void LoopSubdiv::weightOneRing(SDVertex *destVert, SDVertex *vert,
	float beta) const
{
	// Put _vert_ one-ring in _Pring_
	u_int valence = vert->valence();
	SDVertex **Vring = (SDVertex **)alloca(valence * sizeof(SDVertex *));
	SDVertex **VR = Vring;
	// Get one ring vertices for interior vertex
	SDFace *face = vert->startFace;
	bool uvSplit = false;
	do {
		SDVertex *v = face->v[face->vnum(vert->P)];
		if (v->u != vert->u || v->v != vert->v)
			uvSplit = true;
		SDVertex *v2 = face->nextVert(vert->P);
		float vu = v2->u;
		float vv = v2->v;
		*VR++ = v2;
		face = face->nextFace(vert->P);
		v2 = face->prevVert(vert->P);
		if (vu != v2->u || vv != v2->v)
			uvSplit = true;
	} while (face != vert->startFace);

	Point P((1 - valence * beta) * vert->P);
	float u = (1 - valence * beta) * vert->u;
	float v = (1 - valence * beta) * vert->v;
	Normal N((1 - valence * beta) * vert->n);

	for (u_int i = 0; i < valence; ++i) {
		P += beta * Vring[i]->P;
		u += beta * Vring[i]->u;
		v += beta * Vring[i]->v;
		N += beta * Vring[i]->n;
	}

	destVert->P = P;
	if (uvSplit) {
		destVert->u = vert->u;
		destVert->v = vert->v;
	} else {
		destVert->u = u;
		destVert->v = v;
	}
	destVert->n = N;
}
Example #2
0
// LoopSubdiv Inline Functions
inline int SDVertex::valence() {
    SDFace *f = startFace;
    if (!boundary) {
        // Compute valence of interior vertex
        int nf = 1;
        while ((f = f->nextFace(this)) != startFace)
            ++nf;
        return nf;
    }
    else {
        // Compute valence of boundary vertex
        int nf = 1;
        while ((f = f->nextFace(this)) != NULL)
            ++nf;
        f = startFace;
        while ((f = f->prevFace(this)) != NULL)
            ++nf;
        return nf+1;
    }
}
void SDVertex::oneRing(Point *Pring) const
{
	if (!boundary) {
		// Get one ring vertices for interior vertex
		SDFace *face = startFace;
		do {
			*Pring++ = face->nextVert(P)->P;
			face = face->nextFace(P);
		} while (face != startFace);
	} else {
		// Get one ring vertices for boundary vertex
		SDFace *face = startFace, *f2;
		while ((f2 = face->nextFace(P)) != NULL)
			face = f2;
		*Pring++ = face->nextVert(P)->P;
		do {
			*Pring++ = face->prevVert(P)->P;
			face = face->prevFace(P);
		} while (face != NULL);
	}
}
Example #4
0
void LoopSubdiv::Refine(vector<Reference<Shape> > &refined) const {
    vector<SDFace *> f = faces;
    vector<SDVertex *> v = vertices;
    MemoryArena arena;
    for (int i = 0; i < nLevels; ++i) {
        // Update _f_ and _v_ for next level of subdivision
        vector<SDFace *> newFaces;
        vector<SDVertex *> newVertices;

        // Allocate next level of children in mesh tree
        for (uint32_t j = 0; j < v.size(); ++j) {
            v[j]->child = arena.Alloc<SDVertex>();
            v[j]->child->regular = v[j]->regular;
            v[j]->child->boundary = v[j]->boundary;
            newVertices.push_back(v[j]->child);
        }
        for (uint32_t j = 0; j < f.size(); ++j)
            for (int k = 0; k < 4; ++k) {
                f[j]->children[k] = arena.Alloc<SDFace>();
                newFaces.push_back(f[j]->children[k]);
            }

        // Update vertex positions and create new edge vertices

        // Update vertex positions for even vertices
        for (uint32_t j = 0; j < v.size(); ++j) {
            if (!v[j]->boundary) {
                // Apply one-ring rule for even vertex
                if (v[j]->regular)
                    v[j]->child->P = weightOneRing(v[j], 1.f/16.f);
                else
                    v[j]->child->P = weightOneRing(v[j], beta(v[j]->valence()));
            }
            else {
                // Apply boundary rule for even vertex
                v[j]->child->P = weightBoundary(v[j], 1.f/8.f);
            }
        }

