, ScalarLiteral);

    // Everything else needs an alloca.
    llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
    CGF.Builder.CreateStore(V, addr);
    return saved_type(addr, ScalarAddress);
  }

  if (rv.isComplex()) {
    CodeGenFunction::ComplexPairTy V = rv.getComplexVal();
    llvm::Type *ComplexTy =
      llvm::StructType::get(V.first->getType(), V.second->getType(),
                            (void*) nullptr);
    llvm::Value *addr = CGF.CreateTempAlloca(ComplexTy, "saved-complex");
    CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0));
    CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1));
    return saved_type(addr, ComplexAddress);
  }

  assert(rv.isAggregate());
  llvm::Value *V = rv.getAggregateAddr(); // TODO: volatile?
  if (!DominatingLLVMValue::needsSaving(V))
    return saved_type(V, AggregateLiteral);

  llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
  CGF.Builder.CreateStore(V, addr);
  return saved_type(addr, AggregateAddress);  
}
Example #3
0
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
  assert(Src.isAggregate() && "value must be aggregate value!");

  // If the result is ignored, don't copy from the value.
  if (DestPtr == 0) {
    if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
      return;
    // If the source is volatile, we must read from it; to do that, we need
    // some place to put it.
    DestPtr = CGF.CreateMemTemp(E->getType(), "agg.tmp");
  }

  if (RequiresGCollection) {
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
                                              DestPtr, Src.getAggregateAddr(),
                                              E->getType());
    return;
  }
  // If the result of the assignment is used, copy the LHS there also.
  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
  // from the source as well, as we can't eliminate it if either operand
  // is volatile, unless copy has volatile for both source and destination..
  CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
                        VolatileDest|Src.isVolatileQualified());
}
Example #4
0
/// Copy an r-value into memory as part of storing to an atomic type.
/// This needs to create a bit-pattern suitable for atomic operations.
void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
  // If we have an r-value, the rvalue should be of the atomic type,
  // which means that the caller is responsible for having zeroed
  // any padding.  Just do an aggregate copy of that type.
  if (rvalue.isAggregate()) {
    CGF.EmitAggregateCopy(dest.getAddress(),
                          rvalue.getAggregateAddr(),
                          getAtomicType(),
                          (rvalue.isVolatileQualified()
                           || dest.isVolatileQualified()),
                          dest.getAlignment());
    return;
  }

  // Okay, otherwise we're copying stuff.

  // Zero out the buffer if necessary.
  emitMemSetZeroIfNecessary(dest);

  // Drill past the padding if present.
  dest = projectValue(dest);

  // Okay, store the rvalue in.
  if (rvalue.isScalar()) {
    CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
  } else {
    CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
  }
}
Example #5
0
void
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");

  RecordDecl *RD = RT->getDecl();
  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
  llvm::Value *Addr = RV.getAggregateAddr();
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // FIXME: What are the right qualifiers here?
    LValue LV = EmitLValueForField(Addr, FD, false, 0);
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
    } else {
      RValue RV = EmitLoadOfLValue(LV, FT);
      assert(RV.isScalar() &&
             "Unexpected non-scalar rvalue during struct expansion.");
      Args.push_back(RV.getScalarVal());
    }
  }
}
Example #6
0
void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
  if (RV.isScalar()) {
    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
  } else if (RV.isAggregate()) {
    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
  } else {
    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
  }
  EmitBranchThroughCleanup(ReturnBlock);
}
Example #7
0
/// Emit a store to an l-value of atomic type.
///
/// Note that the r-value is expected to be an r-value *of the atomic
/// type*; this means that for aggregate r-values, it should include
/// storage for any padding that was necessary.
void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, bool isInit) {
  // If this is an aggregate r-value, it should agree in type except
  // maybe for address-space qualification.
  assert(!rvalue.isAggregate() ||
         rvalue.getAggregateAddr()->getType()->getPointerElementType()
           == dest.getAddress()->getType()->getPointerElementType());

  AtomicInfo atomics(*this, dest);

  // If this is an initialization, just put the value there normally.
  if (isInit) {
    atomics.emitCopyIntoMemory(rvalue, dest);
    return;
  }

  // Check whether we should use a library call.
  if (atomics.shouldUseLibcall()) {
    // Produce a source address.
    llvm::Value *srcAddr = atomics.materializeRValue(rvalue);

    // void __atomic_store(size_t size, void *mem, void *val, int order)
    CallArgList args;
    args.add(RValue::get(atomics.getAtomicSizeValue()),
             getContext().getSizeType());
    args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())),
             getContext().VoidPtrTy);
    args.add(RValue::get(EmitCastToVoidPtr(srcAddr)),
             getContext().VoidPtrTy);
    args.add(RValue::get(llvm::ConstantInt::get(
                 IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
             getContext().IntTy);
    emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
    return;
  }

  // Okay, we're doing this natively.
  llvm::Value *intValue = atomics.convertRValueToInt(rvalue);

