void ws_profile_interval1( const char* wsfile = "ws-test1.root", const char* parName = "mu_susy_sig", double alpha = 0.10, double mu_susy_sig_val = 0., double xmax = -1. ) {




       TFile* wstf = new TFile( wsfile ) ;

       RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") );
       ws->Print() ;






 ////  ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ;

 ////  printf("\n\n\n  ===== SbModel ====================\n\n") ;
 ////  modelConfig->Print() ;







       RooDataSet* rds = (RooDataSet*) ws->obj( "ra2b_observed_rds" ) ;
       printf("\n\n\n  ===== RooDataSet ====================\n\n") ;

       rds->Print() ;
       rds->printMultiline(cout, 1, kTRUE, "") ;









       printf("\n\n\n  ===== Grabbing %s rrv ====================\n\n", parName ) ;
       RooRealVar* rrv_par = ws->var( parName ) ;
       if ( rrv_par == 0x0 ) {
          printf("\n\n\n *** can't find %s in workspace.  Quitting.\n\n\n", parName ) ; return ;
       } else {
          printf(" current value is : %8.3f\n", rrv_par->getVal() ) ; cout << flush ;
       }
       if ( xmax > 0 ) { rrv_par->setMax( xmax ) ; }

       printf("\n\n\n  ===== Grabbing mu_susy_sig rrv ====================\n\n") ;
       RooRealVar* rrv_mu_susy_sig = ws->var("mu_susy_sig") ;
       if ( rrv_mu_susy_sig == 0x0 ) {
          printf("\n\n\n *** can't find mu_susy_sig in workspace.  Quitting.\n\n\n") ; return ;
       }
       if ( strcmp( parName, "mu_susy_sig" ) != 0 ) {
          if ( mu_susy_sig_val >= 0. ) {
             printf(" current value is : %8.3f\n", rrv_mu_susy_sig->getVal() ) ; cout << flush ;
             printf(" fixing to %8.2f.\n", mu_susy_sig_val ) ;
             rrv_mu_susy_sig->setVal( mu_susy_sig_val ) ;
             rrv_mu_susy_sig->setConstant(kTRUE) ;
          } else {
             printf(" current value is : %8.3f\n", rrv_mu_susy_sig->getVal() ) ; cout << flush ;
             printf(" allowing mu_susy_sig to float.\n") ;
             rrv_mu_susy_sig->setConstant(kFALSE) ;
          }
       } else {
          printf("\n\n profile plot parameter is mu_susy_sig.\n") ;
          rrv_mu_susy_sig->setConstant(kFALSE) ;
       }

       printf("\n\n\n  ===== Grabbing likelihood pdf ====================\n\n") ;
       RooAbsPdf* likelihood = ws->pdf("likelihood") ;
       if ( likelihood == 0x0 ) {
          printf("\n\n\n *** can't find likelihood pdf in workspace.  Quitting.\n\n\n") ; return ;
       } else {
          printf("\n\n likelihood pdf: \n\n") ;
          likelihood->Print() ;
       }












       printf("\n\n\n  ===== Doing a fit ====================\n\n") ;

       likelihood->fitTo( *rds ) ;

       double mlValue = rrv_par->getVal() ;
       printf("  Maximum likelihood value of %s : %8.3f +/- %8.3f\n",
            parName, rrv_par->getVal(), rrv_par->getError() ) ;






       printf("\n\n ========== Creating ProfileLikelihoodCalculator\n\n" ) ; cout << flush ;

    // ProfileLikelihoodCalculator plc( *rds, *modelConfig ) ;
       ProfileLikelihoodCalculator plc( *rds, *likelihood, RooArgSet( *rrv_par ) ) ;

       plc.SetTestSize( alpha ) ;
       ConfInterval* plinterval = plc.GetInterval() ;
       double low  = ((LikelihoodInterval*) plinterval)->LowerLimit(*rrv_par) ;
       double high = ((LikelihoodInterval*) plinterval)->UpperLimit(*rrv_par) ;

       printf("\n\n  Limits: %8.3f,  %8.3f\n\n", low, high ) ;








       printf("\n\n ========= Making profile likelihood plot\n\n") ; cout << flush ;

       LikelihoodIntervalPlot* profPlot = new LikelihoodIntervalPlot((LikelihoodInterval*)plinterval) ;

       TCanvas* cplplot = new TCanvas("cplplot","cplplot", 500, 400) ;
       profPlot->Draw() ;
       gPad->SetGridy(1) ;
       char plotname[10000] ;
       sprintf( plotname, "plplot-%s.png", parName ) ;
       cplplot->SaveAs( plotname ) ;



       if ( alpha > 0.3 ) {
          printf("\n\n\n 1 standard-deviation errors for %s : %8.2f   + %8.2f  - %8.2f\n\n\n",
              parName, mlValue, high-mlValue, mlValue-low ) ;
       }



   }
// internal routine to run the inverter
HypoTestInverterResult *
RooStats::HypoTestInvTool::RunInverter(RooWorkspace * w,
                                       const char * modelSBName, const char * modelBName, 
                                       const char * dataName, int type,  int testStatType, 
                                       bool useCLs, int npoints, double poimin, double poimax, 
                                       int ntoys,
                                       bool useNumberCounting,
                                       const char * nuisPriorName ){

   std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;
  
   w->Print();
  
  
   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("StandardHypoTestDemo","Not existing data %s",dataName);
      return 0;
   }
   else 
      std::cout << "Using data set " << dataName << std::endl;
  
   if (mUseVectorStore) { 
      RooAbsData::setDefaultStorageType(RooAbsData::Vector);
      data->convertToVectorStore() ;
   }
  
  
   // get models from WS
   // get the modelConfig out of the file
   ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
   ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
  
   if (!sbModel) {
      Error("StandardHypoTestDemo","Not existing ModelConfig %s",modelSBName);
      return 0;
   }
   // check the model 
   if (!sbModel->GetPdf()) { 
      Error("StandardHypoTestDemo","Model %s has no pdf ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("StandardHypoTestDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetObservables()) {
      Error("StandardHypoTestInvDemo","Model %s has no observables ",modelSBName);
      return 0;
   }
   if (!sbModel->GetSnapshot() ) { 
      Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }
  
   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }
  
   if (!bModel || bModel == sbModel) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return 0;
      double oldval = var->getVal();
      var->setVal(0);
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
   }
   else { 
      if (!bModel->GetSnapshot() ) { 
         Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi and 0 values ",modelBName);
         RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
         if (var) { 
            double oldval = var->getVal();
            var->setVal(0);
            bModel->SetSnapshot( RooArgSet(*var)  );
            var->setVal(oldval);
         }
         else { 
            Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName);
            return 0;
         }         
      }
   }