        // Compute new odd edge vertices
        map<SDEdge, SDVertex *> edgeVerts;
        for (uint32_t j = 0; j < f.size(); ++j) {
            SDFace *face = f[j];
            for (int k = 0; k < 3; ++k) {
                // Compute odd vertex on _k_th edge
                SDEdge edge(face->v[k], face->v[NEXT(k)]);
                SDVertex *vert = edgeVerts[edge];
                if (!vert) {
                    // Create and initialize new odd vertex
                    vert = arena.Alloc<SDVertex>();
                    newVertices.push_back(vert);
                    vert->regular = true;
                    vert->boundary = (face->f[k] == NULL);
                    vert->startFace = face->children[3];

                    // Apply edge rules to compute new vertex position
                    if (vert->boundary) {
                        vert->P =  0.5f * edge.v[0]->P;
                        vert->P += 0.5f * edge.v[1]->P;
                    }
                    else {
                        vert->P =  3.f/8.f * edge.v[0]->P;
                        vert->P += 3.f/8.f * edge.v[1]->P;
                        vert->P += 1.f/8.f * face->otherVert(edge.v[0], edge.v[1])->P;
                        vert->P += 1.f/8.f *
                            face->f[k]->otherVert(edge.v[0], edge.v[1])->P;
                    }
                    edgeVerts[edge] = vert;
                }
            }
        }

        // Update new mesh topology

        // Update even vertex face pointers
        for (uint32_t j = 0; j < v.size(); ++j) {
            SDVertex *vert = v[j];
            int vertNum = vert->startFace->vnum(vert);
            vert->child->startFace =
                vert->startFace->children[vertNum];
        }

        // Update face neighbor pointers
        for (uint32_t j = 0; j < f.size(); ++j) {
            SDFace *face = f[j];
            for (int k = 0; k < 3; ++k) {
                // Update children _f_ pointers for siblings
                face->children[3]->f[k] = face->children[NEXT(k)];
                face->children[k]->f[NEXT(k)] = face->children[3];

                // Update children _f_ pointers for neighbor children
                SDFace *f2 = face->f[k];
                face->children[k]->f[k] =
                    f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
                f2 = face->f[PREV(k)];
                face->children[k]->f[PREV(k)] =
                    f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
            }
        }

        // Update face vertex pointers
        for (uint32_t j = 0; j < f.size(); ++j) {
            SDFace *face = f[j];
            for (int k = 0; k < 3; ++k) {
                // Update child vertex pointer to new even vertex
                face->children[k]->v[k] = face->v[k]->child;

                // Update child vertex pointer to new odd vertex
                SDVertex *vert = edgeVerts[SDEdge(face->v[k], face->v[NEXT(k)])];
                face->children[k]->v[NEXT(k)] = vert;
                face->children[NEXT(k)]->v[k] = vert;
                face->children[3]->v[k] = vert;
            }
        }

        // Prepare for next level of subdivision
        f = newFaces;
        v = newVertices;
    }
    // Push vertices to limit surface
    PbrtPoint *Plimit = new PbrtPoint[v.size()];
    for (uint32_t i = 0; i < v.size(); ++i) {
        if (v[i]->boundary)
            Plimit[i] =  weightBoundary(v[i], 1.f/5.f);
        else
            Plimit[i] =  weightOneRing(v[i], gamma(v[i]->valence()));
    }
    for (uint32_t i = 0; i < v.size(); ++i)
        v[i]->P = Plimit[i];

