PassRefPtr<FilterEffect> SVGFEComponentTransferElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    
    if (!input1)
        return 0;

    ComponentTransferFunction red;
    ComponentTransferFunction green;
    ComponentTransferFunction blue;
    ComponentTransferFunction alpha;
    
    for (Node* node = firstChild(); node; node = node->nextSibling()) {
        if (node->hasTagName(SVGNames::feFuncRTag))
            red = static_cast<SVGFEFuncRElement*>(node)->transferFunction();
        else if (node->hasTagName(SVGNames::feFuncGTag))
            green = static_cast<SVGFEFuncGElement*>(node)->transferFunction();
        else if (node->hasTagName(SVGNames::feFuncBTag))
           blue = static_cast<SVGFEFuncBElement*>(node)->transferFunction();
        else if (node->hasTagName(SVGNames::feFuncATag))
            alpha = static_cast<SVGFEFuncAElement*>(node)->transferFunction();
    }
    
    RefPtr<FilterEffect> effect = FEComponentTransfer::create(filter, red, green, blue, alpha);
    effect->inputEffects().append(input1);
    return effect.release();
}
Example #2
0
PassRefPtr<FilterEffect> SVGFEConvolveMatrixElement::build(SVGFilterBuilder* filterBuilder)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return 0;

    Vector<float> kernelMatrixValues;
    SVGNumberList* numbers = kernelMatrix();

    ExceptionCode ec = 0;
    int numberOfItems = numbers->numberOfItems();
    for (int i = 0; i < numberOfItems; ++i)
        kernelMatrixValues.append(numbers->getItem(i, ec));

    int orderXValue = orderX();
    int orderYValue = orderY();
    if (!hasAttribute(SVGNames::orderAttr)) {
        orderXValue = 3;
        orderYValue = 3;
    }
    // The spec says this is a requirement, and should bail out if fails
    if (orderXValue * orderYValue != numberOfItems)
        return 0;

    int targetXValue = targetX();
    int targetYValue = targetY();
    if (hasAttribute(SVGNames::targetXAttr) && (targetXValue < 0 || targetXValue >= orderXValue))
        return 0;
    // The spec says the default value is: targetX = floor ( orderX / 2 ))
    if (!hasAttribute(SVGNames::targetXAttr))
        targetXValue = static_cast<int>(floorf(orderXValue / 2));
    if (hasAttribute(SVGNames::targetYAttr) && (targetYValue < 0 || targetYValue >= orderYValue))
        return 0;
    // The spec says the default value is: targetY = floor ( orderY / 2 ))
    if (!hasAttribute(SVGNames::targetYAttr))
        targetYValue = static_cast<int>(floorf(orderYValue / 2));

    float divisorValue = divisor();
    if (hasAttribute(SVGNames::divisorAttr) && !divisorValue)
        return 0;
    if (!hasAttribute(SVGNames::divisorAttr)) {
        for (int i = 0; i < numberOfItems; ++i)
            divisorValue += kernelMatrixValues[i];
        if (!divisorValue)
            divisorValue = 1;
    }

    RefPtr<FilterEffect> effect = FEConvolveMatrix::create(
                                      IntSize(orderXValue, orderYValue), divisorValue,
                                      bias(), IntPoint(targetXValue, targetYValue), static_cast<EdgeModeType>(edgeMode()),
                                      FloatPoint(kernelUnitLengthX(), kernelUnitLengthX()), preserveAlpha(), kernelMatrixValues);
    effect->inputEffects().append(input1);
    return effect.release();
}
PassRefPtr<FilterEffect> SVGFETileElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(AtomicString(m_in1->currentValue()->value()));

    if (!input1)
        return nullptr;

    RefPtr<FilterEffect> effect = FETile::create(filter);
    effect->inputEffects().append(input1);
    return effect.release();
}
PassRefPtr<FilterEffect> SVGFETileElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return 0;

    RefPtr<FilterEffect> effect = FETile::create(filter);
    effect->inputEffects().append(input1);
    return effect.release();
}
RefPtr<FilterEffect> SVGFEGaussianBlurElement::build(SVGFilterBuilder* filterBuilder, Filter& filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return nullptr;

    if (stdDeviationX() < 0 || stdDeviationY() < 0)
        return nullptr;

    RefPtr<FilterEffect> effect = FEGaussianBlur::create(filter, stdDeviationX(), stdDeviationY(), edgeMode());
    effect->inputEffects().append(input1);
    return effect;
}
PassRefPtr<FilterEffect> SVGFEDisplacementMapElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    FilterEffect* input2 = filterBuilder->getEffectById(in2());
    
    if (!input1 || !input2)
        return 0;

    RefPtr<FilterEffect> effect = FEDisplacementMap::create(filter, xChannelSelector(), yChannelSelector(), scale());
    FilterEffectVector& inputEffects = effect->inputEffects();
    inputEffects.reserveCapacity(2);
    inputEffects.append(input1);
    inputEffects.append(input2);    
    return effect.release();
}
PassRefPtr<FilterEffect> SVGFECompositeElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    FilterEffect* input2 = filterBuilder->getEffectById(in2());
    
    if (!input1 || !input2)
        return 0;

    RefPtr<FilterEffect> effect = FEComposite::create(filter, svgOperator(), k1(), k2(), k3(), k4());
    FilterEffectVector& inputEffects = effect->inputEffects();
    inputEffects.reserveCapacity(2);
    inputEffects.append(input1);
    inputEffects.append(input2);    
    return effect.release();
}
Example #8
0
PassRefPtr<FilterEffect> SVGFEBlendElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    FilterEffect* input2 = filterBuilder->getEffectById(in2());

    if (!input1 || !input2)
        return 0;

