// General functions. bool LookupHQRegion(int holeNumber, RegionTable ®ionTable, int &start, int &end, int &score) { int regionLowIndex, regionHighIndex; regionLowIndex = regionHighIndex = 0; regionTable.LookupRegionsByHoleNumber(holeNumber, regionLowIndex, regionHighIndex); bool readHasGoodRegion = true; int regionIndex = regionLowIndex; while (regionIndex < regionHighIndex and regionTable.GetType(regionIndex) != HQRegion) { regionIndex++; } if (regionIndex == regionHighIndex) { start = end = score = 0; return false; } else { start = regionTable.GetStart(regionIndex); end = regionTable.GetEnd(regionIndex); score = regionTable.GetScore(regionIndex); return true; } }
// // Collect region indices for either all region types, or just a few specific region types. // // int CollectRegionIndices(SMRTSequence &read, RegionTable ®ionTable, std::vector<int> ®ionIndices, RegionType *regionTypes, int numRegionTypes) { int regionLow, regionHigh; int prevNumRegionIndices = regionIndices.size(); if (FindRegionIndices(read, ®ionTable, regionLow, regionHigh)) { int i; for (i = regionLow; i < regionHigh; i++) { if (regionTypes == NULL) { regionIndices.push_back(i); } else { int t; for (t = 0; t < numRegionTypes; t++) { if (regionTable.GetType(i) == regionTypes[t]) { regionIndices.push_back(i); break; } } } } } return regionIndices.size() - prevNumRegionIndices; }
// General functions. bool LookupHQRegion(int holeNumber, RegionTable ®ionTable, int &start, int &end, int &score) { if (regionTable.HasHoleNumber(holeNumber)) { RegionAnnotations zmwRegions = regionTable[holeNumber]; if (zmwRegions.HasHQRegion()) { start = zmwRegions.HQStart(); end = zmwRegions.HQEnd(); score = zmwRegions.HQScore(); return true; } } start = end = score = 0; return false; }
TEST(SubreadsTest, EndToEnd_Multiple) { // setup const string movieName = "m140905_042212_sidney_c100564852550000001823085912221377_s1_X0"; vector<string> baxFilenames; baxFilenames.push_back(tests::Data_Dir + "/" + movieName + ".1.bax.h5"); const string generatedBam = movieName + ".subreads.bam"; const string scrapBam = movieName + ".scraps.bam"; // run conversion const int result = RunBax2Bam(baxFilenames, "--subread"); EXPECT_EQ(0, result); // open BAX reader on original data HDFBasReader baxReader; baxReader.IncludeField("Basecall"); baxReader.IncludeField("DeletionQV"); baxReader.IncludeField("DeletionTag"); baxReader.IncludeField("InsertionQV"); baxReader.IncludeField("PreBaseFrames"); baxReader.IncludeField("MergeQV"); baxReader.IncludeField("SubstitutionQV"); baxReader.IncludeField("HQRegionSNR"); // not using SubTag or PulseWidth here string baxBasecallerVersion; string baxBindingKit; string baxSequencingKit; const int initOk = baxReader.Initialize(baxFilenames.front()); EXPECT_EQ(1, initOk); if (initOk == 1) { if (baxReader.scanDataReader.fileHasScanData && baxReader.scanDataReader.initializedRunInfoGroup) { if (baxReader.scanDataReader.runInfoGroup.ContainsAttribute("BindingKit")) { HDFAtom<std::string> bkAtom; if (bkAtom.Initialize(baxReader.scanDataReader.runInfoGroup, "BindingKit")) { bkAtom.Read(baxBindingKit); bkAtom.dataspace.close(); } } if (baxReader.scanDataReader.runInfoGroup.ContainsAttribute("SequencingKit")) { HDFAtom<std::string> skAtom; if (skAtom.Initialize(baxReader.scanDataReader.runInfoGroup, "SequencingKit")) { skAtom.Read(baxSequencingKit); skAtom.dataspace.close(); } } } baxReader.GetChangeListID(baxBasecallerVersion); } // read region table info boost::scoped_ptr<HDFRegionTableReader> regionTableReader(new HDFRegionTableReader); RegionTable regionTable; std::string fn = baxFilenames.front(); EXPECT_TRUE(regionTableReader->Initialize(fn) != 0); regionTable.Reset(); regionTableReader->ReadTable(regionTable); regionTableReader->Close(); EXPECT_NO_THROW( { // open BAM file BamFile bamFile(generatedBam); // check BAM header information const BamHeader& header = bamFile.Header(); EXPECT_EQ(string("1.5"), header.Version()); EXPECT_EQ(string("unknown"), header.SortOrder()); EXPECT_EQ(string("3.0.1"), header.PacBioBamVersion()); EXPECT_TRUE(header.Sequences().empty()); EXPECT_TRUE(header.Comments().empty()); ASSERT_FALSE(header.Programs().empty()); const vector<string> readGroupIds = header.ReadGroupIds(); ASSERT_FALSE(readGroupIds.empty()); const ReadGroupInfo& rg = header.ReadGroup(readGroupIds.front()); string rawId = movieName + "//SUBREAD"; string md5Id; MakeMD5(rawId, md5Id, 8); EXPECT_EQ(md5Id, rg.Id()); EXPECT_EQ(string("PACBIO"), rg.Platform()); EXPECT_EQ(movieName, rg.MovieName()); EXPECT_TRUE(rg.SequencingCenter().empty()); EXPECT_TRUE(rg.Date().empty()); EXPECT_TRUE(rg.FlowOrder().empty()); EXPECT_TRUE(rg.KeySequence().empty()); EXPECT_TRUE(rg.Library().empty()); EXPECT_TRUE(rg.Programs().empty()); EXPECT_TRUE(rg.PredictedInsertSize().empty()); EXPECT_TRUE(rg.Sample().empty()); EXPECT_EQ("SUBREAD", rg.ReadType()); EXPECT_EQ(baxBasecallerVersion, rg.BasecallerVersion()); EXPECT_EQ(baxBindingKit, rg.BindingKit()); EXPECT_EQ(baxSequencingKit, rg.SequencingKit()); EXPECT_EQ(75, std::stod(rg.FrameRateHz())); EXPECT_EQ("dq", rg.BaseFeatureTag(BaseFeature::DELETION_QV)); EXPECT_EQ("dt", rg.BaseFeatureTag(BaseFeature::DELETION_TAG)); EXPECT_EQ("iq", rg.BaseFeatureTag(BaseFeature::INSERTION_QV)); EXPECT_EQ("ip", rg.BaseFeatureTag(BaseFeature::IPD)); EXPECT_EQ("mq", rg.BaseFeatureTag(BaseFeature::MERGE_QV)); EXPECT_EQ("sq", rg.BaseFeatureTag(BaseFeature::SUBSTITUTION_QV)); EXPECT_FALSE(rg.HasBaseFeature(BaseFeature::SUBSTITUTION_TAG)); EXPECT_EQ(FrameCodec::V1, rg.IpdCodec()); // compare 