   // check model  has global observables when there are nuisance pdf
   // for the hybrid case the globobs are not needed
   if (type != 1 ) { 
      bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0);
      bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0);
      if (hasNuisParam && !hasGlobalObs ) {  
         // try to see if model has nuisance parameters first 
         RooAbsPdf * constrPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisanceConstraintPdf_sbmodel");
         if (constrPdf) { 
            Warning("StandardHypoTestInvDemo","Model %s has nuisance parameters but no global observables associated",sbModel->GetName());
            Warning("StandardHypoTestInvDemo","\tThe effect of the nuisance parameters will not be treated correctly ");
         }
      }
   }


  
   // run first a data fit 
  
   const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
   RooRealVar *poi = (RooRealVar*)poiSet->first();
  
   std::cout << "StandardHypoTestInvDemo : POI initial value:   " << poi->GetName() << " = " << poi->getVal()   << std::endl;  
  
   // fit the data first (need to use constraint )
   TStopwatch tw; 

   bool doFit = initialFit;
   if (testStatType == 0 && initialFit == -1) doFit = false;  // case of LEP test statistic
   if (type == 3  && initialFit == -1) doFit = false;         // case of Asymptoticcalculator with nominal Asimov
   double poihat = 0;

   if (minimizerType.size()==0) minimizerType = ROOT::Math::MinimizerOptions::DefaultMinimizerType();
   else 
      ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerType.c_str());
    
   Info("StandardHypoTestInvDemo","Using %s as minimizer for computing the test statistic",
        ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str() );
   
   if (doFit)  { 

      // do the fit : By doing a fit the POI snapshot (for S+B)  is set to the fit value
      // and the nuisance parameters nominal values will be set to the fit value. 
      // This is relevant when using LEP test statistics

      Info( "StandardHypoTestInvDemo"," Doing a first fit to the observed data ");
      RooArgSet constrainParams;
      if (sbModel->GetNuisanceParameters() ) constrainParams.add(*sbModel->GetNuisanceParameters());
      RooStats::RemoveConstantParameters(&constrainParams);
      tw.Start(); 
      RooFitResult * fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(false), Hesse(false),
                                                       Minimizer(minimizerType.c_str(),"Migrad"), Strategy(0), PrintLevel(mPrintLevel), Constrain(constrainParams), Save(true) );
      if (fitres->status() != 0) { 
         Warning("StandardHypoTestInvDemo","Fit to the model failed - try with strategy 1 and perform first an Hesse computation");
         fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(true), Hesse(false),Minimizer(minimizerType.c_str(),"Migrad"), Strategy(1), PrintLevel(mPrintLevel+1), Constrain(constrainParams), Save(true) );
      }
      if (fitres->status() != 0) 
         Warning("StandardHypoTestInvDemo"," Fit still failed - continue anyway.....");
  
  
      poihat  = poi->getVal();
      std::cout << "StandardHypoTestInvDemo - Best Fit value : " << poi->GetName() << " = "  
                << poihat << " +/- " << poi->getError() << std::endl;
      std::cout << "Time for fitting : "; tw.Print(); 
  
      //save best fit value in the poi snapshot 
      sbModel->SetSnapshot(*sbModel->GetParametersOfInterest());
      std::cout << "StandardHypoTestInvo: snapshot of S+B Model " << sbModel->GetName() 
                << " is set to the best fit value" << std::endl;
  
   }

   // print a message in case of LEP test statistics because it affects result by doing or not doing a fit 
   if (testStatType == 0) {
      if (!doFit) 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit is not done and the TS will use the nuisances at the model value");
      else 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit has been done and the TS will use the nuisances at the best fit value");
   }


   // build test statistics and hypotest calculators for running the inverter 
  
   SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf());

   // null parameters must includes snapshot of poi plus the nuisance values 
   RooArgSet nullParams(*sbModel->GetSnapshot());
   if (sbModel->GetNuisanceParameters()) nullParams.add(*sbModel->GetNuisanceParameters());
   if (sbModel->GetSnapshot()) slrts.SetNullParameters(nullParams);
   RooArgSet altParams(*bModel->GetSnapshot());
   if (bModel->GetNuisanceParameters()) altParams.add(*bModel->GetNuisanceParameters());
   if (bModel->GetSnapshot()) slrts.SetAltParameters(altParams);
  
   // ratio of profile likelihood - need to pass snapshot for the alt
   RatioOfProfiledLikelihoodsTestStat 
      ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   if (testStatType == 11) ropl.SetSubtractMLE(true);
   ropl.SetPrintLevel(mPrintLevel);
   ropl.SetMinimizer(minimizerType.c_str());
  
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   if (testStatType == 3) profll.SetOneSided(true);
   if (testStatType == 4) profll.SetSigned(true);
   profll.SetMinimizer(minimizerType.c_str());
   profll.SetPrintLevel(mPrintLevel);

   profll.SetReuseNLL(mOptimize);
   slrts.SetReuseNLL(mOptimize);
   ropl.SetReuseNLL(mOptimize);

   if (mOptimize) { 
      profll.SetStrategy(0);
      ropl.SetStrategy(0);
      ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
   }
  
   if (mMaxPoi > 0) poi->setMax(mMaxPoi);  // increase limit
  
   MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(),*poi); 
   NumEventsTestStat nevtts;

   AsymptoticCalculator::SetPrintLevel(mPrintLevel);
  
   // create the HypoTest calculator class 
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
   else if (type == 1) hc = new HybridCalculator(*data, *bModel, *sbModel);
   else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel);
   else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true);  // for using Asimov data generated with nominal values 
   else {
      Error("StandardHypoTestInvDemo","Invalid - calculator type = %d supported values are only :\n\t\t\t 0 (Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",type);
      return 0;
   }
  
   // set the test statistic 
   TestStatistic * testStat = 0;
   if (testStatType == 0) testStat = &slrts;
   if (testStatType == 1 || testStatType == 11) testStat = &ropl;
   if (testStatType == 2 || testStatType == 3 || testStatType == 4) testStat = &profll;
   if (testStatType == 5) testStat = &maxll;
   if (testStatType == 6) testStat = &nevtts;

   if (testStat == 0) { 
      Error("StandardHypoTestInvDemo","Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) , 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",testStatType);
      return 0;
   }
  