    RefPtr<FilterEffect> effect = FEBlend::create(filter, mode());
    FilterEffectVector& inputEffects = effect->inputEffects();
    inputEffects.reserveCapacity(2);
    inputEffects.append(input1);
    inputEffects.append(input2);    
    return effect.release();
}
Example #9
0
PassRefPtr<FilterEffect> SVGFEMorphologyElement::build(SVGFilterBuilder* filterBuilder)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    float xRadius = radiusX();
    float yRadius = radiusY();

    if (!input1)
        return 0;

    if (xRadius < 0 || yRadius < 0)
        return 0;

    RefPtr<FilterEffect> effect = FEMorphology::create(static_cast<MorphologyOperatorType>(_operator()), xRadius, yRadius);
    effect->inputEffects().append(input1);
    return effect.release();
}
Example #10
0
void SVGFilterBuilder::appendEffectToEffectReferences(PassRefPtr<FilterEffect> prpEffect, RenderObject* object)
{
    RefPtr<FilterEffect> effect = prpEffect;

    // The effect must be a newly created filter effect.
    ASSERT(!m_effectReferences.contains(effect));
    ASSERT(object && !m_effectRenderer.contains(object));
    m_effectReferences.add(effect, FilterEffectSet());

    unsigned numberOfInputEffects = effect->inputEffects().size();

    // It is not possible to add the same value to a set twice.
    for (unsigned i = 0; i < numberOfInputEffects; ++i)
        effectReferences(effect->inputEffect(i)).add(effect.get());
    m_effectRenderer.add(object, effect.get());
}
Example #11
0
PassRefPtr<FilterEffect> SVGFESpecularLightingElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    
    if (!input1)
        return 0;
    
    RefPtr<RenderStyle> filterStyle = styleForRenderer();    
    
    Color color = filterStyle->svgStyle()->lightingColor();

    RefPtr<FilterEffect> effect = FESpecularLighting::create(filter, color, surfaceScale(), specularConstant(), 
                                          specularExponent(), kernelUnitLengthX(), kernelUnitLengthY(), findLights());
    effect->inputEffects().append(input1);
    return effect.release();
}
Example #12
0
PassRefPtr<FilterEffect> SVGFEMergeElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    RefPtr<FilterEffect> effect = FEMerge::create(filter);
    FilterEffectVector& mergeInputs = effect->inputEffects();

    for (auto& mergeNode : childrenOfType<SVGFEMergeNodeElement>(*this)) {
        FilterEffect* mergeEffect = filterBuilder->getEffectById(mergeNode.in1());
        if (!mergeEffect)
            return nullptr;
        mergeInputs.append(mergeEffect);
    }

    if (mergeInputs.isEmpty())
        return nullptr;

    return effect.release();
}
Example #13
0
PassRefPtr<FilterEffect> SVGFEMergeElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    RefPtr<FilterEffect> effect = FEMerge::create(filter);
    FilterEffectVector& mergeInputs = effect->inputEffects();
    for (Node* node = firstChild(); node; node = node->nextSibling()) {
        if (node->hasTagName(SVGNames::feMergeNodeTag)) {
            FilterEffect* mergeEffect = filterBuilder->getEffectById(static_cast<SVGFEMergeNodeElement*>(node)->in1());
            if (!mergeEffect)
                return 0;
            mergeInputs.append(mergeEffect);
        }
    }

    if (mergeInputs.isEmpty())
        return 0;

    return effect.release();
}
PassRefPtr<FilterEffect> SVGFEColorMatrixElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return 0;

    Vector<float> filterValues;
    const ColorMatrixType filterType(static_cast<ColorMatrixType>(type()));

    // Use defaults if values is empty (SVG 1.1 15.10).
    if (!hasAttribute(SVGNames::valuesAttr)) {
        switch (filterType) {
        case FECOLORMATRIX_TYPE_MATRIX:
            for (size_t i = 0; i < 20; i++)
                filterValues.append((i % 6) ? 0.0f : 1.0f);
            break;
        case FECOLORMATRIX_TYPE_HUEROTATE:
            filterValues.append(0.0f);
            break;
        case FECOLORMATRIX_TYPE_SATURATE:
            filterValues.append(1.0f);
            break;
        default:
            break;
        }
    } else {
        filterValues = values();
        unsigned size = filterValues.size();

        if ((filterType == FECOLORMATRIX_TYPE_MATRIX && size != 20)
            || (filterType == FECOLORMATRIX_TYPE_HUEROTATE && size != 1)
            || (filterType == FECOLORMATRIX_TYPE_SATURATE && (size != 1
                || filterValues[0] < 0.0f || filterValues[0] > 1.0f)))
            return 0;
    }

    RefPtr<FilterEffect> effect = FEColorMatrix::create(filter, filterType, filterValues);
    effect->inputEffects().append(input1);
    return effect.release();
}
RefPtr<FilterEffect> SVGFESpecularLightingElement::build(SVGFilterBuilder* filterBuilder, Filter& filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return nullptr;

    auto lightSource = SVGFELightElement::findLightSource(this);
    if (!lightSource)
        return nullptr;

    RenderObject* renderer = this->renderer();
    if (!renderer)
        return nullptr;
    
    const Color& color = renderer->style().svgStyle().lightingColor();