1st record from each file SMRTSequence baxRecord; UInt holeNumber = 0; vector<float> hqSnr; size_t intervalIdx = 0; vector<SubreadInterval> subreadIntervals; size_t numTested = 0; EntireFileQuery entireFile(bamFile); for (BamRecord& bamRecord : entireFile) { if (intervalIdx >= subreadIntervals.size()) { while (baxReader.GetNext(baxRecord)) { holeNumber = baxRecord.zmwData.holeNumber; ComputeSubreadIntervals(&subreadIntervals, regionTable, holeNumber); /* this is for debugging subread interval problems int hqStart = 0; int hqEnd = 0; int hqScore = 0; LookupHQRegion(holeNumber, regionTable, hqStart, hqEnd, hqScore); vector<ReadInterval> subreadIntervals_; CollectSubreadIntervals(baxRecord, ®ionTable, subreadIntervals_); for (int i = subreadIntervals_.size() - 1; i >= 0; --i) { auto& in = subreadIntervals_[i]; int inStart = max(hqStart, in.start); int inEnd = min(hqEnd, in.end); if (inEnd <= inStart) subreadIntervals_.erase(subreadIntervals_.begin() + i); } cerr << "hqRegion: " << hqStart << ", " << hqEnd << endl; cerr << "subreadRegions:" << endl; for (const auto& in : subreadIntervals_) cerr << " l, r: " << in.start << ", " << in.end << endl; cerr << "adapterDerived:" << endl; for (const auto& in : subreadIntervals) cerr << " l, r: " << in.Start << ", " << in.End << endl; cerr << endl; // */ if (subreadIntervals.empty()) continue; intervalIdx = 0; hqSnr.clear(); hqSnr.push_back(baxRecord.HQRegionSnr('A')); hqSnr.push_back(baxRecord.HQRegionSnr('C')); hqSnr.push_back(baxRecord.HQRegionSnr('G')); hqSnr.push_back(baxRecord.HQRegionSnr('T')); EXPECT_GT(hqSnr[0], 0); EXPECT_GT(hqSnr[1], 0); EXPECT_GT(hqSnr[2], 0); EXPECT_GT(hqSnr[3], 0); goto compare; } goto cleanup; } compare: const BamRecordImpl& bamRecordImpl = bamRecord.Impl(); EXPECT_EQ(4680,bamRecordImpl.Bin()); EXPECT_EQ(0, bamRecordImpl.InsertSize()); EXPECT_EQ(255, bamRecordImpl.MapQuality()); EXPECT_EQ(-1, bamRecordImpl.MatePosition()); EXPECT_EQ(-1, bamRecordImpl.MateReferenceId()); EXPECT_EQ(-1, bamRecordImpl.Position()); EXPECT_EQ(-1, bamRecordImpl.ReferenceId()); EXPECT_FALSE(bamRecordImpl.IsMapped()); const int subreadStart = subreadIntervals[intervalIdx].Start; const int subreadEnd = subreadIntervals[intervalIdx].End; const string expectedName = movieName + "/" + to_string(holeNumber) + "/" + to_string(subreadStart) + "_" + to_string(subreadEnd); EXPECT_EQ(expectedName, bamRecordImpl.Name()); using PacBio::BAM::QualityValue; using PacBio::BAM::QualityValues; const DNALength length = subreadEnd - subreadStart; string expectedSequence; expectedSequence.assign((const char*)baxRecord.seq + subreadStart, length); const string bamSequence = bamRecord.Sequence(); const QualityValues bamQualities = bamRecord.Qualities(); EXPECT_EQ(expectedSequence, bamSequence); EXPECT_TRUE(bamQualities.empty()); const QualityValues bamDeletionQVs = bamRecord.DeletionQV(); const QualityValues bamInsertionQVs = bamRecord.InsertionQV(); const QualityValues bamMergeQVs = bamRecord.MergeQV(); const QualityValues bamSubstitutionQVs = bamRecord.SubstitutionQV(); for (size_t i = 0; i < length; ++i) { const size_t pos = subreadStart + i; EXPECT_EQ((QualityValue)baxRecord.GetDeletionQV(pos), bamDeletionQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetInsertionQV(pos), bamInsertionQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetMergeQV(pos), bamMergeQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetSubstitutionQV(pos), bamSubstitutionQVs.at(i)); } if (baxRecord.deletionTag) { string expectedDeletionTags; expectedDeletionTags.assign((char*)baxRecord.deletionTag + subreadStart, (char*)baxRecord.deletionTag + subreadStart + length); const string& bamDeletionTags = bamRecord.DeletionTag(); EXPECT_EQ(expectedDeletionTags, bamDeletionTags); } if (baxRecord.substitutionTag) { string expectedSubstitutionTags; expectedSubstitutionTags.assign((char*)baxRecord.substitutionTag + subreadStart, (char*)baxRecord.substitutionTag + subreadStart + length); const string& bamSubstitutionTags = bamRecord.SubstitutionTag(); EXPECT_EQ(expectedSubstitutionTags, bamSubstitutionTags); } // TODO: IPDs const LocalContextFlags ctxFlags = subreadIntervals[intervalIdx].LocalContextFlags; EXPECT_EQ(md5Id, bamRecord.ReadGroupId()); EXPECT_EQ(movieName, bamRecord.MovieName()); EXPECT_EQ(1, bamRecord.NumPasses()); EXPECT_EQ(holeNumber, bamRecord.HoleNumber()); EXPECT_EQ(subreadStart, bamRecord.QueryStart()); EXPECT_EQ(subreadEnd, bamRecord.QueryEnd()); EXPECT_EQ(hqSnr, bamRecord.SignalToNoise()); EXPECT_EQ(ctxFlags, bamRecord.LocalContextFlags()); numTested++; intervalIdx++; } cleanup: EXPECT_GT(numTested, 1); // cleanup baxReader.Close(); RemoveFile(generatedBam); RemoveFile(scrapBam); }); // EXPECT_NO_THROW