    // Compute vertex tangents on limit surface
    vector<Normal> Ns;
    Ns.reserve(v.size());
    vector<PbrtPoint> Pring(16, PbrtPoint());
    for (uint32_t i = 0; i < v.size(); ++i) {
        SDVertex *vert = v[i];
        Vector S(0,0,0), T(0,0,0);
        int valence = vert->valence();
        if (valence > (int)Pring.size())
            Pring.resize(valence);
        vert->oneRing(&Pring[0]);
        if (!vert->boundary) {
            // Compute tangents of interior face
            for (int k = 0; k < valence; ++k) {
                S += cosf(2.f*M_PI*k/valence) * Vector(Pring[k]);
                T += sinf(2.f*M_PI*k/valence) * Vector(Pring[k]);
            }
        } else {
            // Compute tangents of boundary face
            S = Pring[valence-1] - Pring[0];
            if (valence == 2)
                T = Vector(Pring[0] + Pring[1] - 2 * vert->P);
            else if (valence == 3)
                T = Pring[1] - vert->P;
            else if (valence == 4) // regular
                T = Vector(-1*Pring[0] + 2*Pring[1] + 2*Pring[2] +
                           -1*Pring[3] + -2*vert->P);
            else {
                float theta = M_PI / float(valence-1);
                T = Vector(sinf(theta) * (Pring[0] + Pring[valence-1]));
                for (int k = 1; k < valence-1; ++k) {
                    float wt = (2*cosf(theta) - 2) * sinf((k) * theta);
                    T += Vector(wt * Pring[k]);
                }
                T = -T;
            }
        }
        Ns.push_back(Normal(Cross(S, T)));
    }

    // Create _TriangleMesh_ from subdivision mesh
    uint32_t ntris = uint32_t(f.size());
    int *verts = new int[3*ntris];
    int *vp = verts;
    uint32_t totVerts = uint32_t(v.size());
    map<SDVertex *, int> usedVerts;
    for (uint32_t i = 0; i < totVerts; ++i)
        usedVerts[v[i]] = i;
    for (uint32_t i = 0; i < ntris; ++i) {
        for (int j = 0; j < 3; ++j) {
            *vp = usedVerts[f[i]->v[j]];
            ++vp;
        }
    }
    ParamSet paramSet;
    paramSet.AddInt("indices", verts, 3*ntris);
    paramSet.AddPoint("P", Plimit, totVerts);
    paramSet.AddNormal("N", &Ns[0], int(Ns.size()));
    refined.push_back(CreateTriangleMeshShape(ObjectToWorld,
            WorldToObject, ReverseOrientation, paramSet));
    delete[] verts;
    delete[] Plimit;
}
Example #5
0
// LoopSubdiv Method Definitions
LoopSubdiv::LoopSubdiv(const Transform *o2w, const Transform *w2o,
                       bool ro, int nfaces, int nvertices,
                       const int *vertexIndices, const PbrtPoint *P, int nl)
    : Shape(o2w, w2o, ro) {
    nLevels = nl;
    // Allocate _LoopSubdiv_ vertices and faces
    int i;
    SDVertex *verts = new SDVertex[nvertices];
    for (i = 0; i < nvertices; ++i) {
        verts[i] = SDVertex(P[i]);
        vertices.push_back(&verts[i]);
    }
    SDFace *fs = new SDFace[nfaces];
    for (i = 0; i < nfaces; ++i)
        faces.push_back(&fs[i]);

    // Set face to vertex pointers
    const int *vp = vertexIndices;
    for (i = 0; i < nfaces; ++i) {
        SDFace *f = faces[i];
        for (int j = 0; j < 3; ++j) {
            SDVertex *v = vertices[vp[j]];
            f->v[j] = v;
            v->startFace = f;
        }
        vp += 3;
    }

    // Set neighbor pointers in _faces_
    set<SDEdge> edges;
    for (i = 0; i < nfaces; ++i) {
        SDFace *f = faces[i];
        for (int edgeNum = 0; edgeNum < 3; ++edgeNum) {
            // Update neighbor pointer for _edgeNum_
            int v0 = edgeNum, v1 = NEXT(edgeNum);
            SDEdge e(f->v[v0], f->v[v1]);
            if (edges.find(e) == edges.end()) {
                // Handle new edge
                e.f[0] = f;
                e.f0edgeNum = edgeNum;
                edges.insert(e);
            }
            else {
                // Handle previously seen edge
                e = *edges.find(e);
                e.f[0]->f[e.f0edgeNum] = f;
                f->f[edgeNum] = e.f[0];
                edges.erase(e);
            }
        }
    }