    RefPtr<FilterEffect> effect = FESpecularLighting::create(filter, color, surfaceScale(), specularConstant(),
                                          specularExponent(), kernelUnitLengthX(), kernelUnitLengthY(), WTFMove(lightSource));
    effect->inputEffects().append(input1);
    return effect;
}
PassRefPtr<FilterEffect> SVGFEDropShadowElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    RenderObject* renderer = this->renderer();
    if (!renderer)
        return 0;

    if (stdDeviationX() < 0 || stdDeviationY() < 0)
        return 0;

    const SVGRenderStyle& svgStyle = renderer->style().svgStyle();
    
    Color color = svgStyle.floodColor();
    float opacity = svgStyle.floodOpacity();

    FilterEffect* input1 = filterBuilder->getEffectById(in1());
    if (!input1)
        return 0;

    RefPtr<FilterEffect> effect = FEDropShadow::create(filter, stdDeviationX(), stdDeviationY(), dx(), dy(), color, opacity);
    effect->inputEffects().append(input1);
    return effect.release();
}
PassRefPtr<FilterEffect> SVGFEDiffuseLightingElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(AtomicString(m_in1->currentValue()->value()));

    if (!input1)
        return nullptr;

    RefPtr<LightSource> lightSource = SVGFELightElement::findLightSource(*this);
    if (!lightSource)
        return nullptr;

    RenderObject* renderer = this->renderer();
    if (!renderer)
        return nullptr;

    ASSERT(renderer->style());
    Color color = renderer->style()->svgStyle()->lightingColor();

    RefPtr<FilterEffect> effect = FEDiffuseLighting::create(filter, color, m_surfaceScale->currentValue()->value(), m_diffuseConstant->currentValue()->value(),
        kernelUnitLengthX()->currentValue()->value(), kernelUnitLengthY()->currentValue()->value(), lightSource.release());
    effect->inputEffects().append(input1);
    return effect.release();
}
Example #18
0
void FilterEffectRenderer::build(Document* document, const FilterOperations& operations)
{
#if !ENABLE(CSS_SHADERS) || !ENABLE(WEBGL)
    UNUSED_PARAM(document);
#else
    CustomFilterProgramList cachedCustomFilterPrograms;
#endif

    m_effects.clear();

    RefPtr<FilterEffect> previousEffect;
    for (size_t i = 0; i < operations.operations().size(); ++i) {
        RefPtr<FilterEffect> effect;
        FilterOperation* filterOperation = operations.operations().at(i).get();
        switch (filterOperation->getOperationType()) {
        case FilterOperation::REFERENCE: {
            // FIXME: Not yet implemented.
            // https://bugs.webkit.org/show_bug.cgi?id=72443
            break;
        }
        case FilterOperation::GRAYSCALE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#grayscaleEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.2126 + 0.7874 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 + 0.2848 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 + 0.9278 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SEPIA: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#sepiaEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.393 + 0.607 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.769 - 0.769 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.189 - 0.189 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.349 - 0.349 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.686 + 0.314 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.168 - 0.168 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.272 - 0.272 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.534 - 0.534 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.131 + 0.869 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SATURATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_SATURATE, inputParameters);
            break;
        }
        case FilterOperation::HUE_ROTATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_HUEROTATE, inputParameters);
            break;
        }
        case FilterOperation::INVERT: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferParameters.append(narrowPrecisionToFloat(1 - componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::OPACITY: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(0);
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, nullFunction, nullFunction, nullFunction, transferFunction);
            break;
        }
        case FilterOperation::BRIGHTNESS: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            transferFunction.slope = 1;
            transferFunction.intercept = narrowPrecisionToFloat(componentTransferOperation->amount());

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::CONTRAST: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            float amount = narrowPrecisionToFloat(componentTransferOperation->amount());
            transferFunction.slope = amount;
            transferFunction.intercept = -0.5 * amount + 0.5;
            
            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::BLUR: {
            BlurFilterOperation* blurOperation = static_cast<BlurFilterOperation*>(filterOperation);
            float stdDeviation = blurOperation->stdDeviation().calcFloatValue(0);
            effect = FEGaussianBlur::create(this, stdDeviation, stdDeviation);
            break;
        }
        case FilterOperation::DROP_SHADOW: {
            DropShadowFilterOperation* dropShadowOperation = static_cast<DropShadowFilterOperation*>(filterOperation);
            effect = FEDropShadow::create(this, dropShadowOperation->stdDeviation(), dropShadowOperation->stdDeviation(),
                                                dropShadowOperation->x(), dropShadowOperation->y(), dropShadowOperation->color(), 1);
            break;
        }
#if ENABLE(CSS_SHADERS)
        case FilterOperation::CUSTOM: {
#if ENABLE(WEBGL)
            if (!isCSSCustomFilterEnabled(document))
                continue;
            
            CustomFilterOperation* customFilterOperation = static_cast<CustomFilterOperation*>(filterOperation);
            RefPtr<CustomFilterProgram> program = customFilterOperation->program();
            cachedCustomFilterPrograms.append(program);
            program->addClient(this);
            if (program->isLoaded()) {
                effect = FECustomFilter::create(this, document, program, customFilterOperation->parameters(),
                                                customFilterOperation->meshRows(), customFilterOperation->meshColumns(),
                                                customFilterOperation->meshBoxType(), customFilterOperation->meshType());
            }
#endif
            break;
        }
#endif
        default:
            break;
        }

        if (effect) {
            // Unlike SVG, filters applied here should not clip to their primitive subregions.
            effect->setClipsToBounds(false);
            
            if (previousEffect)
                effect->inputEffects().append(previousEffect);
            m_effects.append(effect);
            previousEffect = effect.release();
        }
    }