int main(int argc, char* argv[]) { string program = "pls2fasta"; string versionString = VERSION; AppendPerforceChangelist(PERFORCE_VERSION_STRING, versionString); string plsFileName, fastaOutName; vector<string> plsFileNames; bool trimByRegion, maskByRegion; trimByRegion = false; maskByRegion = false; int argi = 3; RegionTable regionTable; string regionsFOFNName = ""; vector<string> regionFileNames; bool splitSubreads = true; int minSubreadLength = 0; bool addSimulatedData = false; bool printSimulatedCoordinate = false; bool printSimulatedSequenceIndex = false; bool printFastq = false; bool printCcs = false; int lineLength = 50; int minReadScore = 0; vector<int> holeNumbers; CommandLineParser clp; bool printOnlyBest = false; clp.SetProgramName(program); clp.SetVersion(versionString); clp.RegisterStringOption("in.pls.h5", &plsFileName, "Input pls.h5/bax.h5/fofn file.", true); clp.RegisterStringOption("out.fasta", &fastaOutName, "Output fasta/fastq file.", true); clp.RegisterPreviousFlagsAsHidden(); clp.RegisterFlagOption("trimByRegion", &trimByRegion, "Trim away low quality regions."); clp.RegisterFlagOption("maskByRegion", &maskByRegion, "Mask low quality regions with 'N'."); clp.RegisterStringOption("regionTable", ®ionsFOFNName, "Optional HDF file with a /PulseData/Regions dataset."); clp.RegisterIntOption("minSubreadLength", &minSubreadLength, "Do not write subreads less than the specified length.", CommandLineParser::PositiveInteger); clp.RegisterFlagOption("noSplitSubreads", &splitSubreads, "Do not split reads on adapter sequences."); clp.RegisterIntListOption("holeNumber", &holeNumbers, "Only print this hole number (or list of numbers)."); clp.RegisterFlagOption("fastq", &printFastq, "Print in FASTQ format with quality."); clp.RegisterFlagOption("ccs", &printCcs, "Print de novo CCS sequences"); clp.RegisterIntOption("lineLength", &lineLength, "Specify fasta/fastq line length", CommandLineParser::PositiveInteger); clp.RegisterIntOption("minReadScore", &minReadScore, "Minimum read score to print a read. The score is " "a number between 0 and 1000 and represents the expected accuracy percentage * 10. " "A typical value would be between 750 and 800. This does not apply to ccs reads.", CommandLineParser::NonNegativeInteger); clp.RegisterFlagOption("best", &printOnlyBest, "If a CCS sequence exists, print this. Otherwise, print the longest" "subread. This does not support fastq."); string description = ("Converts pls.h5/bax.h5/fofn files to fasta or fastq files. Although fasta files are provided" " with every run, they are not trimmed nor split into subreads. This program takes " "additional annotation information, such as the subread coordinates and high quality regions " "and uses them to create fasta sequences that are substrings of all bases called. Most of the time " "you will want to trim low quality reads, so you should specify -trimByRegion."); clp.SetProgramSummary(description); clp.ParseCommandLine(argc, argv); cerr << "[INFO] " << GetTimestamp() << " [" << program << "] started." << endl; if (trimByRegion and maskByRegion) { cout << "ERROR! You cannot both trim and mask regions. Use one or the other." << endl; exit(1); } if (printFastq) { // Setting lineLength to 0 flags to print on one line. lineLength = 0; } if (FileOfFileNames::IsFOFN(plsFileName)) { FileOfFileNames::FOFNToList(plsFileName, plsFileNames); } else { plsFileNames.push_back(plsFileName); } if (regionsFOFNName == "") { regionFileNames = plsFileNames; } else { if (FileOfFileNames::IsFOFN(regionsFOFNName)) { FileOfFileNames::FOFNToList(regionsFOFNName, regionFileNames); } else { regionFileNames.push_back(regionsFOFNName); } } ofstream fastaOut; CrucialOpen(fastaOutName, fastaOut); int plsFileIndex; HDFRegionTableReader hdfRegionReader; sort(holeNumbers.begin(), holeNumbers.end()); for (plsFileIndex = 0; plsFileIndex < plsFileNames.size(); plsFileIndex++) { if (trimByRegion or maskByRegion or splitSubreads) { hdfRegionReader.Initialize(regionFileNames[plsFileIndex]); hdfRegionReader.ReadTable(regionTable); regionTable.SortTableByHoleNumber(); } ReaderAgglomerate reader; HDFBasReader ccsReader; if (printOnlyBest) { ccsReader.SetReadBasesFromCCS(); ccsReader.Initialize(plsFileNames[plsFileIndex]); } if (printCcs == false) { reader.IgnoreCCS(); } else { reader.hdfBasReader.SetReadBasesFromCCS(); } if (addSimulatedData) { reader.hdfBasReader.IncludeField("SimulatedCoordinate"); reader.hdfBasReader.IncludeField("SimulatedSequenceIndex"); } if (reader.SetReadFileName(plsFileNames[plsFileIndex]) == 0) { cout << "ERROR, could not determine file type." << plsFileNames[plsFileIndex] << endl; exit(1); } if (reader.Initialize() == 0) { cout << "ERROR, could not initialize file " << plsFileNames[plsFileIndex] << endl; exit(1); } DNALength simulatedCoordinate; DNALength simulatedSequenceIndex; reader.SkipReadQuality(); SMRTSequence seq; vector<ReadInterval> subreadIntervals;; SMRTSequence ccsSeq; while (reader.GetNext(seq)) { if (printOnlyBest) { ccsReader.GetNext(ccsSeq); } if (holeNumbers.size() != 0 and binary_search(holeNumbers.begin(), holeNumbers.end(), seq.zmwData.holeNumber) == false) { continue; } if (seq.length == 0) { continue; } if (addSimulatedData) { reader.hdfBasReader.simulatedCoordinateArray.Read(reader.hdfBasReader.curRead-1, reader.hdfBasReader.curRead, &simulatedCoordinate); reader.hdfBasReader.simulatedSequenceIndexArray.Read(reader.hdfBasReader.curRead-1, reader.hdfBasReader.curRead, &simulatedSequenceIndex); } if (printCcs == true) { if (printFastq == false) { seq.PrintSeq(fastaOut); } else { seq.PrintFastq(fastaOut, lineLength); } continue; } // // Determine the high quality boundaries of the read. This is // the full read is no hq regions exist, or it is stated to // ignore regions. // DNALength hqReadStart, hqReadEnd; int hqRegionScore; if (GetReadTrimCoordinates(seq, seq.zmwData, regionTable, hqReadStart, hqReadEnd, hqRegionScore) == false or (trimByRegion == false and maskByRegion == false)) { hqReadStart = 0; hqReadEnd = seq.length; } // // Mask off the low quality portions of the reads. // if (maskByRegion) { if (hqReadStart > 0) { fill(&seq.seq[0], &seq.seq[hqReadStart], 'N'); } if (hqReadEnd != seq.length) { fill(&seq.seq[hqReadEnd], &seq.seq[seq.length], 'N'); } } // // Now possibly print the full read with masking. This could be handled by making a // if (splitSubreads == false) { ReadInterval wholeRead(0, seq.length); // The set of subread intervals is just the entire read. subreadIntervals.clear(); subreadIntervals.push_back(wholeRead); } else { // // Print subread coordinates no matter whether or not reads have subreads. // subreadIntervals.clear(); // clear old, new intervals are appended. CollectSubreadIntervals(seq, ®ionTable, subreadIntervals); } // // Output all subreads as separate sequences. // int intvIndex; SMRTSequence bestSubreadSequence; int bestSubreadScore = -1; int bestSubreadIndex = 0; int bestSubreadStart = 0, bestSubreadEnd = 0; SMRTSequence bestSubread; for (intvIndex = 0; intvIndex < subreadIntervals.size(); intvIndex++) { SMRTSequence subreadSequence, subreadSequenceRC; subreadSequence.subreadStart = subreadIntervals[intvIndex].start; subreadSequence.subreadEnd = subreadIntervals[intvIndex].end; // // When trimming by region, only output the parts of the // subread that overlap the hq region. // if (trimByRegion == true) { subreadSequence.subreadStart = max((DNALength) subreadIntervals[intvIndex].start, hqReadStart); subreadSequence.subreadEnd = min((DNALength) subreadIntervals[intvIndex].end, hqReadEnd); } if (subreadSequence.subreadStart >= subreadSequence.subreadEnd or subreadSequence.subreadEnd - subreadSequence.subreadStart <= minSubreadLength) { // // There is no high qualty portion of this subread. Skip it. // continue; } if (hqRegionScore < minReadScore) { continue; } // // Print the subread, adding the coordinates as part of the title. // subreadSequence.ReferenceSubstring(seq, subreadSequence.subreadStart, subreadSequence.subreadEnd - subreadSequence.subreadStart); stringstream titleStream; titleStream << seq.title; if (splitSubreads) { // // Add the subread coordinates if splitting on subread. // titleStream << "/" << subreadSequence.subreadStart << "_" << subreadSequence.subreadEnd; } // // If running on simulated data, add where the values were simulated from. // if (addSimulatedData) { titleStream << ((FASTASequence*)&seq)->title << "/chrIndex_" << simulatedSequenceIndex << "/position_"<< simulatedCoordinate; ((FASTASequence*)&seq)->CopyTitle(titleStream.str()); } subreadSequence.CopyTitle(titleStream.str()); // // Eventually replace with WriterAgglomerate. // if (printOnlyBest == false) { if (subreadSequence.length > 0) { if (printFastq == false) { ((FASTASequence*)&subreadSequence)->PrintSeq(fastaOut); } else { subreadSequence.PrintFastq(fastaOut, lineLength); } } delete[] subreadSequence.title; } else { int subreadWeightedScore = subreadSequence.length * hqRegionScore; if (subreadWeightedScore > bestSubreadScore) { bestSubreadIndex = intvIndex; bestSubread = subreadSequence; bestSubreadScore = subreadWeightedScore; } } } if (printOnlyBest) { if (ccsSeq.length > 0) { if (printFastq == false) { ccsSeq.PrintSeq(fastaOut); } else { ccsSeq.PrintFastq(fastaOut, ccsSeq.length); } } else { if (bestSubreadScore >= 0) { if (printFastq == false) { bestSubread.PrintSeq(fastaOut); } else { bestSubread.PrintFastq(fastaOut, bestSubread.length); } bestSubread.Free(); } } ccsSeq.Free(); } seq.Free(); } reader.Close(); hdfRegionReader.Close(); } cerr << "[INFO] " << GetTimestamp() << " [" << program << "] ended." << endl; }
bool SubreadConverter::ConvertFile(HDFBasReader* reader, PacBio::BAM::BamWriter* writer, PacBio::BAM::BamWriter* scrapsWriter) { assert(reader); // initialize with default values (shared across all unmapped subreads) BamRecordImpl bamRecord; // read region table info std::unique_ptr<HDFRegionTableReader> const regionTableReader(new HDFRegionTableReader); RegionTable regionTable; string fn = filenameForReader_[reader]; assert(!fn.empty()); if (regionTableReader->Initialize(fn) == 0) { AddErrorMessage("could not read region table on "+fn); return false; } regionTable.Reset(); regionTableReader->ReadTable(regionTable); regionTableReader->Close(); // initialize read scores InitReadScores(reader); // fetch records from HDF5 file SMRTSequence smrtRecord; while (reader->GetNext(smrtRecord)) { // compute subread & adapter intervals SubreadInterval hqInterval; deque<SubreadInterval> subreadIntervals; deque<SubreadInterval> adapterIntervals; try { hqInterval = ComputeSubreadIntervals(&subreadIntervals, &adapterIntervals, regionTable, smrtRecord.zmwData.holeNumber, smrtRecord.length); } catch (runtime_error& e) { AddErrorMessage(string(e.what())); smrtRecord.Free(); return false; } // sequencing ZMW if (IsSequencingZmw(smrtRecord)) { // write subreads to main BAM file for (const SubreadInterval& interval : subreadIntervals) { // skip invalid or 0-sized intervals if (interval.End <= interval.Start) continue; if (!WriteSubreadRecord(smrtRecord, interval.Start, interval.End, ReadGroupId(), static_cast<uint8_t>(interval.LocalContextFlags), writer)) { smrtRecord.Free(); return false; } } // if scraps BAM file present if (scrapsWriter) { // write 5-end LQ sequence if (hqInterval.Start > 0) { if (!WriteLowQualityRecord(smrtRecord, 0, hqInterval.Start, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write adapters for (const SubreadInterval& interval : adapterIntervals) { // skip invalid or 0-sized adapters if (interval.End <= interval.Start) continue; if (!WriteAdapterRecord(smrtRecord, interval.Start, interval.End, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write 