  // Do the atomic store.
  llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress());
  llvm::StoreInst *store = Builder.CreateStore(intValue, addr);

  // Initializations don't need to be atomic.
  if (!isInit) store->setAtomic(llvm::SequentiallyConsistent);

  // Other decoration.
  store->setAlignment(dest.getAlignment().getQuantity());
  if (dest.isVolatileQualified())
    store->setVolatile(true);
  if (dest.getTBAAInfo())
    CGM.DecorateInstruction(store, dest.getTBAAInfo());
}
Example #8
0
DominatingValue<RValue>::saved_type
DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) {
  if (rv.isScalar()) {
    llvm::Value *V = rv.getScalarVal();

    // These automatically dominate and don't need to be saved.
    if (!DominatingLLVMValue::needsSaving(V))
      return saved_type(V, ScalarLiteral);

    // Everything else needs an alloca.
    Address addr =
      CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue");
    CGF.Builder.CreateStore(V, addr);
    return saved_type(addr.getPointer(), ScalarAddress);
  }

  if (rv.isComplex()) {
    CodeGenFunction::ComplexPairTy V = rv.getComplexVal();
    llvm::Type *ComplexTy =
      llvm::StructType::get(V.first->getType(), V.second->getType(),
                            (void*) nullptr);
    Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex");
    CGF.Builder.CreateStore(V.first,
                            CGF.Builder.CreateStructGEP(addr, 0, CharUnits()));
    CharUnits offset = CharUnits::fromQuantity(
               CGF.CGM.getDataLayout().getTypeAllocSize(V.first->getType()));
    CGF.Builder.CreateStore(V.second,
                            CGF.Builder.CreateStructGEP(addr, 1, offset));
    return saved_type(addr.getPointer(), ComplexAddress);
  }

  assert(rv.isAggregate());
  Address V = rv.getAggregateAddress(); // TODO: volatile?
  if (!DominatingLLVMValue::needsSaving(V.getPointer()))
    return saved_type(V.getPointer(), AggregateLiteral,
                      V.getAlignment().getQuantity());

  Address addr =
    CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue");
  CGF.Builder.CreateStore(V.getPointer(), addr);
  return saved_type(addr.getPointer(), AggregateAddress,
                    V.getAlignment().getQuantity());
}
Example #9
0
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
                                       unsigned Alignment) {
  assert(Src.isAggregate() && "value must be aggregate value!");

  // If Dest is ignored, then we're evaluating an aggregate expression
  // in a context (like an expression statement) that doesn't care
  // about the result.  C says that an lvalue-to-rvalue conversion is
  // performed in these cases; C++ says that it is not.  In either
  // case, we don't actually need to do anything unless the value is
  // volatile.
  if (Dest.isIgnored()) {
    if (!Src.isVolatileQualified() ||
        CGF.CGM.getLangOptions().CPlusPlus ||
        (IgnoreResult && Ignore))
      return;

    // If the source is volatile, we must read from it; to do that, we need
    // some place to put it.
    Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
  }

  if (Dest.requiresGCollection()) {
    CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
                                                      Dest.getAddr(),
                                                      Src.getAggregateAddr(),
                                                      SizeVal);
    return;
  }
  // If the result of the assignment is used, copy the LHS there also.
  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
  // from the source as well, as we can't eliminate it if either operand
  // is volatile, unless copy has volatile for both source and destination..
  CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
                        Dest.isVolatile()|Src.isVolatileQualified(),
                        Alignment);
}
Example #10
0
/// Emit a compare-and-exchange op for atomic type.
///
std::pair<RValue, RValue> CodeGenFunction::EmitAtomicCompareExchange(
    LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
    llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
    AggValueSlot Slot) {
  // If this is an aggregate r-value, it should agree in type except
  // maybe for address-space qualification.
  assert(!Expected.isAggregate() ||
         Expected.getAggregateAddr()->getType()->getPointerElementType() ==
             Obj.getAddress()->getType()->getPointerElementType());
  assert(!Desired.isAggregate() ||
         Desired.getAggregateAddr()->getType()->getPointerElementType() ==
             Obj.getAddress()->getType()->getPointerElementType());
  AtomicInfo Atomics(*this, Obj);

  if (Failure >= Success)
    // Don't assert on undefined behavior.
    Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);