    // If we didn't make a real filter, create a null-op (FEMerge with one input).
    if (!previousEffect)
        m_effects.append(FEMerge::create(this));

    m_effects.first()->inputEffects().append(m_sourceGraphic);
    setMaxEffectRects(m_sourceDrawingRegion);
    
#if ENABLE(CSS_SHADERS) && ENABLE(WEBGL)
    removeCustomFilterClients();
    m_cachedCustomFilterPrograms.swap(cachedCustomFilterPrograms);
#endif
}
bool FilterEffectRenderer::build(RenderObject* renderer, const FilterOperations& operations)
{
    m_hasFilterThatMovesPixels = operations.hasFilterThatMovesPixels();

    // Inverse zoom the pre-zoomed CSS shorthand filters, so that they are in the same zoom as the unzoomed reference filters.
    const RenderStyle* style = renderer->style();
    float invZoom = style ? 1.0f / style->effectiveZoom() : 1.0f;

    RefPtr<FilterEffect> previousEffect = m_sourceGraphic;
    for (size_t i = 0; i < operations.operations().size(); ++i) {
        RefPtr<FilterEffect> effect;
        FilterOperation* filterOperation = operations.operations().at(i).get();
        switch (filterOperation->type()) {
        case FilterOperation::REFERENCE: {
            effect = ReferenceFilterBuilder::build(this, renderer, previousEffect.get(), toReferenceFilterOperation(filterOperation));
            break;
        }
        case FilterOperation::GRAYSCALE: {
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - toBasicColorMatrixFilterOperation(filterOperation)->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#grayscaleEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.2126 + 0.7874 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 + 0.2848 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 + 0.9278 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SEPIA: {
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - toBasicColorMatrixFilterOperation(filterOperation)->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#sepiaEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.393 + 0.607 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.769 - 0.769 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.189 - 0.189 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.349 - 0.349 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.686 + 0.314 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.168 - 0.168 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.272 - 0.272 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.534 - 0.534 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.131 + 0.869 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SATURATE: {
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(toBasicColorMatrixFilterOperation(filterOperation)->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_SATURATE, inputParameters);
            break;
        }
        case FilterOperation::HUE_ROTATE: {
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(toBasicColorMatrixFilterOperation(filterOperation)->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_HUEROTATE, inputParameters);
            break;
        }
        case FilterOperation::INVERT: {
            BasicComponentTransferFilterOperation* componentTransferOperation = toBasicComponentTransferFilterOperation(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferParameters.append(narrowPrecisionToFloat(1 - componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::OPACITY: {
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(0);
            transferParameters.append(narrowPrecisionToFloat(toBasicComponentTransferFilterOperation(filterOperation)->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, nullFunction, nullFunction, nullFunction, transferFunction);
            break;
        }
        case FilterOperation::BRIGHTNESS: {
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            transferFunction.slope = narrowPrecisionToFloat(toBasicComponentTransferFilterOperation(filterOperation)->amount());
            transferFunction.intercept = 0;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::CONTRAST: {
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            float amount = narrowPrecisionToFloat(toBasicComponentTransferFilterOperation(filterOperation)->amount());
            transferFunction.slope = amount;
            transferFunction.intercept = -0.5 * amount + 0.5;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::BLUR: {
            float stdDeviation = floatValueForLength(toBlurFilterOperation(filterOperation)->stdDeviation(), 0) * invZoom;
            effect = FEGaussianBlur::create(this, stdDeviation, stdDeviation);
            break;
        }
        case FilterOperation::DROP_SHADOW: {
            DropShadowFilterOperation* dropShadowOperation = toDropShadowFilterOperation(filterOperation);
            float stdDeviation = dropShadowOperation->stdDeviation() * invZoom;
            float x = dropShadowOperation->x() * invZoom;
            float y = dropShadowOperation->y() * invZoom;
            effect = FEDropShadow::create(this, stdDeviation, stdDeviation, x, y, dropShadowOperation->color(), 1);
            break;
        }
        default:
            break;
        }

        if (effect) {
            if (filterOperation->type() != FilterOperation::REFERENCE) {
                // Unlike SVG, filters applied here should not clip to their primitive subregions.
                effect->setClipsToBounds(false);
                effect->setOperatingColorSpace(ColorSpaceDeviceRGB);
                effect->inputEffects().append(previousEffect);
            }
            previousEffect = effect.release();
        }
    }

    // We need to keep the old effects alive until this point, so that SVG reference filters
    // can share cached resources across frames.
    m_lastEffect = previousEffect;

    // If we didn't make any effects, tell our caller we are not valid
    if (!m_lastEffect.get())
        return false;

    return true;
}
Example #20
0
bool FilterEffectRenderer::build(Document* document, const FilterOperations& operations)
{
#if !ENABLE(CSS_SHADERS) || !USE(3D_GRAPHICS)
    UNUSED_PARAM(document);
#endif

#if ENABLE(CSS_SHADERS)
    m_hasCustomShaderFilter = false;
#endif
    m_hasFilterThatMovesPixels = operations.hasFilterThatMovesPixels();
    if (m_hasFilterThatMovesPixels)
        operations.getOutsets(m_topOutset, m_rightOutset, m_bottomOutset, m_leftOutset);
    