3'-end LQ sequence if (hqInterval.End < smrtRecord.length) { if (!WriteLowQualityRecord(smrtRecord, hqInterval.End, smrtRecord.length, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } } } // sequencing ZMW // non-sequencing ZMW else { assert(!IsSequencingZmw(smrtRecord)); // only write these if scraps BAM present & we are in 'internal mode' if (settings_.isInternal && scrapsWriter) { // write 5-end LQ sequence to scraps BAM if (hqInterval.Start > 0) { if (!WriteLowQualityRecord(smrtRecord, 0, hqInterval.Start, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write subreads & adapters to scraps BAM, sorted by query start while (!subreadIntervals.empty() && !adapterIntervals.empty()) { const SubreadInterval& subread = subreadIntervals.front(); const SubreadInterval& adapter = adapterIntervals.front(); assert(subread.Start != adapter.Start); if (subread.Start < adapter.Start) { if (!WriteFilteredRecord(smrtRecord, subread.Start, subread.End, ScrapsReadGroupId(), static_cast<uint8_t>(subread.LocalContextFlags), scrapsWriter)) { smrtRecord.Free(); return false; } subreadIntervals.pop_front(); } else { if (!WriteAdapterRecord(smrtRecord, adapter.Start, adapter.End, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } adapterIntervals.pop_front(); } } // flush any traling subread intervals while (!subreadIntervals.empty()) { assert(adapterIntervals.empty()); const SubreadInterval& subread = subreadIntervals.front(); if (!WriteFilteredRecord(smrtRecord, subread.Start, subread.End, ScrapsReadGroupId(), static_cast<uint8_t>(subread.LocalContextFlags), scrapsWriter)) { smrtRecord.Free(); return false; } subreadIntervals.pop_front(); } // flush any remaining adapter intervals while (!adapterIntervals.empty()) { assert(subreadIntervals.empty()); const SubreadInterval& adapter = adapterIntervals.front(); if (!WriteAdapterRecord(smrtRecord, adapter.Start, adapter.End, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } adapterIntervals.pop_front(); } // write 3'-end LQ sequence to scraps BAM if (hqInterval.End < smrtRecord.length) { if (!WriteLowQualityRecord(smrtRecord, hqInterval.End, smrtRecord.length, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } } } // non-sequencing ZMW smrtRecord.Free(); } // if we get here, all OK return true; }
bool HqRegionConverter::ConvertFile(HDFBasReader* reader, PacBio::BAM::BamWriter* writer, PacBio::BAM::BamWriter* scrapsWriter) { assert(reader); // read region table info std::unique_ptr<HDFRegionTableReader> const regionTableReader(new HDFRegionTableReader); RegionTable regionTable; std::string fn = filenameForReader_[reader]; assert(!fn.empty()); if (regionTableReader->Initialize(fn) == 0) { AddErrorMessage("could not read region table on "+fn); return false; } regionTable.Reset(); regionTableReader->ReadTable(regionTable); regionTableReader->Close(); // initialize read scores InitReadScores(reader); // fetch records from HDF5 file SMRTSequence smrtRecord; int hqStart, hqEnd, score; while (reader->GetNext(smrtRecord)) { // attempt get high quality region if (!LookupHQRegion(smrtRecord.zmwData.holeNumber, regionTable, hqStart, hqEnd, score)) { stringstream s; s << "could not find HQ region for hole number: " << smrtRecord.zmwData.holeNumber; AddErrorMessage(s.str()); smrtRecord.Free(); return false; } // Catch and repair 1-off errors in the HQ region hqEnd = (hqEnd == static_cast<int>(smrtRecord.length)-1) ? smrtRecord.length : hqEnd; // sequencing ZMW if (IsSequencingZmw(smrtRecord)) { // write HQRegion to main BAM file if (hqStart < hqEnd) { if (!WriteRecord(smrtRecord, hqStart, hqEnd, ReadGroupId(), writer)) { smrtRecord.Free(); return false; } } // if scraps BAM file present if (scrapsWriter) { // write 5'-end LQ sequence if (hqStart > 0) { if (!WriteLowQualityRecord(smrtRecord, 0, hqStart, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write 3'-end LQ sequence if (static_cast<size_t>(hqEnd) < smrtRecord.length) { if (!WriteLowQualityRecord(smrtRecord, hqEnd, smrtRecord.length, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } } } // non-sequencing ZMW else { assert(!IsSequencingZmw(smrtRecord)); // only write these if scraps BAM present & we are in 'internal mode' if (settings_.isInternal && scrapsWriter) { // write 5'-end LQ sequence if (hqStart > 0) { if (!WriteLowQualityRecord(smrtRecord, 0, hqStart, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write HQRegion to scraps BAM file if (hqStart < hqEnd) { if (!WriteFilteredRecord(smrtRecord, hqStart, hqEnd, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } // write 3'-end LQ sequence if (static_cast<size_t>(hqEnd) < smrtRecord.length) { if (!WriteLowQualityRecord(smrtRecord, hqEnd, smrtRecord.length, ScrapsReadGroupId(), scrapsWriter)) { smrtRecord.Free(); return false; } } } } smrtRecord.Free(); } // if we get here, all OK return true; }