  
   ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
   if (toymcs && (type == 0 || type == 1) ) { 
      // look if pdf is number counting or extended
      if (sbModel->GetPdf()->canBeExtended() ) { 
         if (useNumberCounting)   Warning("StandardHypoTestInvDemo","Pdf is extended: but number counting flag is set: ignore it ");
      }
      else { 
         // for not extended pdf
         if (!useNumberCounting  )  { 
            int nEvents = data->numEntries();
            Info("StandardHypoTestInvDemo","Pdf is not extended: number of events to generate taken  from observed data set is %d",nEvents);
            toymcs->SetNEventsPerToy(nEvents);
         }
         else {
            Info("StandardHypoTestInvDemo","using a number counting pdf");
            toymcs->SetNEventsPerToy(1);
         }
      }

      toymcs->SetTestStatistic(testStat);
    
      if (data->isWeighted() && !mGenerateBinned) { 
         Info("StandardHypoTestInvDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set mGenerateBinned to true\n",data->numEntries(), data->sumEntries());
      }
      toymcs->SetGenerateBinned(mGenerateBinned);
  
      toymcs->SetUseMultiGen(mOptimize);
    
      if (mGenerateBinned &&  sbModel->GetObservables()->getSize() > 2) { 
         Warning("StandardHypoTestInvDemo","generate binned is activated but the number of ovservable is %d. Too much memory could be needed for allocating all the bins",sbModel->GetObservables()->getSize() );
      }

      // set the random seed if needed
      if (mRandomSeed >= 0) RooRandom::randomGenerator()->SetSeed(mRandomSeed); 
    
   }
  
  
   if (type == 1) { 
      HybridCalculator *hhc = dynamic_cast<HybridCalculator*> (hc);
      assert(hhc);
    
      hhc->SetToys(ntoys,ntoys/mNToysRatio); // can use less ntoys for b hypothesis 
    
      // remove global observables from ModelConfig (this is probably not needed anymore in 5.32)
      bModel->SetGlobalObservables(RooArgSet() );
      sbModel->SetGlobalObservables(RooArgSet() );
    
    
      // check for nuisance prior pdf in case of nuisance parameters 
      if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) {

         // fix for using multigen (does not work in this case)
         toymcs->SetUseMultiGen(false);
         ToyMCSampler::SetAlwaysUseMultiGen(false);

         RooAbsPdf * nuisPdf = 0; 
         if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName);
         // use prior defined first in bModel (then in SbModel)
         if (!nuisPdf)  { 
            Info("StandardHypoTestInvDemo","No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the model");
            if (bModel->GetPdf() && bModel->GetObservables() ) 
               nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
            else 
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestInvDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return 0;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestInvDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestInvDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         hhc->ForcePriorNuisanceAlt(*nuisPdf);
         hhc->ForcePriorNuisanceNull(*nuisPdf);
      
      
      }
   } 
   else if (type == 2 || type == 3) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hc)->SetOneSided(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestInvDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
   }
   else if (type == 0 || type == 1) 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys/mNToysRatio); 

  
   // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
  
  
  
   HypoTestInverter calc(*hc);
   calc.SetConfidenceLevel(0.95);
  
  
   calc.UseCLs(useCLs);
   calc.SetVerbose(true);
  
   // can speed up using proof-lite
   if (mUseProof && mNWorkers > 1) { 
      ProofConfig pc(*w, mNWorkers, "", kFALSE);
      toymcs->SetProofConfig(&pc);    // enable proof
   }
  
  
   if (npoints > 0) {
      if (poimin > poimax) { 
         // if no min/max given scan between MLE and +4 sigma 
         poimin = int(poihat);
         poimax = int(poihat +  4 * poi->getError());
      }
      std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
      calc.SetFixedScan(npoints,poimin,poimax);
   }
   else { 
      //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
      std::cout << "Doing an  automatic scan  in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
   }
  
   tw.Start();
   HypoTestInverterResult * r = calc.GetInterval();
   std::cout << "Time to perform limit scan \n";
   tw.Print();
  
   if (mRebuild) {
      calc.SetCloseProof(1);
      tw.Start();
      SamplingDistribution * limDist = calc.GetUpperLimitDistribution(true,mNToyToRebuild);
      std::cout << "Time to rebuild distributions " << std::endl;
      tw.Print();
    
      if (limDist) { 
         std::cout << "expected up limit " << limDist->InverseCDF(0.5) << " +/- " 
                   << limDist->InverseCDF(0.16) << "  " 
                   << limDist->InverseCDF(0.84) << "\n"; 
      
         //update r to a new updated result object containing the rebuilt expected p-values distributions
         // (it will not recompute the expected limit)
         if (r) delete r;  // need to delete previous object since GetInterval will return a cloned copy
         r = calc.GetInterval();
      
      }
      else 
         std::cout << "ERROR : failed to re-build distributions " << std::endl; 
   }
  
   return r;
}
Example #3
0
void StandardBayesianNumericalDemo(const char* infile = "",
                                   const char* workspaceName = "combined",
                                   const char* modelConfigName = "ModelConfig",
                                   const char* dataName = "obsData") {

   // option definitions
   double confLevel = optBayes.confLevel;
   TString integrationType = optBayes.integrationType;
   int nToys = optBayes.nToys;
   bool scanPosterior = optBayes.scanPosterior;
   int nScanPoints = optBayes.nScanPoints;
   int intervalType = optBayes.intervalType;
   int  maxPOI =  optBayes.maxPOI;
   double  nSigmaNuisance = optBayes.nSigmaNuisance;



   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist

   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


   // -------------------------------------------------------
   // Tutorial starts here
   // -------------------------------------------------------

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // ------------------------------------------
   // create and use the BayesianCalculator
   // to find and plot the 95% credible interval
   // on the parameter of interest as specified
   // in the model config

   // before we do that, we must specify our prior
   // it belongs in the model config, but it may not have
   // been specified
   RooUniform prior("prior","",*mc->GetParametersOfInterest());
   w->import(prior);
   mc->SetPriorPdf(*w->pdf("prior"));

   // do without systematics
   //mc->SetNuisanceParameters(RooArgSet() );
   if (nSigmaNuisance > 0) {
      RooAbsPdf * pdf = mc->GetPdf();
      assert(pdf);
      RooFitResult * res = pdf->fitTo(*data, Save(true), Minimizer(ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str()), Hesse(true),
                                       PrintLevel(ROOT::Math::MinimizerOptions::DefaultPrintLevel()-1) );

      res->Print();
      RooArgList nuisPar(*mc->GetNuisanceParameters());
      for (int i = 0; i < nuisPar.getSize(); ++i) {
         RooRealVar * v = dynamic_cast<RooRealVar*> (&nuisPar[i] );
         assert( v);
         v->setMin( TMath::Max( v->getMin(), v->getVal() - nSigmaNuisance * v->getError() ) );
         v->setMax( TMath::Min( v->getMax(), v->getVal() + nSigmaNuisance * v->getError() ) );
         std::cout << "setting interval for nuisance  " << v->GetName() << " : [ " << v->getMin() << " , " << v->getMax() << " ]" << std::endl;
      }
   }