    // Finish vertex initialization
    for (i = 0; i < nvertices; ++i) {
        SDVertex *v = vertices[i];
        SDFace *f = v->startFace;
        do {
            f = f->nextFace(v);
        } while (f && f != v->startFace);
        v->boundary = (f == NULL);
        if (!v->boundary && v->valence() == 6)
            v->regular = true;
        else if (v->boundary && v->valence() == 4)
            v->regular = true;
        else
            v->regular = false;
    }
}
void LoopSubdiv::weightBoundary(SDVertex *destVert,  SDVertex *vert,
	float beta) const
{
	// Put _vert_ one-ring in _Pring_
	u_int valence = vert->valence();
	if (displacementMapSharpBoundary) {
		destVert->P = vert->P;
		destVert->u = vert->u;
		destVert->v = vert->v;
		destVert->n = vert->n;
		return;
	}
	SDVertex **Vring = (SDVertex **)alloca(valence * sizeof(SDVertex *));
	SDVertex **VR = Vring;
	// Get one ring vertices for boundary vertex
	SDFace *face = vert->startFace, *f2;
	// Go to the last face in the list
	while ((f2 = face->nextFace(vert->P)) != NULL)
		face = f2;
	// Add the last vertex (on the boundary)
	*VR++ = face->nextVert(vert->P);
	// Add all vertices up to the first one (on the boundary)
	bool uvSplit = false;
	do {
		SDVertex *v = face->v[face->vnum(vert->P)];
		if (v->u != vert->u || v->v != vert->v)
			uvSplit = true;
		SDVertex *v2 = face->prevVert(vert->P);
		float vu = v2->u;
		float vv = v2->v;
		*VR++ = v2;
		face = face->prevFace(vert->P);
		if (face) {
			v2 = face->nextVert(vert->P);
			if (vu != v2->u || vv != v2->v)
				uvSplit = true;
		}
	} while (face != NULL);

	Point P((1 - 2 * beta) * vert->P);
	P += beta * Vring[0]->P;
	P += beta * Vring[valence - 1]->P;
	destVert->P = P;

	if (uvSplit) {
		destVert->u = vert->u;
		destVert->v = vert->v;
	} else {
		float u = (1.f - 2.f * beta) * vert->u;
		float v = (1.f - 2.f * beta) * vert->v;
		u += beta * (Vring[0]->u + Vring[valence - 1]->u);
		v += beta * (Vring[0]->v + Vring[valence - 1]->v);
		destVert->u = u;
		destVert->v = v;
	}

	Normal N((1 - 2 * beta) * vert->n);
	N += beta * Vring[0]->n;
	N += beta * Vring[valence - 1]->n;
	destVert->n = N;
}
void LoopSubdiv::ApplyDisplacementMap(const vector<SDVertex *> verts) const
{
	// Dade - apply the displacement map
	SHAPE_LOG(name, LUX_INFO,LUX_NOERROR) << "Applying displacement map to " << verts.size() << " vertices";
	SpectrumWavelengths swl;
	swl.Sample(.5f);

	for (u_int i = 0; i < verts.size(); i++) {
		SDVertex *v = verts[i];
		// Special use of the child member to detect that
		// the vertex has already been displaced
		if (v->child == v)
			continue;
		Vector dpdu, dpdv;
		CoordinateSystem(Vector(v->n), &dpdu, &dpdv);
		Vector displacement(v->n);

		SDFace *face = v->startFace;
		u_int nf = 0;
		float dl = 0.f;
		vector<SDVertex *> vlist;
		vlist.reserve(v->valence());
		if (v->boundary) {
			do {
				SDVertex *vv = face->v[face->vnum(v->P)];
				DifferentialGeometry dg(v->P, v->n, dpdu, dpdv,
					Normal(0, 0, 0), Normal(0, 0, 0),
					vv->u, vv->v, NULL);

				dl += displacementMap->Evaluate(swl, dg);
				++nf;
				if (vv->child != vv) {
					vlist.push_back(vv);
					vv->child = vv;
				}
				face = face->nextFace(v->P);
			} while (face);
			face = v->startFace->prevFace(v->P);
			while (face) {
				SDVertex *vv = face->v[face->vnum(v->P)];
				DifferentialGeometry dg(v->P, v->n, dpdu, dpdv,
					Normal(0, 0, 0), Normal(0, 0, 0),
					vv->u, vv->v, NULL);