int main(int argc, char* argv[]) { string refGenomeFileName = ""; string lengthModelFileName = ""; string outputModelFileName = ""; DNALength numBasesPerFile = 0; string sourceReadsFileName = ""; string titleTableFileName = ""; int numBasH5Files = 1; string basH5BaseFileName = "simulated"; string movieName = "m101211_092754_00114_cSIM_s1_p0"; bool doRandGenInit = true; bool usePosMap = false; bool printPercentRepeat = false; string posMapFileName = ""; vector<string> movieNames; bool useLengthModel = false; bool useFixedLength = false; ofstream posMapFile; int scaledLength = 0; int fixedLength = 0; int nBasFiles = 1; bool useLengthsModel = true; bool printHelp = false; // Look to see if the refAsReads flag is specified anywhere before // parsing the command line. CommandLineParser clp; string commandLine; string helpString; SetHelp(helpString); vector<string> fns; clp.RegisterStringOption("genome", &refGenomeFileName, ""); clp.RegisterIntOption("numBasesPerFile", (int*)&numBasesPerFile, "", CommandLineParser::PositiveInteger); clp.RegisterStringOption("sourceReads", &sourceReadsFileName, ""); clp.RegisterStringOption("lengthModel", &lengthModelFileName, ""); clp.RegisterIntOption("fixedLength", &fixedLength, "", CommandLineParser::PositiveInteger); clp.RegisterFlagOption("lengthModel", &useLengthModel, ""); clp.RegisterStringOption("movieName", &movieName, ""); clp.RegisterStringOption("titleTable", &titleTableFileName, ""); clp.RegisterStringOption("baseFileName", &basH5BaseFileName, ""); clp.RegisterIntOption("nFiles", &nBasFiles, "", CommandLineParser::PositiveInteger); clp.RegisterIntOption("meanLength", &scaledLength, "", CommandLineParser::PositiveInteger); clp.RegisterStringOption("posMap", &posMapFileName, ""); clp.RegisterFlagOption("printPercentRepeat", &printPercentRepeat, ""); clp.RegisterFlagOption("h", &printHelp, ""); clp.SetHelp(helpString); clp.ParseCommandLine(argc, argv, fns); clp.CommandLineToString(argc, argv, commandLine); clp.SetProgramName("alchemy"); outputModelFileName = fns[0]; if (argc <= 1 or printHelp or outputModelFileName == "") { cout << helpString << endl; exit(0); } if (usePosMap) { CrucialOpen(posMapFileName, posMapFile, std::ios::out); } if (sourceReadsFileName == "" and fixedLength == 0) { useLengthModel = true; } if (useLengthModel and fixedLength != 0) { cout << "ERROR! You must either use a length model or a fixed length." << endl; exit(1); } if (sourceReadsFileName == "" and numBasesPerFile == 0) { cout << "ERROR! You must specify either a set of read to use as " << endl << "original reads for simulation or the total number of bases " << endl << "to simulate in each bas.h5 file." << endl; exit(1); } if (sourceReadsFileName == "" and refGenomeFileName == "") { cout << "ERROR! You must specify a genome to sample reads from or a set of read "<<endl << "to use as original reads for simulation." << endl; exit(1); } if (fixedLength != 0 and refGenomeFileName == "") { cout << "ERROR! You must specify a genome file if using a fixed length." << endl; exit(1); } if ((fixedLength != 0 or scaledLength != 0) and sourceReadsFileName != "") { cout << "ERROR! You cannot specify a fixed length nor mean length with a source " << endl << "reads file. The read lengths are taken from the source reads or the length model." << endl; exit(1); } LengthHistogram lengthHistogram; OutputSampleListSet outputModel(0); TitleTable titleTable; if (doRandGenInit) { InitializeRandomGeneratorWithTime(); } // // Read models. // if (titleTableFileName != "") { titleTable.Read(titleTableFileName); } outputModel.Read(outputModelFileName); if (useLengthModel) { lengthHistogram.BuildFromAlignmentLengths(outputModel.lengths); } vector<int> alignmentLengths; int meanAlignmentLength; if (scaledLength != 0 and useLengthModel) { // // Scale the histogram so that the average length is 'scaledLength'. // // 1. Integrate histogram long totalLength = 0; long totalSamples = 0; int hi; for (hi = 0; hi < lengthHistogram.lengthHistogram.cdf.size()-1; hi++) { int ni; ni = lengthHistogram.lengthHistogram.cdf[hi+1] - lengthHistogram.lengthHistogram.cdf[hi]; totalLength += ni * lengthHistogram.lengthHistogram.data[hi]; } totalSamples = lengthHistogram.lengthHistogram.cdf[lengthHistogram.lengthHistogram.cdf.size()-1]; float meanSampleLength = totalLength / (1.0*totalSamples); float fractionIncrease = scaledLength / meanSampleLength; for (hi = 0; hi < lengthHistogram.lengthHistogram.cdf.size(); hi++) { lengthHistogram.lengthHistogram.data[hi] *= fractionIncrease; } } FASTAReader inReader, seqReader; vector<FASTASequence> reference; DNALength refLength = 0; int i; if (refGenomeFileName != "") { inReader.Init(refGenomeFileName); inReader.ReadAllSequences(reference); for (i = 0; i < reference.size(); i++) { refLength += reference[i].length; } } if (sourceReadsFileName != "") { seqReader.Init(sourceReadsFileName); } ofstream readsFile; // // Create and simulate bas.h5 files. // int baseFileIndex; bool readsRemain = true; for (baseFileIndex = 0; ((sourceReadsFileName == "" and baseFileIndex < nBasFiles) // case 1 is reads are generated by file or (sourceReadsFileName != "" and readsRemain)); // case 2 is reads are generated by an input file. baseFileIndex++) { // // Prep the base file for writing. // stringstream fileNameStrm, movieNameStrm; //string movieName = "m000000_000000_00000_cSIMULATED_s"; movieNameStrm << movieName << baseFileIndex << "_p0"; string fullMovieName = movieNameStrm.str(); fileNameStrm << fullMovieName << ".bas.h5"; HDFBasWriter basWriter; HDFRegionTableWriter regionWriter; // // This is mainly used to create the atributes. // RegionTable regionTable; regionTable.CreateDefaultAttributes(); basWriter.SetPlatform(Springfield); // // Use a fixed set of fields for now. // // These are all pulled from the outputModel. basWriter.IncludeField("Basecall"); basWriter.IncludeField("QualityValue"); basWriter.IncludeField("SubstitutionQV"); basWriter.IncludeField("SubstitutionTag"); basWriter.IncludeField("InsertionQV"); basWriter.IncludeField("DeletionQV"); basWriter.IncludeField("DeletionTag"); basWriter.IncludeField("WidthInFrames"); basWriter.IncludeField("PreBaseFrames"); basWriter.IncludeField("PulseIndex"); vector<unsigned