   BayesianCalculator bayesianCalc(*data,*mc);
   bayesianCalc.SetConfidenceLevel(confLevel); // 95% interval

   // default of the calculator is central interval.  here use shortest , central or upper limit depending on input
   // doing a shortest interval might require a longer time since it requires a scan of the posterior function
   if (intervalType == 0)  bayesianCalc.SetShortestInterval(); // for shortest interval
   if (intervalType == 1)  bayesianCalc.SetLeftSideTailFraction(0.5); // for central interval
   if (intervalType == 2)  bayesianCalc.SetLeftSideTailFraction(0.); // for upper limit

   if (!integrationType.IsNull() ) {
      bayesianCalc.SetIntegrationType(integrationType); // set integrationType
      bayesianCalc.SetNumIters(nToys); // set number of iterations (i.e. number of toys for MC integrations)
   }

   // in case of toyMC make a nuisance pdf
   if (integrationType.Contains("TOYMC") ) {
      RooAbsPdf * nuisPdf = RooStats::MakeNuisancePdf(*mc, "nuisance_pdf");
      cout << "using TOYMC integration: make nuisance pdf from the model " << std::endl;
      nuisPdf->Print();
      bayesianCalc.ForceNuisancePdf(*nuisPdf);
      scanPosterior = true; // for ToyMC the posterior is scanned anyway so used given points
   }

   // compute interval by scanning the posterior function
   if (scanPosterior)
      bayesianCalc.SetScanOfPosterior(nScanPoints);

   RooRealVar* poi = (RooRealVar*) mc->GetParametersOfInterest()->first();
   if (maxPOI != -999 &&  maxPOI > poi->getMin())
      poi->setMax(maxPOI);


   SimpleInterval* interval = bayesianCalc.GetInterval();

   // print out the interval on the first Parameter of Interest
   cout << "\n>>>> RESULT : " << confLevel*100 << "% interval on " << poi->GetName()<<" is : ["<<
      interval->LowerLimit() << ", "<<
      interval->UpperLimit() <<"] "<<endl;


   // make a plot
   // since plotting may take a long time (it requires evaluating
   // the posterior in many points) this command will speed up
   // by reducing the number of points to plot - do 50

   // ignore errors of PDF if is zero
   RooAbsReal::setEvalErrorLoggingMode(RooAbsReal::Ignore) ;


   cout << "\nDrawing plot of posterior function....." << endl;

   // always plot using numer of scan points
   bayesianCalc.SetScanOfPosterior(nScanPoints);

   RooPlot * plot = bayesianCalc.GetPosteriorPlot();
   plot->Draw();

}
void StandardHypoTestDemo(const char* infile = "",
                          const char* workspaceName = "combined",
                          const char* modelSBName = "ModelConfig",
                          const char* modelBName = "",
                          const char* dataName = "obsData", 
                          int calcType = 0, // 0 freq 1 hybrid, 2 asymptotic
                          int testStatType = 3,   // 0 LEP, 1 TeV, 2 LHC, 3 LHC - one sided
                          int ntoys = 5000, 
                          bool useNC = false, 
                          const char * nuisPriorName = 0)
{

/*

  Other Parameter to pass in tutorial
  apart from standard for filename, ws, modelconfig and data

  type = 0 Freq calculator 
  type = 1 Hybrid calculator
  type = 2 Asymptotic calculator  

  testStatType = 0 LEP
  = 1 Tevatron 
  = 2 Profile Likelihood
  = 3 Profile Likelihood one sided (i.e. = 0 if mu < mu_hat)

  ntoys:         number of toys to use 

  useNumberCounting:  set to true when using number counting events 

  nuisPriorName:   name of prior for the nnuisance. This is often expressed as constraint term in the global model
  It is needed only when using the HybridCalculator (type=1)
  If not given by default the prior pdf from ModelConfig is used. 

  extra options are available as global paramwters of the macro. They major ones are: 
 
  generateBinned       generate binned data sets for toys (default is false) - be careful not to activate with 
  a too large (>=3) number of observables 
  nToyRatio            ratio of S+B/B toys (default is 2)
  printLevel
  
*/

   // disable - can cause some problems
   //ToyMCSampler::SetAlwaysUseMultiGen(true);

   SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(true);
   ProfileLikelihoodTestStat::SetAlwaysReuseNLL(true);
   RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(true);

   //RooRandom::randomGenerator()->SetSeed(0);

   // to change minimizers 
   // ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
   // ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
   // ROOT::Math::MinimizerOptions::SetDefaultTolerance(1);

  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file 
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
  const char* filename = "";
  if (!strcmp(infile,""))
    filename = "results/example_combined_GaussExample_model.root";
  else
    filename = infile;
  // Check if example input file exists
  TFile *file = TFile::Open(filename);

  // if input file was specified byt not found, quit
  if(!file && strcmp(infile,"")){
    cout <<"file not found" << endl;
    return;
  } 

  // if default file not found, try to create it
  if(!file ){
    // Normally this would be run on the command line
    cout <<"will run standard hist2workspace example"<<endl;
    gROOT->ProcessLine(".! prepareHistFactory .");
    gROOT->ProcessLine(".! hist2workspace config/example.xml");
    cout <<"\n\n---------------------"<<endl;
    cout <<"Done creating example input"<<endl;
    cout <<"---------------------\n\n"<<endl;
  }

  // now try to access the file again
  file = TFile::Open(filename);
  if(!file){
    // if it is still not there, then we can't continue
    cout << "Not able to run hist2workspace to create example input" <<endl;
    return;
  }

  
  /////////////////////////////////////////////////////////////
  // Tutorial starts here
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }
  w->Print();

  // get the modelConfig out of the file
  ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);


  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !sbModel){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }
  // make b model
  ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);


   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }


  if (!bModel ) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("B_only"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return;
      double oldval = var->getVal();
      var->setVal(0);
      //bModel->SetSnapshot( RooArgSet(*var, *w->var("lumi"))  );
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
  }
  
   if (!sbModel->GetSnapshot() || poiValue > 0) { 
      Info("StandardHypoTestDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      RooRealVar * var = dynamic_cast<RooRealVar*>(sbModel->GetParametersOfInterest()->first());
      if (!var) return;
      double oldval = var->getVal();
      if (poiValue > 0)  var->setVal(poiValue);
      //sbModel->SetSnapshot( RooArgSet(*var, *w->var("lumi") ) );
      sbModel->SetSnapshot( RooArgSet(*var) );
      if (poiValue > 0) var->setVal(oldval);
      //sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }

   



