Example #1
0
void LLIChildTarget::handleLoadSection(bool IsCode) {
  // Read the message data size.
  uint32_t DataSize;
  int rc = ReadBytes(&DataSize, 4);
  (void)rc;
  assert(rc == 4);

  // Read the target load address.
  uint64_t Addr;
  rc = ReadBytes(&Addr, 8);
  assert(rc == 8);
  size_t BufferSize = DataSize - 8;

  if (!RT->isAllocatedMemory(Addr, BufferSize))
    return sendLoadStatus(LLI_Status_NotAllocated);

  // Read section data into previously allocated buffer
  rc = ReadBytes((void*)Addr, BufferSize);
  if (rc != (int)(BufferSize))
    return sendLoadStatus(LLI_Status_IncompleteMsg);

  // If IsCode, mark memory executable
  if (IsCode)
    sys::Memory::InvalidateInstructionCache((void *)Addr, BufferSize);

  // Send MarkLoadComplete message.
  sendLoadStatus(LLI_Status_Success);
}
Example #2
0
void LLIChildTarget::handleExecute() {
  // Read the message data size.
  uint32_t DataSize;
  int rc = ReadBytes(&DataSize, 4);
  (void)rc;
  assert(rc == 4);
  assert(DataSize == 8);

  // Read the target address.
  uint64_t Addr;
  rc = ReadBytes(&Addr, 8);
  assert(rc == 8);

  // Call function
  int32_t Result = -1;
  RT->executeCode(Addr, Result);

  // Send ExecutionResult message.
  sendExecutionComplete(Result);
}
Example #3
0
void LLIChildTarget::handleMessage(LLIMessageType messageType) {
  switch (messageType) {
    case LLI_AllocateSpace:
      handleAllocateSpace();
      break;
    case LLI_LoadCodeSection:
      handleLoadSection(true);
      break;
    case LLI_LoadDataSection:
      handleLoadSection(false);
      break;
    case LLI_Execute:
      handleExecute();
      break;
    case LLI_Terminate:
      RT->stop();
      break;
    default:
      // FIXME: Handle error!
      break;
  }
}
Example #4
0
// Incoming message handlers
void LLIChildTarget::handleAllocateSpace() {
  // Read and verify the message data size.
  uint32_t DataSize;
  int rc = ReadBytes(&DataSize, 4);
  (void)rc;
  assert(rc == 4);
  assert(DataSize == 8);

  // Read the message arguments.
  uint32_t Alignment;
  uint32_t AllocSize;
  rc = ReadBytes(&Alignment, 4);
  assert(rc == 4);
  rc = ReadBytes(&AllocSize, 4);
  assert(rc == 4);

  // Allocate the memory.
  uint64_t Addr;
  RT->allocateSpace(AllocSize, Alignment, Addr);

  // Send AllocationResult message.
  sendAllocationResult(Addr);
}
Example #5
0
File: lli.cpp Project: mapu/llvm
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv, char * const *envp) {
  sys::PrintStackTraceOnErrorSignal();
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext &Context = getGlobalContext();
  atexit(do_shutdown);  // Call llvm_shutdown() on exit.

  // If we have a native target, initialize it to ensure it is linked in and
  // usable by the JIT.
  InitializeNativeTarget();
  InitializeNativeTargetAsmPrinter();
  InitializeNativeTargetAsmParser();

  cl::ParseCommandLineOptions(argc, argv,
                              "llvm interpreter & dynamic compiler\n");

  // If the user doesn't want core files, disable them.
  if (DisableCoreFiles)
    sys::Process::PreventCoreFiles();

  // Load the bitcode...
  SMDiagnostic Err;
  Module *Mod = ParseIRFile(InputFile, Err, Context);
  if (!Mod) {
    Err.print(argv[0], errs());
    return 1;
  }

  // If not jitting lazily, load the whole bitcode file eagerly too.
  std::string ErrorMsg;
  if (NoLazyCompilation) {
    if (Mod->MaterializeAllPermanently(&ErrorMsg)) {
      errs() << argv[0] << ": bitcode didn't read correctly.\n";
      errs() << "Reason: " << ErrorMsg << "\n";
      exit(1);
    }
  }

  EngineBuilder builder(Mod);
  builder.setMArch(MArch);
  builder.setMCPU(MCPU);
  builder.setMAttrs(MAttrs);
  builder.setRelocationModel(RelocModel);
  builder.setCodeModel(CMModel);
  builder.setErrorStr(&ErrorMsg);
  builder.setEngineKind(ForceInterpreter
                        ? EngineKind::Interpreter
                        : EngineKind::JIT);

  // If we are supposed to override the target triple, do so now.
  if (!TargetTriple.empty())
    Mod->setTargetTriple(Triple::normalize(TargetTriple));

  // Enable MCJIT if desired.
  JITMemoryManager *JMM = 0;
  if (UseMCJIT && !ForceInterpreter) {
    builder.setUseMCJIT(true);
    if (RemoteMCJIT)
      JMM = new RecordingMemoryManager();
    else
      JMM = new SectionMemoryManager();
    builder.setJITMemoryManager(JMM);
  } else {
    if (RemoteMCJIT) {
      errs() << "error: Remote process execution requires -use-mcjit\n";
      exit(1);
    }
    builder.setJITMemoryManager(ForceInterpreter ? 0 :
                                JITMemoryManager::CreateDefaultMemManager());
  }

  CodeGenOpt::Level OLvl = CodeGenOpt::Default;
  switch (OptLevel) {
  default:
    errs() << argv[0] << ": invalid optimization level.\n";
    return 1;
  case ' ': break;
  case '0': OLvl = CodeGenOpt::None; break;
  case '1': OLvl = CodeGenOpt::Less; break;
  case '2': OLvl = CodeGenOpt::Default; break;
  case '3': OLvl = CodeGenOpt::Aggressive; break;
  }
  builder.setOptLevel(OLvl);