  auto Alignment = Atomics.getValueAlignment();
  // Check whether we should use a library call.
  if (Atomics.shouldUseLibcall()) {
    auto *ExpectedAddr = Atomics.materializeRValue(Expected);
    // Produce a source address.
    auto *DesiredAddr = Atomics.materializeRValue(Desired);
    // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
    // void *desired, int success, int failure);
    CallArgList Args;
    Args.add(RValue::get(Atomics.getAtomicSizeValue()),
             getContext().getSizeType());
    Args.add(RValue::get(EmitCastToVoidPtr(Obj.getAddress())),
             getContext().VoidPtrTy);
    Args.add(RValue::get(EmitCastToVoidPtr(ExpectedAddr)),
             getContext().VoidPtrTy);
    Args.add(RValue::get(EmitCastToVoidPtr(DesiredAddr)),
             getContext().VoidPtrTy);
    Args.add(RValue::get(llvm::ConstantInt::get(IntTy, Success)),
             getContext().IntTy);
    Args.add(RValue::get(llvm::ConstantInt::get(IntTy, Failure)),
             getContext().IntTy);
    auto SuccessFailureRVal = emitAtomicLibcall(
        *this, "__atomic_compare_exchange", getContext().BoolTy, Args);
    auto *PreviousVal =
        Builder.CreateAlignedLoad(ExpectedAddr, Alignment.getQuantity());
    return std::make_pair(RValue::get(PreviousVal), SuccessFailureRVal);
  }

  // If we've got a scalar value of the right size, try to avoid going
  // through memory.
  auto *ExpectedIntVal = Atomics.convertRValueToInt(Expected);
  auto *DesiredIntVal = Atomics.convertRValueToInt(Desired);

  // Do the atomic store.
  auto *Addr = Atomics.emitCastToAtomicIntPointer(Obj.getAddress());
  auto *Inst = Builder.CreateAtomicCmpXchg(Addr, ExpectedIntVal, DesiredIntVal,
                                          Success, Failure);
  // Other decoration.
  Inst->setVolatile(Obj.isVolatileQualified());
  Inst->setWeak(IsWeak);

  // Okay, turn that back into the original value type.
  auto *PreviousVal = Builder.CreateExtractValue(Inst, /*Idxs=*/0);
  auto *SuccessFailureVal = Builder.CreateExtractValue(Inst, /*Idxs=*/1);
  return std::make_pair(Atomics.convertIntToValue(PreviousVal, Slot, Loc),
                        RValue::get(SuccessFailureVal));
}
Example #11
0
/// Emit a store to an l-value of atomic type.
///
/// Note that the r-value is expected to be an r-value *of the atomic
/// type*; this means that for aggregate r-values, it should include
/// storage for any padding that was necessary.
void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, bool isInit) {
  // If this is an aggregate r-value, it should agree in type except
  // maybe for address-space qualification.
  assert(!rvalue.isAggregate() ||
         rvalue.getAggregateAddr()->getType()->getPointerElementType()
           == dest.getAddress()->getType()->getPointerElementType());

  AtomicInfo atomics(*this, dest);

  // If this is an initialization, just put the value there normally.
  if (isInit) {
    atomics.emitCopyIntoMemory(rvalue, dest);
    return;
  }

  // Check whether we should use a library call.
  if (atomics.shouldUseLibcall()) {
    // Produce a source address.
    llvm::Value *srcAddr = atomics.materializeRValue(rvalue);

    // void __atomic_store(size_t size, void *mem, void *val, int order)
    CallArgList args;
    args.add(RValue::get(atomics.getAtomicSizeValue()),
             getContext().getSizeType());
    args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())),
             getContext().VoidPtrTy);
    args.add(RValue::get(EmitCastToVoidPtr(srcAddr)),
             getContext().VoidPtrTy);
    args.add(RValue::get(llvm::ConstantInt::get(
                 IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
             getContext().IntTy);
    emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
    return;
  }

  // Okay, we're doing this natively.
  llvm::Value *intValue;

  // If we've got a scalar value of the right size, try to avoid going
  // through memory.
  if (rvalue.isScalar() && !atomics.hasPadding()) {
    llvm::Value *value = rvalue.getScalarVal();
    if (isa<llvm::IntegerType>(value->getType())) {
      intValue = value;
    } else {
      llvm::IntegerType *inputIntTy =
        llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits());
      if (isa<llvm::PointerType>(value->getType())) {
        intValue = Builder.CreatePtrToInt(value, inputIntTy);
      } else {
        intValue = Builder.CreateBitCast(value, inputIntTy);
      }
    }

  // Otherwise, we need to go through memory.
  } else {
    // Put the r-value in memory.
    llvm::Value *addr = atomics.materializeRValue(rvalue);

    // Cast the temporary to the atomic int type and pull a value out.
    addr = atomics.emitCastToAtomicIntPointer(addr);
    intValue = Builder.CreateAlignedLoad(addr,
                                 atomics.getAtomicAlignment().getQuantity());
  }

  // Do the atomic store.
  llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress());
  llvm::StoreInst *store = Builder.CreateStore(intValue, addr);

  // Initializations don't need to be atomic.
  if (!isInit) store->setAtomic(llvm::SequentiallyConsistent);

  // Other decoration.
  store->setAlignment(dest.getAlignment().getQuantity());
  if (dest.isVolatileQualified())
    store->setVolatile(true);
  if (dest.getTBAAInfo())
    CGM.DecorateInstruction(store, dest.getTBAAInfo());
}