   // part 1, hypothesis testing 
   SimpleLikelihoodRatioTestStat * slrts = new SimpleLikelihoodRatioTestStat(*bModel->GetPdf(), *sbModel->GetPdf());
   // null parameters must includes snapshot of poi plus the nuisance values 
   RooArgSet nullParams(*bModel->GetSnapshot());
   if (bModel->GetNuisanceParameters()) nullParams.add(*bModel->GetNuisanceParameters());
   
   slrts->SetNullParameters(nullParams);
   RooArgSet altParams(*sbModel->GetSnapshot());
   if (sbModel->GetNuisanceParameters()) altParams.add(*sbModel->GetNuisanceParameters());
   slrts->SetAltParameters(altParams);


   ProfileLikelihoodTestStat * profll = new ProfileLikelihoodTestStat(*bModel->GetPdf());


   RatioOfProfiledLikelihoodsTestStat * 
      ropl = new RatioOfProfiledLikelihoodsTestStat(*bModel->GetPdf(), *sbModel->GetPdf(), sbModel->GetSnapshot());
   ropl->SetSubtractMLE(false);

   if (testStatType == 3) profll->SetOneSidedDiscovery(1);
   profll->SetPrintLevel(printLevel);

   // profll.SetReuseNLL(mOptimize);
   // slrts.SetReuseNLL(mOptimize);
   // ropl.SetReuseNLL(mOptimize);

   AsymptoticCalculator::SetPrintLevel(printLevel);

   HypoTestCalculatorGeneric *  hypoCalc = 0;
   // note here Null is B and Alt is S+B
   if (calcType == 0) hypoCalc = new  FrequentistCalculator(*data, *sbModel, *bModel);
   else if (calcType == 1) hypoCalc= new  HybridCalculator(*data, *sbModel, *bModel);
   else if (calcType == 2) hypoCalc= new  AsymptoticCalculator(*data, *sbModel, *bModel);

   if (calcType == 0) 
       ((FrequentistCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio);
   if (calcType == 1) 
       ((HybridCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio);
   if (calcType == 2 ) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hypoCalc)->SetOneSidedDiscovery(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
      

   }


   // check for nuisance prior pdf in case of nuisance parameters 
   if (calcType == 1 && (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() )) {
         RooAbsPdf * nuisPdf = 0; 
         if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName);
         // use prior defined first in bModel (then in SbModel)
         if (!nuisPdf)  { 
            Info("StandardHypoTestDemo","No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the   model");
            if (bModel->GetPdf() && bModel->GetObservables() ) 
               nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
            else 
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceAlt(*nuisPdf);
         ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceNull(*nuisPdf);
   }

   // hypoCalc->ForcePriorNuisanceAlt(*sbModel->GetPriorPdf());
   // hypoCalc->ForcePriorNuisanceNull(*bModel->GetPriorPdf());

   ToyMCSampler * sampler = (ToyMCSampler *)hypoCalc->GetTestStatSampler();

   if (sampler && (calcType == 0 || calcType == 1) ) { 

      // look if pdf is number counting or extended
      if (sbModel->GetPdf()->canBeExtended() ) { 
         if (useNC)   Warning("StandardHypoTestDemo","Pdf is extended: but number counting flag is set: ignore it ");
      }
      else {
         // for not extended pdf
         if (!useNC)  { 
            int nEvents = data->numEntries();
            Info("StandardHypoTestDemo","Pdf is not extended: number of events to generate taken  from observed data set is %d",nEvents);
            sampler->SetNEventsPerToy(nEvents);
         }
         else {
            Info("StandardHypoTestDemo","using a number counting pdf");
            sampler->SetNEventsPerToy(1);
         }
      }
      
      if (data->isWeighted() && !generateBinned) { 
         Info("StandardHypoTestDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set generateBinned to true\n",data->numEntries(), data->sumEntries());
      }
      if (generateBinned)  sampler->SetGenerateBinned(generateBinned);


      // set the test statistic
      if (testStatType == 0) sampler->SetTestStatistic(slrts); 
      if (testStatType == 1) sampler->SetTestStatistic(ropl); 
      if (testStatType == 2 || testStatType == 3) sampler->SetTestStatistic(profll); 

   }
   
   HypoTestResult *  htr = hypoCalc->GetHypoTest();
   htr->SetPValueIsRightTail(true);
   htr->SetBackgroundAsAlt(false);
   htr->Print(); // how to get meaningfull CLs at this point?

   delete sampler;
   delete slrts; 
   delete ropl; 
   delete profll;

   if (calcType != 2) {
      HypoTestPlot * plot = new HypoTestPlot(*htr,100);
      plot->SetLogYaxis(true);
      plot->Draw();
   }
   else { 
      std::cout << "Asymptotic results " << std::endl;
      
   }

   // look at expected significances 
   // found median of S+B distribution
   if (calcType != 2) { 

      SamplingDistribution * altDist = htr->GetAltDistribution();   
      HypoTestResult htExp("Expected Result");
      htExp.Append(htr);
      // find quantiles in alt (S+B) distribution 
      double p[5];
      double q[5];
      for (int i = 0; i < 5; ++i) { 
         double sig = -2  + i;
         p[i] = ROOT::Math::normal_cdf(sig,1);
      }
      std::vector<double> values = altDist->GetSamplingDistribution();
      TMath::Quantiles( values.size(), 5, &values[0], q, p, false);  

      for (int i = 0; i < 5; ++i) { 
         htExp.SetTestStatisticData( q[i] );
         double sig = -2  + i;      
         std::cout << " Expected p -value and significance at " << sig << " sigma = " 
                   << htExp.NullPValue() << " significance " << htExp.Significance() << " sigma " << std::endl; 
         
      }
   }
   else { 
      // case of asymptotic calculator 
      for (int i = 0; i < 5; ++i) { 
         double sig = -2  + i;      
         // sigma is inverted here 
         double pval = AsymptoticCalculator::GetExpectedPValues( htr->NullPValue(), htr->AlternatePValue(), -sig, false);
         std::cout << " Expected p -value and significance at " << sig << " sigma = " 
                   << pval << " significance " << ROOT::Math::normal_quantile_c(pval,1) << " sigma " << std::endl; 
         
      }
   }

}
   void ws_constrained_profile3D( const char* wsfile = "rootfiles/ws-data-unblind.root",
                                   const char* new_poi_name = "n_M234_H4_3b",
                                   int npoiPoints = 20,
                                   double poiMinVal = 0.,
                                   double poiMaxVal = 20.,
                                   double constraintWidth = 1.5,
                                   double ymax = 10.,
                                   int verbLevel=0 ) {


     gStyle->SetOptStat(0) ;

     //--- make output directory.