    // Keep the old effects on the stack until we've created the new effects.
    // New FECustomFilters can reuse cached resources from old FECustomFilters.
    FilterEffectList oldEffects;
    m_effects.swap(oldEffects);

    RefPtr<FilterEffect> previousEffect = m_sourceGraphic;
    for (size_t i = 0; i < operations.operations().size(); ++i) {
        RefPtr<FilterEffect> effect;
        FilterOperation* filterOperation = operations.operations().at(i).get();
        switch (filterOperation->getOperationType()) {
        case FilterOperation::REFERENCE: {
            ReferenceFilterOperation* referenceOperation = static_cast<ReferenceFilterOperation*>(filterOperation);
            effect = buildReferenceFilter(document, previousEffect, referenceOperation);
            referenceOperation->setFilterEffect(effect);
            break;
        }
        case FilterOperation::GRAYSCALE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#grayscaleEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.2126 + 0.7874 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 + 0.2848 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 + 0.9278 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SEPIA: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#sepiaEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.393 + 0.607 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.769 - 0.769 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.189 - 0.189 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.349 - 0.349 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.686 + 0.314 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.168 - 0.168 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.272 - 0.272 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.534 - 0.534 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.131 + 0.869 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SATURATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_SATURATE, inputParameters);
            break;
        }
        case FilterOperation::HUE_ROTATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_HUEROTATE, inputParameters);
            break;
        }
        case FilterOperation::INVERT: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferParameters.append(narrowPrecisionToFloat(1 - componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::OPACITY: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(0);
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, nullFunction, nullFunction, nullFunction, transferFunction);
            break;
        }
        case FilterOperation::BRIGHTNESS: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            transferFunction.slope = 1;
            transferFunction.intercept = narrowPrecisionToFloat(componentTransferOperation->amount());

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::CONTRAST: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            float amount = narrowPrecisionToFloat(componentTransferOperation->amount());
            transferFunction.slope = amount;
            transferFunction.intercept = -0.5 * amount + 0.5;
            
            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::BLUR: {
            BlurFilterOperation* blurOperation = static_cast<BlurFilterOperation*>(filterOperation);
            float stdDeviation = floatValueForLength(blurOperation->stdDeviation(), 0);
            effect = FEGaussianBlur::create(this, stdDeviation, stdDeviation);
            break;
        }
        case FilterOperation::DROP_SHADOW: {
            DropShadowFilterOperation* dropShadowOperation = static_cast<DropShadowFilterOperation*>(filterOperation);
            effect = FEDropShadow::create(this, dropShadowOperation->stdDeviation(), dropShadowOperation->stdDeviation(),
                                                dropShadowOperation->x(), dropShadowOperation->y(), dropShadowOperation->color(), 1);
            break;
        }
#if ENABLE(CSS_SHADERS) && USE(3D_GRAPHICS)
        case FilterOperation::CUSTOM:
            // CUSTOM operations are always converted to VALIDATED_CUSTOM before getting here.
            // The conversion happens in RenderLayer::computeFilterOperations.
            ASSERT_NOT_REACHED();
            break;
        case FilterOperation::VALIDATED_CUSTOM: {
            ValidatedCustomFilterOperation* customFilterOperation = static_cast<ValidatedCustomFilterOperation*>(filterOperation);
            effect = createCustomFilterEffect(this, document, customFilterOperation);
            if (effect)
                m_hasCustomShaderFilter = true;
            break;
        }
#endif
        default:
            break;
        }

        if (effect) {
            // Unlike SVG, filters applied here should not clip to their primitive subregions.
            effect->setClipsToBounds(false);
            effect->setColorSpace(ColorSpaceDeviceRGB);
            
            if (filterOperation->getOperationType() != FilterOperation::REFERENCE) {
                effect->inputEffects().append(previousEffect);
                m_effects.append(effect);
            }
            previousEffect = effect.release();
        }
    }

    // If we didn't make any effects, tell our caller we are not valid
    if (!m_effects.size())
        return false;

    setMaxEffectRects(m_sourceDrawingRegion);
    
    return true;
}
Example #21
0
bool FilterEffectRenderer::build(RenderElement* renderer, const FilterOperations& operations, FilterConsumer consumer)
{
    m_hasFilterThatMovesPixels = operations.hasFilterThatMovesPixels();
    if (m_hasFilterThatMovesPixels)
        m_outsets = operations.outsets();

    m_effects.clear();