  TargetOptions Options;
  Options.UseSoftFloat = GenerateSoftFloatCalls;
  if (FloatABIForCalls != FloatABI::Default)
    Options.FloatABIType = FloatABIForCalls;
  if (GenerateSoftFloatCalls)
    FloatABIForCalls = FloatABI::Soft;

  // Remote target execution doesn't handle EH or debug registration.
  if (!RemoteMCJIT) {
    Options.JITExceptionHandling = EnableJITExceptionHandling;
    Options.JITEmitDebugInfo = EmitJitDebugInfo;
    Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk;
  }

  builder.setTargetOptions(Options);

  EE = builder.create();
  if (!EE) {
    if (!ErrorMsg.empty())
      errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";
    else
      errs() << argv[0] << ": unknown error creating EE!\n";
    exit(1);
  }

  // The following functions have no effect if their respective profiling
  // support wasn't enabled in the build configuration.
  EE->RegisterJITEventListener(
                JITEventListener::createOProfileJITEventListener());
  EE->RegisterJITEventListener(
                JITEventListener::createIntelJITEventListener());

  if (!NoLazyCompilation && RemoteMCJIT) {
    errs() << "warning: remote mcjit does not support lazy compilation\n";
    NoLazyCompilation = true;
  }
  EE->DisableLazyCompilation(NoLazyCompilation);

  // If the user specifically requested an argv[0] to pass into the program,
  // do it now.
  if (!FakeArgv0.empty()) {
    InputFile = FakeArgv0;
  } else {
    // Otherwise, if there is a .bc suffix on the executable strip it off, it
    // might confuse the program.
    if (StringRef(InputFile).endswith(".bc"))
      InputFile.erase(InputFile.length() - 3);
  }

  // Add the module's name to the start of the vector of arguments to main().
  InputArgv.insert(InputArgv.begin(), InputFile);

  // Call the main function from M as if its signature were:
  //   int main (int argc, char **argv, const char **envp)
  // using the contents of Args to determine argc & argv, and the contents of
  // EnvVars to determine envp.
  //
  Function *EntryFn = Mod->getFunction(EntryFunc);
  if (!EntryFn) {
    errs() << '\'' << EntryFunc << "\' function not found in module.\n";
    return -1;
  }

  // If the program doesn't explicitly call exit, we will need the Exit
  // function later on to make an explicit call, so get the function now.
  Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context),
                                                    Type::getInt32Ty(Context),
                                                    NULL);

  // Reset errno to zero on entry to main.
  errno = 0;

  // Remote target MCJIT doesn't (yet) support static constructors. No reason
  // it couldn't. This is a limitation of the LLI implemantation, not the
  // MCJIT itself. FIXME.
  //
  // Run static constructors.
  if (!RemoteMCJIT) {
      if (UseMCJIT && !ForceInterpreter) {
        // Give MCJIT a chance to apply relocations and set page permissions.
        EE->finalizeObject();
      }
      EE->runStaticConstructorsDestructors(false);
  }

  if (NoLazyCompilation) {
    for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) {
      Function *Fn = &*I;
      if (Fn != EntryFn && !Fn->isDeclaration())
        EE->getPointerToFunction(Fn);
    }
  }

  int Result;
  if (RemoteMCJIT) {
    RecordingMemoryManager *MM = static_cast<RecordingMemoryManager*>(JMM);
    // Everything is prepared now, so lay out our program for the target
    // address space, assign the section addresses to resolve any relocations,
    // and send it to the target.
    RemoteTarget Target;
    Target.create();

    // Ask for a pointer to the entry function. This triggers the actual
    // compilation.
    (void)EE->getPointerToFunction(EntryFn);

    // Enough has been compiled to execute the entry function now, so
    // layout the target memory.
    layoutRemoteTargetMemory(&Target, MM);

    // Since we're executing in a (at least simulated) remote address space,
    // we can't use the ExecutionEngine::runFunctionAsMain(). We have to
    // grab the function address directly here and tell the remote target
    // to execute the function.
    // FIXME: argv and envp handling.
    uint64_t Entry = (uint64_t)EE->getPointerToFunction(EntryFn);

    DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at "
                 << format("%p", Entry) << "\n");

    if (Target.executeCode(Entry, Result))
      errs() << "ERROR: " << Target.getErrorMsg() << "\n";

    Target.stop();
  } else {
    // Trigger compilation separately so code regions that need to be 
    // invalidated will be known.
    (void)EE->getPointerToFunction(EntryFn);
    // Clear instruction cache before code will be executed.
    if (JMM)
      static_cast<SectionMemoryManager*>(JMM)->invalidateInstructionCache();

    // Run main.
    Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
  }

  // Like static constructors, the remote target MCJIT support doesn't handle
  // this yet. It could. FIXME.
  if (!RemoteMCJIT) {
    // Run static destructors.
    EE->runStaticConstructorsDestructors(true);

    // If the program didn't call exit explicitly, we should call it now.
    // This ensures that any atexit handlers get called correctly.
    if (Function *ExitF = dyn_cast<Function>(Exit)) {
      std::vector<GenericValue> Args;
      GenericValue ResultGV;
      ResultGV.IntVal = APInt(32, Result);
      Args.push_back(ResultGV);
      EE->runFunction(ExitF, Args);
      errs() << "ERROR: exit(" << Result << ") returned!\n";
      abort();
    } else {
      errs() << "ERROR: exit defined with wrong prototype!\n";
      abort();
    }
  }
  return Result;
}