     char command[10000] ;
     sprintf( command, "basename %s", wsfile ) ;
     TString wsfilenopath = gSystem->GetFromPipe( command ) ;
     wsfilenopath.ReplaceAll(".root","") ;
     char outputdirstr[1000] ;
     sprintf( outputdirstr, "outputfiles/scans-%s", wsfilenopath.Data() ) ;
     TString outputdir( outputdirstr ) ;


     printf("\n\n Creating output directory: %s\n\n", outputdir.Data() ) ;
     sprintf(command, "mkdir -p %s", outputdir.Data() ) ;
     gSystem->Exec( command ) ;


     //--- Tell RooFit to shut up about anything less important than an ERROR.
      RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR) ;



       if ( verbLevel > 0 ) { printf("\n\n Verbose level : %d\n\n", verbLevel) ; }


       TFile* wstf = new TFile( wsfile ) ;

       RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") );

       if ( verbLevel > 0 ) { ws->Print() ; }






       RooDataSet* rds = (RooDataSet*) ws->obj( "ra2b_observed_rds" ) ;

       if ( verbLevel > 0 ) {
          printf("\n\n\n  ===== RooDataSet ====================\n\n") ;
          rds->Print() ;
          rds->printMultiline(cout, 1, kTRUE, "") ;
       }





       ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ;
       RooAbsPdf* likelihood = modelConfig->GetPdf() ;

       RooRealVar* rrv_mu_susy_all0lep = ws->var("mu_susy_all0lep") ;
       if ( rrv_mu_susy_all0lep == 0x0 ) {
          printf("\n\n\n *** can't find mu_susy_all0lep in workspace.  Quitting.\n\n\n") ;
          return ;
       }





       //-- do BG only.
       rrv_mu_susy_all0lep->setVal(0.) ;
       rrv_mu_susy_all0lep->setConstant( kTRUE ) ;










       //-- do a prefit.

       printf("\n\n\n ====== Pre fit with unmodified nll var.\n\n") ;

       RooFitResult* dataFitResultSusyFixed = likelihood->fitTo(*rds, Save(true),Hesse(false),Minos(false),Strategy(1),PrintLevel(verbLevel));
       int dataSusyFixedFitCovQual = dataFitResultSusyFixed->covQual() ;
       if ( dataSusyFixedFitCovQual < 2 ) { printf("\n\n\n *** Failed fit!  Cov qual %d.  Quitting.\n\n", dataSusyFixedFitCovQual ) ; return ; }
       double dataFitSusyFixedNll = dataFitResultSusyFixed->minNll() ;

       if ( verbLevel > 0 ) {
          dataFitResultSusyFixed->Print("v") ;
       }

       printf("\n\n Nll value, from fit result : %.3f\n\n", dataFitSusyFixedNll ) ;

       delete dataFitResultSusyFixed ;






       //-- Construct the new POI parameter.
       RooAbsReal* new_poi_rar(0x0) ;

       new_poi_rar = ws->var( new_poi_name ) ;
       if ( new_poi_rar == 0x0 ) {
          printf("\n\n New POI %s is not a variable.  Trying function.\n\n", new_poi_name ) ;
          new_poi_rar = ws->function( new_poi_name ) ;
          if ( new_poi_rar == 0x0 ) {
             printf("\n\n New POI %s is not a function.  I quit.\n\n", new_poi_name ) ;
             return ;
          }
       } else {
          printf("\n\n     New POI %s is a variable with current value %.1f.\n\n", new_poi_name, new_poi_rar->getVal() ) ;
       }








       if ( npoiPoints <=0 ) {
          printf("\n\n Quitting now.\n\n" ) ;
          return ;
       }


       double startPoiVal = new_poi_rar->getVal() ;



      //--- The RooNLLVar is NOT equivalent to what minuit uses.
  //   RooNLLVar* nll = new RooNLLVar("nll","nll", *likelihood, *rds ) ;
  //   printf("\n\n Nll value, from construction : %.3f\n\n", nll->getVal() ) ;

      //--- output of createNLL IS what minuit uses, so use that.
       RooAbsReal* nll = likelihood -> createNLL( *rds, Verbose(true) ) ;

       RooRealVar* rrv_poiValue = new RooRealVar( "poiValue", "poiValue", 0., -10000., 10000. ) ;
   /// rrv_poiValue->setVal( poiMinVal ) ;
   /// rrv_poiValue->setConstant(kTRUE) ;

       RooRealVar* rrv_constraintWidth = new RooRealVar("constraintWidth","constraintWidth", 0.1, 0.1, 1000. ) ;
       rrv_constraintWidth -> setVal( constraintWidth ) ;
       rrv_constraintWidth -> setConstant(kTRUE) ;




       if ( verbLevel > 0 ) {
          printf("\n\n ======= debug likelihood print\n\n") ;
          likelihood->Print("v") ;
          printf("\n\n ======= debug nll print\n\n") ;
          nll->Print("v") ;
       }






    //----------------------------------------------------------------------------------------------

       RooMinuit* rminuit( 0x0 ) ;


       RooMinuit* rminuit_uc = new RooMinuit( *nll  ) ;

       rminuit_uc->setPrintLevel(verbLevel-1) ;
       rminuit_uc->setNoWarn() ;

       rminuit_uc->migrad() ;
       rminuit_uc->hesse() ;

       RooFitResult* rfr_uc = rminuit_uc->fit("mr") ;

       double floatParInitVal[10000] ;
       char   floatParName[10000][100] ;
       int nFloatParInitVal(0) ;
       RooArgList ral_floats = rfr_uc->floatParsFinal() ;
       TIterator* floatParIter = ral_floats.createIterator() ;
       {
          RooRealVar* par ;
          while ( (par = (RooRealVar*) floatParIter->Next()) ) {
             sprintf( floatParName[nFloatParInitVal], "%s", par->GetName() ) ;
             floatParInitVal[nFloatParInitVal] = par->getVal() ;
             nFloatParInitVal++ ;
          }
       }



     //-------

       printf("\n\n Unbiased best value for new POI %s is : %7.1f\n\n", new_poi_rar->GetName(), new_poi_rar->getVal() ) ;
       double best_poi_val = new_poi_rar->getVal() ;

       char minuit_formula[10000] ;
       sprintf( minuit_formula, "%s+%s*(%s-%s)*(%s-%s)",
         nll->GetName(),
         rrv_constraintWidth->GetName(),
         new_poi_rar->GetName(), rrv_poiValue->GetName(),
         new_poi_rar->GetName(), rrv_poiValue->GetName()
          ) ;

       printf("\n\n Creating new minuit variable with formula: %s\n\n", minuit_formula ) ;
       RooFormulaVar* new_minuit_var = new RooFormulaVar("new_minuit_var", minuit_formula,
           RooArgList( *nll,
                       *rrv_constraintWidth,
                       *new_poi_rar, *rrv_poiValue,
                       *new_poi_rar, *rrv_poiValue
                       ) ) ;

       printf("\n\n Current value is %.2f\n\n",
            new_minuit_var->getVal() ) ;

       rminuit = new RooMinuit( *new_minuit_var ) ;