    RefPtr<FilterEffect> previousEffect = m_sourceGraphic;
    for (size_t i = 0; i < operations.operations().size(); ++i) {
        RefPtr<FilterEffect> effect;
        FilterOperation& filterOperation = *operations.operations().at(i);
        switch (filterOperation.type()) {
        case FilterOperation::REFERENCE: {
            ReferenceFilterOperation& referenceOperation = downcast<ReferenceFilterOperation>(filterOperation);
            effect = buildReferenceFilter(renderer, previousEffect, &referenceOperation);
            referenceOperation.setFilterEffect(effect);
            break;
        }
        case FilterOperation::GRAYSCALE: {
            BasicColorMatrixFilterOperation& colorMatrixOperation = downcast<BasicColorMatrixFilterOperation>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation.amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#grayscaleEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.2126 + 0.7874 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 + 0.2848 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 + 0.9278 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(*this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SEPIA: {
            BasicColorMatrixFilterOperation& colorMatrixOperation = downcast<BasicColorMatrixFilterOperation>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation.amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#sepiaEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.393 + 0.607 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.769 - 0.769 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.189 - 0.189 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.349 - 0.349 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.686 + 0.314 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.168 - 0.168 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.272 - 0.272 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.534 - 0.534 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.131 + 0.869 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(*this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SATURATE: {
            BasicColorMatrixFilterOperation& colorMatrixOperation = downcast<BasicColorMatrixFilterOperation>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation.amount()));
            effect = FEColorMatrix::create(*this, FECOLORMATRIX_TYPE_SATURATE, inputParameters);
            break;
        }
        case FilterOperation::HUE_ROTATE: {
            BasicColorMatrixFilterOperation& colorMatrixOperation = downcast<BasicColorMatrixFilterOperation>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation.amount()));
            effect = FEColorMatrix::create(*this, FECOLORMATRIX_TYPE_HUEROTATE, inputParameters);
            break;
        }
        case FilterOperation::INVERT: {
            BasicComponentTransferFilterOperation& componentTransferOperation = downcast<BasicComponentTransferFilterOperation>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation.amount()));
            transferParameters.append(narrowPrecisionToFloat(1 - componentTransferOperation.amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(*this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::OPACITY: {
            BasicComponentTransferFilterOperation& componentTransferOperation = downcast<BasicComponentTransferFilterOperation>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(0);
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation.amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(*this, nullFunction, nullFunction, nullFunction, transferFunction);
            break;
        }
        case FilterOperation::BRIGHTNESS: {
            BasicComponentTransferFilterOperation& componentTransferOperation = downcast<BasicComponentTransferFilterOperation>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            transferFunction.slope = narrowPrecisionToFloat(componentTransferOperation.amount());
            transferFunction.intercept = 0;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(*this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::CONTRAST: {
            BasicComponentTransferFilterOperation& componentTransferOperation = downcast<BasicComponentTransferFilterOperation>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            float amount = narrowPrecisionToFloat(componentTransferOperation.amount());
            transferFunction.slope = amount;
            transferFunction.intercept = -0.5 * amount + 0.5;
            
            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(*this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::BLUR: {
            BlurFilterOperation& blurOperation = downcast<BlurFilterOperation>(filterOperation);
            float stdDeviation = floatValueForLength(blurOperation.stdDeviation(), 0);
            effect = FEGaussianBlur::create(*this, stdDeviation, stdDeviation, consumer == FilterProperty ? EDGEMODE_NONE : EDGEMODE_DUPLICATE);
            break;
        }
        case FilterOperation::DROP_SHADOW: {
            DropShadowFilterOperation& dropShadowOperation = downcast<DropShadowFilterOperation>(filterOperation);
            effect = FEDropShadow::create(*this, dropShadowOperation.stdDeviation(), dropShadowOperation.stdDeviation(),
                dropShadowOperation.x(), dropShadowOperation.y(), dropShadowOperation.color(), 1);
            break;
        }
        default:
            break;
        }

        if (effect) {
            // Unlike SVG Filters and CSSFilterImages, filter functions on the filter
            // property applied here should not clip to their primitive subregions.
            effect->setClipsToBounds(consumer == FilterFunction);
            effect->setOperatingColorSpace(ColorSpaceSRGB);
            
            if (filterOperation.type() != FilterOperation::REFERENCE) {
                effect->inputEffects().append(previousEffect);
                m_effects.append(effect);
            }
            previousEffect = effect.release();
        }
    }

    // If we didn't make any effects, tell our caller we are not valid
    if (!m_effects.size())
        return false;

    setMaxEffectRects(m_sourceDrawingRegion);
    
    return true;
}
bool FilterEffectRenderer::build(RenderObject* renderer, const FilterOperations& operations)
{
    m_hasCustomShaderFilter = false;
    m_hasFilterThatMovesPixels = operations.hasFilterThatMovesPixels();

    // Inverse zoom the pre-zoomed CSS shorthand filters, so that they are in the same zoom as the unzoomed reference filters.
    const RenderStyle* style = renderer->style();
    // FIXME: The effects now contain high dpi information, but the software path doesn't (yet) scale its backing.
    //        When the proper dpi dependant backing size is allocated, we should remove deviceScaleFactor(...) here.
    float invZoom = 1.0f / ((style ? style->effectiveZoom() : 1.0f) * deviceScaleFactor(renderer->frame()));

    RefPtr<FilterEffect> previousEffect = m_sourceGraphic;
    for (size_t i = 0; i < operations.operations().size(); ++i) {
        RefPtr<FilterEffect> effect;
        FilterOperation* filterOperation = operations.operations().at(i).get();
        switch (filterOperation->getOperationType()) {
        case FilterOperation::REFERENCE: {
            ReferenceFilterOperation* referenceOperation = static_cast<ReferenceFilterOperation*>(filterOperation);
            effect = ReferenceFilterBuilder::build(this, renderer, previousEffect.get(), referenceOperation);
            break;
        }
        case FilterOperation::GRAYSCALE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#grayscaleEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.2126 + 0.7874 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 + 0.2848 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 - 0.0722 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.2126 - 0.2126 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.7152 - 0.7152 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.0722 + 0.9278 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SEPIA: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            double oneMinusAmount = clampTo(1 - colorMatrixOperation->amount(), 0.0, 1.0);

            // See https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html#sepiaEquivalent
            // for information on parameters.