char> qualityValue, substitutionQV, substitutionTag, insertionQV, deletionQV, deletionTag; vector<HalfWord> widthInFrames, preBaseFrames, pulseIndex; // Just go from 0 .. hole Number basWriter.IncludeField("HoleNumber"); // Fixed to 0. basWriter.IncludeField("HoleXY"); if (usePosMap == false) { basWriter.IncludeField("SimulatedSequenceIndex"); basWriter.IncludeField("SimulatedCoordinate"); } basWriter.SetChangeListID("1.3.0.50.104380"); DNALength numSimulatedBases = 0; FASTASequence sampleSeq; //sampleSeq.length = readLength; int maxRetry = 10000000; int retryNumber = 0; int numReads = 0; int readLength = 0; while (numBasesPerFile == 0 or numSimulatedBases < numBasesPerFile) { DNALength seqIndex, seqPos; if (useLengthModel or fixedLength) { if (useLengthModel) { lengthHistogram.GetRandomLength(readLength); } else { readLength = fixedLength; } } if (refGenomeFileName != "") { FindRandomPos(reference, seqIndex, seqPos, readLength + (outputModel.keyLength - 1)); sampleSeq.seq = &reference[seqIndex].seq[seqPos]; sampleSeq.length = readLength + (outputModel.keyLength - 1); assert(reference[seqIndex].length >= sampleSeq.length); } else if (sourceReadsFileName != "") { if (seqReader.GetNext(sampleSeq) == false) { readsRemain = false; break; } if (sampleSeq.length < outputModel.keyLength) { continue; } // // Now attempt to parse the position from the fasta title. // if (useLengthModel) { int tryNumber = 0; readLength = 0; int maxNTries = 1000; int tryBuffer[5] = {-1,-1,-1,-1,-1}; while (tryNumber < maxNTries and readLength < outputModel.keyLength) { lengthHistogram.GetRandomLength(readLength); readLength = sampleSeq.length = min(sampleSeq.length, (unsigned int) readLength); tryBuffer[tryNumber%5] = readLength; tryNumber++; } if (tryNumber >= maxNTries) { cout << "ERROR. Could not generate a read length greater than the " << outputModel.keyLength << " requried " <<endl << "minimum number of bases using the length model specified in the alchemy." <<endl << "model. Something is either wrong with the model or the context length is too large." <<endl; cout << "The last few tries were: " << tryBuffer[0] << " " << tryBuffer[1] << " " << tryBuffer[2] << " " << tryBuffer[3] << " " << tryBuffer[4] << endl; exit(1); } } readLength = sampleSeq.length; vector<string> tokens; Tokenize(sampleSeq.title, "|", tokens); if (tokens.size() == 4) { seqPos = atoi(tokens[2].c_str()); if (titleTableFileName == "") { seqIndex = 0; } else { int index; titleTable.Lookup(tokens[1], index); seqIndex = index; } } else { seqPos = 0; } } // // If this is the first read printed to the base file, initialize it. // if (numSimulatedBases == 0) { basWriter.Initialize(fileNameStrm.str(), movieNameStrm.str(), Springfield); regionWriter.Initialize(basWriter.pulseDataGroup); } numSimulatedBases += readLength; int p; // create the sample sequence int contextLength = outputModel.keyLength; int contextMiddle = contextLength / 2; string outputString; int nDel = 0; int nIns = 0; // // Simulate to beyond the sample length. // qualityValue.clear(); substitutionQV.clear(); substitutionTag.clear(); insertionQV.clear(); deletionQV.clear(); deletionTag.clear(); pulseIndex.clear(); widthInFrames.clear(); preBaseFrames.clear(); assert(sampleSeq.length > contextMiddle + 1); for (p = contextMiddle; p < sampleSeq.length - contextMiddle - 1; p++) { string refContext; refContext.assign((const char*) &sampleSeq.seq[p-contextMiddle], contextLength); string outputContext; int contextWasFound; OutputSample sample; int i; for (i = 0; i < refContext.size(); i++) { refContext[i] = toupper(refContext[i]); } outputModel.SampleRandomSample(refContext, sample); if (sample.type == OutputSample::Deletion ) { // // There was a deletion. Advance in reference, then output // the base after the deletion. // p++; ++nDel; } int cp; // // Add the sampled context, possibly multiple characters because of an insertion. // for (i = 0; i < sample.nucleotides.size(); i++) { outputString.push_back(sample.nucleotides[i]); qualityValue.push_back(sample.qualities[i].qv[0]); deletionQV.push_back(sample.qualities[i].qv[1]); insertionQV.push_back(sample.qualities[i].qv[2]); substitutionQV.push_back(sample.qualities[i].qv[3]); deletionTag.push_back(sample.qualities[i].tags[0]); substitutionTag.push_back(sample.qualities[i].tags[1]); pulseIndex.push_back(sample.qualities[i].frameValues[0]); preBaseFrames.push_back(sample.qualities[i].frameValues[1]); widthInFrames.push_back(sample.qualities[i].frameValues[2]); } nIns += sample.qualities.size() - 1; } if (outputString.find('N') != outputString.npos or outputString.find('n') != outputString.npos) { cout << "WARNING! The sampled string " << endl << outputString << endl << "should not contain N's, but it seems to. This is being ignored "<<endl << "for now so that simulation may continue, but this shouldn't happen"<<endl << "and is really a bug." << endl; numSimulatedBases -= readLength; continue; } // // Ok, done creating the read, now time to create some quality values!!!!! // SMRTSequence read; read.length = outputString.size(); read.Allocate(read.length); memcpy(read.seq, outputString.c_str(), read.length * sizeof(unsigned char)); assert(qualityValue.size() == read.length * sizeof(unsigned char)); memcpy(read.qual.data, &qualityValue[0], read.length * sizeof(unsigned char)); memcpy(read.deletionQV.data, &deletionQV[0], read.length * sizeof(unsigned char)); memcpy(read.insertionQV.data, &insertionQV[0], read.length * sizeof(unsigned char)); memcpy(read.substitutionQV.data, &substitutionQV[0], read.length * sizeof(unsigned char)); memcpy(read.deletionTag, &deletionTag[0], read.length * sizeof(unsigned char)); memcpy(read.substitutionTag, &substitutionTag[0], read.length * sizeof(unsigned char)); memcpy(read.pulseIndex, &pulseIndex[0], read.length * sizeof(int)); memcpy(read.preBaseFrames, &preBaseFrames[0], read.length * sizeof(HalfWord)); memcpy(read.widthInFrames, &widthInFrames[0], read.length * sizeof(HalfWord)); // // The pulse index for now is just fake data. // int i; for (i = 0; i < read.length; i++) { read.pulseIndex[i] = 1; } read.xy[0] = seqIndex; read.xy[1] = seqPos; read.zmwData.holeNumber = numReads; basWriter.Write(read); // Record where this was simulated from. if (usePosMap == false) { basWriter.WriteSimulatedCoordinate(seqPos); basWriter.WriteSimulatedSequenceIndex(seqIndex); } else { posMapFile << fullMovieName << "/" << numReads << "/0_" << read.length << " " << seqIndex << " "<< seqPos; if (printPercentRepeat) { DNALength nRepeat = sampleSeq.GetRepeatContent(); posMapFile << " " << nRepeat*1.0/sampleSeq.length; } posMapFile << endl; } RegionAnnotation region; region.row[0] = read.zmwData.holeNumber; region.row[1] = 1; region.row[2] = 0; region.row[3] = read.length; region.row[4] = 1000; // Should be enough. regionWriter.Write(region); region.row[1] = 2; // Rewrite for hq region encompassing everything. regionWriter.Write(region); if (sourceReadsFileName != "") { sampleSeq.Free(); } read.Free(); ++numReads; } regionWriter.Finalize(regionTable.columnNames, regionTable.regionTypes, regionTable.regionDescriptions, regionTable.regionSources); basWriter.Close(); numReads = 0; // // The bas writer should automatically flush on closing. // } if (usePosMap) { posMapFile.close(); } for (i = 0; i < reference.size(); i++) { reference[i].Free(); } }
int main(int argc, char* argv[]) { string inputFileName, outputFileName; if (argc < 2) { PrintUsage(); exit(0); } vector<string> inputFileNames; inputFileName = argv[1]; outputFileName = argv[2]; int argi = 3; RegionTable regionTable; string regionsFOFNName = ""; vector<string> regionFileNames; bool splitSubreads = true; bool useCCS = false; int minSubreadLength = 1; while (argi < argc) { if (strcmp(argv[argi], "-regionTable") == 0) { regionsFOFNName = argv[++argi]; } else if (strcmp(argv[argi], "-noSplitSubreads") == 0) { splitSubreads = false; } else if (strcmp(argv[argi], "-minSubreadLength") == 0) { minSubreadLength = atoi(argv[++argi]); } else if (strcmp(argv[argi], "-useccsdenovo") == 0) { useCCS = true; } else { PrintUsage(); cout << "ERROR! Option " << argv[argi] << " is not supported." << endl; } argi++; } if (FileOfFileNames::IsFOFN(inputFileName)) { FileOfFileNames::FOFNToList(inputFileName, inputFileNames); } else { inputFileNames.push_back(inputFileName); } if (regionsFOFNName == "") { regionFileNames = inputFileNames; } else { if (FileOfFileNames::IsFOFN(regionsFOFNName)) { FileOfFileNames::FOFNToList(regionsFOFNName, regionFileNames); } else { regionFileNames.push_back(regionsFOFNName); } } ofstream fastaOut; CrucialOpen(outputFileName, fastaOut); int plsFileIndex; HDFRegionTableReader hdfRegionReader; AfgBasWriter afgWriter; afgWriter.Initialize(outputFileName); for (plsFileIndex = 0; plsFileIndex < inputFileNames.size(); plsFileIndex++) { if (splitSubreads) { hdfRegionReader.Initialize(regionFileNames[plsFileIndex]); hdfRegionReader.ReadTable(regionTable); regionTable.SortTableByHoleNumber(); } ReaderAgglomerate reader; // reader.SkipReadQuality(); // should have been taken care of by *Filter modules if (useCCS){ reader.UseCCS(); } else { reader.IgnoreCCS(); } reader.Initialize(inputFileNames[plsFileIndex]); CCSSequence seq; int seqIndex = 0; int numRecords = 0; vector<ReadInterval> subreadIntervals; while (reader.GetNext(seq)){ ++seqIndex; if (splitSubreads == false) { if (seq.length >= minSubreadLength) { afgWriter.Write(seq); } seq.Free(); continue; } DNALength hqReadStart, hqReadEnd; int score; GetReadTrimCoordinates(seq, seq.zmwData, regionTable, hqReadStart, hqReadEnd, score); subreadIntervals.clear(); // clear old, new intervals are appended. CollectSubreadIntervals(seq,®ionTable, subreadIntervals); if (seq.length == 0 and subreadIntervals.size() > 0) { cout << "WARNING! A high quality interval region exists for a read of length 0." <<endl; cout << " The offending ZMW number is " << seq.zmwData.holeNumber << endl; seq.Free(); continue; } for (int intvIndex = 0; intvIndex < subreadIntervals.size(); intvIndex++) { SMRTSequence subreadSequence; int subreadStart = subreadIntervals[intvIndex].start > hqReadStart ? subreadIntervals[intvIndex].start : hqReadStart; int subreadEnd = subreadIntervals[intvIndex].end < hqReadEnd ? subreadIntervals[intvIndex].end : hqReadEnd; int subreadLength = subreadEnd - subreadStart; if (subreadLength < minSubreadLength) continue; subreadSequence.subreadStart = subreadStart; subreadSequence.subreadEnd = subreadEnd; subreadSequence.ReferenceSubstring(seq, subreadStart, subreadLength); stringstream titleStream; titleStream << seq.title << "/" << subreadIntervals[intvIndex].start << "_" << subreadIntervals[intvIndex].end; subreadSequence.CopyTitle(titleStream.str()); afgWriter.Write(subreadSequence); delete[] subreadSequence.title; } seq.Free(); } reader.Close(); hdfRegionReader.Close(); } }