       RooAbsReal* plot_var = nll ;

       printf("\n\n Current value is %.2f\n\n",
            plot_var->getVal() ) ;




       rminuit->setPrintLevel(verbLevel-1) ;
       if ( verbLevel <=0 ) { rminuit->setNoWarn() ; }

    //----------------------------------------------------------------------------------------------

       //-- If POI range is -1 to -1, automatically determine the range using the set value.

       if ( poiMinVal < 0. && poiMaxVal < 0. ) {

          printf("\n\n Automatic determination of scan range.\n\n") ;

          if ( startPoiVal <= 0. ) {
             printf("\n\n *** POI starting value zero or negative %g.  Quit.\n\n\n", startPoiVal ) ;
             return ;
          }

          poiMinVal = startPoiVal - 3.5 * sqrt(startPoiVal) ;
          poiMaxVal = startPoiVal + 6.0 * sqrt(startPoiVal) ;

          if ( poiMinVal < 0. ) { poiMinVal = 0. ; }

          printf("    Start val = %g.   Scan range:   %g  to  %g\n\n", startPoiVal, poiMinVal, poiMaxVal ) ;


       }



    //----------------------------------------------------------------------------------------------


       double poiVals_scanDown[1000] ;
       double nllVals_scanDown[1000] ;

       //-- Do scan down from best value.

       printf("\n\n +++++ Starting scan down from best value.\n\n") ;

       double minNllVal(1.e9) ;

       for ( int poivi=0; poivi < npoiPoints/2 ; poivi++ ) {

          ////double poiValue = poiMinVal + poivi*(poiMaxVal-poiMinVal)/(1.*(npoiPoints-1)) ;
          double poiValue = best_poi_val - poivi*(best_poi_val-poiMinVal)/(1.*(npoiPoints/2-1)) ;

          rrv_poiValue -> setVal( poiValue ) ;
          rrv_poiValue -> setConstant( kTRUE ) ;


       //+++++++++++++++++++++++++++++++++++

          rminuit->migrad() ;
          rminuit->hesse() ;
          RooFitResult* rfr = rminuit->save() ;

       //+++++++++++++++++++++++++++++++++++


          if ( verbLevel > 0 ) { rfr->Print("v") ; }


          float fit_minuit_var_val = rfr->minNll() ;

          printf(" %02d : poi constraint = %.2f : allvars : MinuitVar, createNLL, PV, POI :    %.5f   %.5f   %.5f   %.5f\n",
                poivi, rrv_poiValue->getVal(), fit_minuit_var_val, nll->getVal(), plot_var->getVal(), new_poi_rar->getVal() ) ;
          cout << flush ;



          poiVals_scanDown[poivi] = new_poi_rar->getVal() ;
          nllVals_scanDown[poivi] = plot_var->getVal() ;

          if ( nllVals_scanDown[poivi] < minNllVal ) { minNllVal = nllVals_scanDown[poivi] ; }

          delete rfr ;


       } // poivi


       printf("\n\n +++++ Resetting floats to best fit values.\n\n") ;

       for ( int pi=0; pi<nFloatParInitVal; pi++ ) {
          RooRealVar* par = ws->var( floatParName[pi] ) ;
          par->setVal( floatParInitVal[pi] ) ;
       } // pi.

       printf("\n\n +++++ Starting scan up from best value.\n\n") ;

      //-- Now do scan up.

       double poiVals_scanUp[1000] ;
       double nllVals_scanUp[1000] ;

       for ( int poivi=0; poivi < npoiPoints/2 ; poivi++ ) {

          double poiValue = best_poi_val + poivi*(poiMaxVal-best_poi_val)/(1.*(npoiPoints/2-1)) ;

          rrv_poiValue -> setVal( poiValue ) ;
          rrv_poiValue -> setConstant( kTRUE ) ;


       //+++++++++++++++++++++++++++++++++++

          rminuit->migrad() ;
          rminuit->hesse() ;
          RooFitResult* rfr = rminuit->save() ;

       //+++++++++++++++++++++++++++++++++++


          if ( verbLevel > 0 ) { rfr->Print("v") ; }


          float fit_minuit_var_val = rfr->minNll() ;

          printf(" %02d : poi constraint = %.2f : allvars : MinuitVar, createNLL, PV, POI :    %.5f   %.5f   %.5f   %.5f\n",
                poivi, rrv_poiValue->getVal(), fit_minuit_var_val, nll->getVal(), plot_var->getVal(), new_poi_rar->getVal() ) ;
          cout << flush ;

          poiVals_scanUp[poivi] = new_poi_rar->getVal() ;
          nllVals_scanUp[poivi] = plot_var->getVal() ;

          if ( nllVals_scanUp[poivi] < minNllVal ) { minNllVal = nllVals_scanUp[poivi] ; }

          delete rfr ;


       } // poivi





       double poiVals[1000] ;
       double nllVals[1000] ;

       int pointCount(0) ;
       for ( int pi=0; pi<npoiPoints/2; pi++ ) {
          poiVals[pi] = poiVals_scanDown[(npoiPoints/2-1)-pi] ;
          nllVals[pi] = nllVals_scanDown[(npoiPoints/2-1)-pi] ;
          pointCount++ ;
       }
       for ( int pi=1; pi<npoiPoints/2; pi++ ) {
          poiVals[pointCount] = poiVals_scanUp[pi] ;
          nllVals[pointCount] = nllVals_scanUp[pi] ;
          pointCount++ ;
       }
       npoiPoints = pointCount ;

       printf("\n\n --- TGraph arrays:\n") ;
       for ( int i=0; i<npoiPoints; i++ ) {
          printf("  %2d : poi = %6.1f, nll = %g\n", i, poiVals[i], nllVals[i] ) ;
       }
       printf("\n\n") ;

       double nllDiffVals[1000] ;

       double poiAtMinlnL(-1.) ;
       double poiAtMinusDelta2(-1.) ;
       double poiAtPlusDelta2(-1.) ;
       for ( int poivi=0; poivi < npoiPoints ; poivi++ ) {
          nllDiffVals[poivi] = 2.*(nllVals[poivi] - minNllVal) ;
          double poiValue = poiMinVal + poivi*(poiMaxVal-poiMinVal)/(1.*npoiPoints) ;
          if ( nllDiffVals[poivi] < 0.01 ) { poiAtMinlnL = poiValue ; }
          if ( poiAtMinusDelta2 < 0. && nllDiffVals[poivi] < 2.5 ) { poiAtMinusDelta2 = poiValue ; }
          if ( poiAtMinlnL > 0. && poiAtPlusDelta2 < 0. && nllDiffVals[poivi] > 2.0 ) { poiAtPlusDelta2 = poiValue ; }
       } // poivi

       printf("\n\n Estimates for poi at delta ln L = -2, 0, +2:  %g ,   %g ,   %g\n\n", poiAtMinusDelta2, poiAtMinlnL, poiAtPlusDelta2 ) ;