            inputParameters.append(narrowPrecisionToFloat(0.393 + 0.607 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.769 - 0.769 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.189 - 0.189 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.349 - 0.349 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.686 + 0.314 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.168 - 0.168 * oneMinusAmount));
            endMatrixRow(inputParameters);

            inputParameters.append(narrowPrecisionToFloat(0.272 - 0.272 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.534 - 0.534 * oneMinusAmount));
            inputParameters.append(narrowPrecisionToFloat(0.131 + 0.869 * oneMinusAmount));
            endMatrixRow(inputParameters);

            lastMatrixRow(inputParameters);

            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_MATRIX, inputParameters);
            break;
        }
        case FilterOperation::SATURATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_SATURATE, inputParameters);
            break;
        }
        case FilterOperation::HUE_ROTATE: {
            BasicColorMatrixFilterOperation* colorMatrixOperation = static_cast<BasicColorMatrixFilterOperation*>(filterOperation);
            Vector<float> inputParameters;
            inputParameters.append(narrowPrecisionToFloat(colorMatrixOperation->amount()));
            effect = FEColorMatrix::create(this, FECOLORMATRIX_TYPE_HUEROTATE, inputParameters);
            break;
        }
        case FilterOperation::INVERT: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferParameters.append(narrowPrecisionToFloat(1 - componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::OPACITY: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_TABLE;
            Vector<float> transferParameters;
            transferParameters.append(0);
            transferParameters.append(narrowPrecisionToFloat(componentTransferOperation->amount()));
            transferFunction.tableValues = transferParameters;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, nullFunction, nullFunction, nullFunction, transferFunction);
            break;
        }
        case FilterOperation::BRIGHTNESS: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            transferFunction.slope = narrowPrecisionToFloat(componentTransferOperation->amount());
            transferFunction.intercept = 0;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::CONTRAST: {
            BasicComponentTransferFilterOperation* componentTransferOperation = static_cast<BasicComponentTransferFilterOperation*>(filterOperation);
            ComponentTransferFunction transferFunction;
            transferFunction.type = FECOMPONENTTRANSFER_TYPE_LINEAR;
            float amount = narrowPrecisionToFloat(componentTransferOperation->amount());
            transferFunction.slope = amount;
            transferFunction.intercept = -0.5 * amount + 0.5;

            ComponentTransferFunction nullFunction;
            effect = FEComponentTransfer::create(this, transferFunction, transferFunction, transferFunction, nullFunction);
            break;
        }
        case FilterOperation::BLUR: {
            BlurFilterOperation* blurOperation = static_cast<BlurFilterOperation*>(filterOperation);
            float stdDeviation = floatValueForLength(blurOperation->stdDeviation(), 0) * invZoom;
            effect = FEGaussianBlur::create(this, stdDeviation, stdDeviation);
            break;
        }
        case FilterOperation::DROP_SHADOW: {
            DropShadowFilterOperation* dropShadowOperation = static_cast<DropShadowFilterOperation*>(filterOperation);
            float stdDeviation = dropShadowOperation->stdDeviation() * invZoom;
            float x = dropShadowOperation->x() * invZoom;
            float y = dropShadowOperation->y() * invZoom;
            effect = FEDropShadow::create(this, stdDeviation, stdDeviation, x, y, dropShadowOperation->color(), 1);
            break;
        }
        case FilterOperation::CUSTOM:
            // CUSTOM operations are always converted to VALIDATED_CUSTOM before getting here.
            // The conversion happens in RenderLayer::computeFilterOperations.
            ASSERT_NOT_REACHED();
            break;
        case FilterOperation::VALIDATED_CUSTOM: {
            ValidatedCustomFilterOperation* customFilterOperation = static_cast<ValidatedCustomFilterOperation*>(filterOperation);
            Document* document = renderer ? &renderer->document() : 0;
            effect = createCustomFilterEffect(this, document, customFilterOperation);
            if (effect)
                m_hasCustomShaderFilter = true;
            break;
        }
        default:
            break;
        }

        if (effect) {
            if (filterOperation->getOperationType() != FilterOperation::REFERENCE) {
                // Unlike SVG, filters applied here should not clip to their primitive subregions.
                effect->setClipsToBounds(false);
                effect->setOperatingColorSpace(ColorSpaceDeviceRGB);
                effect->inputEffects().append(previousEffect);
            }
            previousEffect = effect.release();
        }
    }

    // We need to keep the old effects alive until this point, so that filters like FECustomFilter
    // can share cached resources across frames.
    m_lastEffect = previousEffect;

    // If we didn't make any effects, tell our caller we are not valid
    if (!m_lastEffect.get())
        return false;

    return true;
}
    void colorSpaceTest()
    {
        // Build filter tree
        RefPtr<ReferenceFilter> referenceFilter = ReferenceFilter::create();

        // Add a dummy source graphic input
        RefPtr<FilterEffect> sourceEffect = referenceFilter->sourceGraphic();
        sourceEffect->setOperatingColorSpace(ColorSpaceDeviceRGB);

        // Add a blur effect (with input : source)
        RefPtr<FilterEffect> blurEffect =
            FEGaussianBlur::create(referenceFilter.get(), 3.0f, 3.0f);
        blurEffect->setOperatingColorSpace(ColorSpaceLinearRGB);
        blurEffect->inputEffects().append(sourceEffect);

        // Add a blend effect (with inputs : blur, source)
        RefPtr<FilterEffect> blendEffect =
            FEBlend::create(referenceFilter.get(), FEBLEND_MODE_NORMAL);
        blendEffect->setOperatingColorSpace(ColorSpaceDeviceRGB);
        FilterEffectVector& blendInputs = blendEffect->inputEffects();
        blendInputs.reserveCapacity(2);
        blendInputs.append(sourceEffect);
        blendInputs.append(blurEffect);

        // Add a merge effect (with inputs : blur, blend)
        RefPtr<FilterEffect> mergeEffect = FEMerge::create(referenceFilter.get());
        mergeEffect->setOperatingColorSpace(ColorSpaceLinearRGB);
        FilterEffectVector& mergeInputs = mergeEffect->inputEffects();
        mergeInputs.reserveCapacity(2);
        mergeInputs.append(blurEffect);
        mergeInputs.append(blendEffect);
        referenceFilter->setLastEffect(mergeEffect);

        // Get SkImageFilter resulting tree
        SkiaImageFilterBuilder builder;
        RefPtr<SkImageFilter> filter = builder.build(referenceFilter->lastEffect(), ColorSpaceDeviceRGB);

        // Let's check that the resulting tree looks like this :
        //      ColorSpace (Linear->Device) : CS (L->D)
        //                |
        //             Merge (L)
        //              |     |
        //              |    CS (D->L)
        //              |          |
        //              |      Blend (D)
        //              |       /    |
        //              |  CS (L->D) |
        //              |  /         |
        //             Blur (L)      |
        //                 \         |
        //               CS (D->L)   |
        //                   \       |
        //                 Source Graphic (D)

        EXPECT_EQ(filter->countInputs(), 1); // Should be CS (L->D)
        SkImageFilter* child = filter->getInput(0); // Should be Merge
        EXPECT_EQ(child->asColorFilter(0), false);
        EXPECT_EQ(child->countInputs(), 2);
        child = child->getInput(1); // Should be CS (D->L)
        EXPECT_EQ(child->asColorFilter(0), true);
        EXPECT_EQ(child->countInputs(), 1);
        child = child->getInput(0); // Should be Blend
        EXPECT_EQ(child->asColorFilter(0), false);
        EXPECT_EQ(child->countInputs(), 2);
        child = child->getInput(0); // Should be CS (L->D)
        EXPECT_EQ(child->asColorFilter(0), true);
        EXPECT_EQ(child->countInputs(), 1);
        child = child->getInput(0); // Should be Blur
        EXPECT_EQ(child->asColorFilter(0), false);
        EXPECT_EQ(child->countInputs(), 1);
        child = child->getInput(0); // Should be CS (D->L)
        EXPECT_EQ(child->asColorFilter(0), true);
        EXPECT_EQ(child->countInputs(), 1);
    }
PassRefPtr<FilterEffect> SVGFEConvolveMatrixElement::build(SVGFilterBuilder* filterBuilder, Filter* filter)
{
    FilterEffect* input1 = filterBuilder->getEffectById(in1());

    if (!input1)
        return 0;

    int orderXValue = orderX();
    int orderYValue = orderY();
    if (!hasAttribute(SVGNames::orderAttr)) {
        orderXValue = 3;
        orderYValue = 3;
    }
    // Spec says order must be > 0. Bail if it is not.
    if (orderXValue < 1 || orderYValue < 1)
        return 0;
    SVGNumberList& kernelMatrix = this->kernelMatrix();
    int kernelMatrixSize = kernelMatrix.size();
    // The spec says this is a requirement, and should bail out if fails
    if (orderXValue * orderYValue != kernelMatrixSize)
        return 0;

    int targetXValue = targetX();
    int targetYValue = targetY();
    if (hasAttribute(SVGNames::targetXAttr) && (targetXValue < 0 || targetXValue >= orderXValue))
        return 0;
    // The spec says the default value is: targetX = floor ( orderX / 2 ))
    if (!hasAttribute(SVGNames::targetXAttr))
        targetXValue = static_cast<int>(floorf(orderXValue / 2));
    if (hasAttribute(SVGNames::targetYAttr) && (targetYValue < 0 || targetYValue >= orderYValue))
        return 0;
    // The spec says the default value is: targetY = floor ( orderY / 2 ))
    if (!hasAttribute(SVGNames::targetYAttr))
        targetYValue = static_cast<int>(floorf(orderYValue / 2));

    // Spec says default kernelUnitLength is 1.0, and a specified length cannot be 0.
    int kernelUnitLengthXValue = kernelUnitLengthX();
    int kernelUnitLengthYValue = kernelUnitLengthY();
    if (!hasAttribute(SVGNames::kernelUnitLengthAttr)) {
        kernelUnitLengthXValue = 1;
        kernelUnitLengthYValue = 1;
    }
    if (kernelUnitLengthXValue <= 0 || kernelUnitLengthYValue <= 0)
        return 0;

    float divisorValue = divisor();
    if (hasAttribute(SVGNames::divisorAttr) && !divisorValue)
        return 0;
    if (!hasAttribute(SVGNames::divisorAttr)) {
        for (int i = 0; i < kernelMatrixSize; ++i)
            divisorValue += kernelMatrix.at(i);
        if (!divisorValue)
            divisorValue = 1;
    }

    RefPtr<FilterEffect> effect = FEConvolveMatrix::create(filter,
                    IntSize(orderXValue, orderYValue), divisorValue,
                    bias(), IntPoint(targetXValue, targetYValue), edgeMode(),
                    FloatPoint(kernelUnitLengthXValue, kernelUnitLengthYValue), preserveAlpha(), kernelMatrix);
    effect->inputEffects().append(input1);
    return effect.release();
}