      //--- Main canvas

       TCanvas* cscan = (TCanvas*) gDirectory->FindObject("cscan") ;
       if ( cscan == 0x0 ) {
          printf("\n Creating canvas.\n\n") ;
          cscan = new TCanvas("cscan","Delta nll") ;
       }


       char gname[1000] ;

       TGraph* graph = new TGraph( npoiPoints, poiVals, nllDiffVals ) ;
       sprintf( gname, "scan_%s", new_poi_name ) ;
       graph->SetName( gname ) ;

       double poiBest(-1.) ;
       double poiMinus1stdv(-1.) ;
       double poiPlus1stdv(-1.) ;
       double poiMinus2stdv(-1.) ;
       double poiPlus2stdv(-1.) ;
       double twoDeltalnLMin(1e9) ;

       int nscan(1000) ;
       for ( int xi=0; xi<nscan; xi++ ) {

          double x = poiVals[0] + xi*(poiVals[npoiPoints-1]-poiVals[0])/(nscan-1) ;

          double twoDeltalnL = graph -> Eval( x, 0, "S" ) ;

          if ( poiMinus1stdv < 0. && twoDeltalnL < 1.0 ) { poiMinus1stdv = x ; printf(" set m1 : %d, x=%g, 2dnll=%g\n", xi, x, twoDeltalnL) ;}
          if ( poiMinus2stdv < 0. && twoDeltalnL < 4.0 ) { poiMinus2stdv = x ; printf(" set m2 : %d, x=%g, 2dnll=%g\n", xi, x, twoDeltalnL) ;}
          if ( twoDeltalnL < twoDeltalnLMin ) { poiBest = x ; twoDeltalnLMin = twoDeltalnL ; }
          if ( twoDeltalnLMin < 0.3 && poiPlus1stdv < 0. && twoDeltalnL > 1.0 ) { poiPlus1stdv = x ; printf(" set p1 : %d, x=%g, 2dnll=%g\n", xi, x, twoDeltalnL) ;}
          if ( twoDeltalnLMin < 0.3 && poiPlus2stdv < 0. && twoDeltalnL > 4.0 ) { poiPlus2stdv = x ; printf(" set p2 : %d, x=%g, 2dnll=%g\n", xi, x, twoDeltalnL) ;}

          if ( xi%100 == 0 ) { printf( " %4d : poi=%6.2f,  2DeltalnL = %6.2f\n", xi, x, twoDeltalnL ) ; }

       }
       printf("\n\n POI estimate :  %g  +%g  -%g    [%g,%g],   two sigma errors: +%g  -%g   [%g,%g]\n\n",
               poiBest,
               (poiPlus1stdv-poiBest), (poiBest-poiMinus1stdv), poiMinus1stdv, poiPlus1stdv,
               (poiPlus2stdv-poiBest), (poiBest-poiMinus2stdv), poiMinus2stdv, poiPlus2stdv
               ) ;

       printf(" %s val,pm1sig,pm2sig: %7.2f  %7.2f  %7.2f  %7.2f  %7.2f\n",
          new_poi_name, poiBest, (poiPlus1stdv-poiBest), (poiBest-poiMinus1stdv), (poiPlus2stdv-poiBest), (poiBest-poiMinus2stdv) ) ;

       char htitle[1000] ;
       sprintf(htitle, "%s profile likelihood scan: -2ln(L/Lm)", new_poi_name ) ;
       TH1F* hscan = new TH1F("hscan", htitle, 10, poiMinVal, poiMaxVal ) ;
       hscan->SetMinimum(0.) ;
       hscan->SetMaximum(ymax) ;


       hscan->DrawCopy() ;
       graph->SetLineColor(4) ;
       graph->SetLineWidth(3) ;
       graph->Draw("CP") ;
       gPad->SetGridx(1) ;
       gPad->SetGridy(1) ;
       cscan->Update() ;

       TLine* line = new TLine() ;
       line->SetLineColor(2) ;
       line->DrawLine(poiMinVal, 1., poiPlus1stdv, 1.) ;
       line->DrawLine(poiMinus1stdv,0., poiMinus1stdv, 1.) ;
       line->DrawLine(poiPlus1stdv ,0., poiPlus1stdv , 1.) ;

       TText* text = new TText() ;
       text->SetTextSize(0.04) ;
       char tstring[1000] ;

       sprintf( tstring, "%s = %.1f +%.1f -%.1f", new_poi_name, poiBest, (poiPlus1stdv-poiBest), (poiBest-poiMinus1stdv) ) ;
       text -> DrawTextNDC( 0.15, 0.85, tstring ) ;

       sprintf( tstring, "68%% interval [%.1f,  %.1f]", poiMinus1stdv, poiPlus1stdv ) ;
       text -> DrawTextNDC( 0.15, 0.78, tstring ) ;


       char hname[1000] ;
       sprintf( hname, "hscanout_%s", new_poi_name ) ;
       TH1F* hsout = new TH1F( hname,"scan results",4,0.,4.) ;
       double obsVal(-1.) ;
       hsout->SetBinContent(1, obsVal ) ;
       hsout->SetBinContent(2, poiPlus1stdv ) ;
       hsout->SetBinContent(3, poiBest ) ;
       hsout->SetBinContent(4, poiMinus1stdv ) ;
       TAxis* xaxis = hsout->GetXaxis() ;
       xaxis->SetBinLabel(1,"Observed val.") ;
       xaxis->SetBinLabel(2,"Model+1sd") ;
       xaxis->SetBinLabel(3,"Model") ;
       xaxis->SetBinLabel(4,"Model-1sd") ;

       char outrootfile[10000] ;
       sprintf( outrootfile, "%s/scan-ff-%s.root", outputdir.Data(), new_poi_name ) ;

       char outpdffile[10000] ;
       sprintf( outpdffile, "%s/scan-ff-%s.pdf", outputdir.Data(), new_poi_name ) ;

       cscan->Update() ; cscan->Draw() ;

       printf("\n Saving %s\n", outpdffile ) ;
       cscan->SaveAs( outpdffile ) ;



     //--- save in root file

       printf("\n Saving %s\n", outrootfile ) ;
       TFile fout(outrootfile,"recreate") ;
       graph->Write() ;
       hsout->Write() ;
       fout.Close() ;

       delete ws ;
       wstf->Close() ;

   }