				dl += displacementMap->Evaluate(swl, dg);
				++nf;
				if (vv->child != vv) {
					vlist.push_back(vv);
					vv->child = vv;
				}
				face = face->prevFace(v->P);
			}
		} else {
			do {
				SDVertex *vv = face->v[face->vnum(v->P)];
				DifferentialGeometry dg(v->P, v->n, dpdu, dpdv,
					Normal(0, 0, 0), Normal(0, 0, 0),
					vv->u, vv->v, NULL);

				dl += displacementMap->Evaluate(swl, dg);
				++nf;
				if (vv->child != vv) {
					vlist.push_back(vv);
					vv->child = vv;
				}
				face = face->nextFace(v->P);
			} while (face != v->startFace);
		}
		dl = (dl * displacementMapScale / nf + displacementMapOffset);
		// Average the displacement
		displacement *= dl;

		// Apply displacement to all vertices in the list
		for (u_int j = 0; j < vlist.size(); ++j)
			vlist[j]->P += displacement;
	}
}
// LoopSubdiv Method Definitions
LoopSubdiv::LoopSubdiv(u_int nfaces, u_int nvertices, const int *vertexIndices,
	const Point *P, const float *uv, const Normal *n, u_int nl,
	const boost::shared_ptr<Texture<float> > &dismap, float dmscale,
	float dmoffset, bool dmnormalsmooth, bool dmsharpboundary,
	bool normalsplit, const string &sname)
	: displacementMap(dismap),
	displacementMapScale(dmscale), displacementMapOffset(dmoffset),
	displacementMapNormalSmooth(dmnormalsmooth),
	displacementMapSharpBoundary(dmsharpboundary),
	name(sname)
{
	nLevels = nl;
	hasUV = (uv != NULL);
	normalSplit = normalsplit && n != NULL;

	// Allocate _LoopSubdiv_ vertices and faces
	SDVertex *verts = new SDVertex[nvertices];
	vertices.reserve(nvertices);
	for (u_int i = 0; i < nvertices; ++i) {
		if (hasUV)
			verts[i] = SDVertex(P[i], uv[2 * i], uv[2 * i + 1]);
		else
			verts[i] = SDVertex(P[i]);
		if (normalSplit)
			verts[i].n = n[i];

		vertices.push_back(&verts[i]);
	}

	SDFace *fs = new SDFace[nfaces];
	faces.reserve(nfaces);
	for (u_int i = 0; i < nfaces; ++i)
		faces.push_back(&fs[i]);
	// Set face to vertex pointers
	const int *vp = vertexIndices;
	for (u_int i = 0; i < nfaces; ++i) {
		SDFace *f = faces[i];
		for (u_int j = 0; j < 3; ++j) {
			SDVertex *v = vertices[vp[j]];
			f->v[j] = v;
			f->f[j] = NULL;
			f->children[j] = NULL;
			v->startFace = f;
		}
		f->children[3] = NULL;
		vp += 3;
	}

	// Set neighbor pointers in _faces_
	set<SDEdge> edges;
	for (u_int i = 0; i < nfaces; ++i) {
		SDFace *f = faces[i];
		for (u_int edgeNum = 0; edgeNum < 3; ++edgeNum) {
			// Update neighbor pointer for _edgeNum_
			u_int v0 = edgeNum, v1 = NEXT(edgeNum);
			Normal n0, n1;
			SDEdge e(f->v[v0], f->v[v1]);
			if (edges.find(e) == edges.end()) {
				// Handle new edge
				e.f[0] = f;
				e.f0edgeNum = edgeNum;
				edges.insert(e);
			} else {
				// Handle previously-seen edge
				e = *edges.find(e);
				e.f[0]->f[e.f0edgeNum] = f;
				f->f[edgeNum] = e.f[0];
				// NOTE - lordcrc - check winding of 
				// other face is opposite of the 
				// current face, otherwise we have 
				// inconsistent winding
				u_int otherv0 = e.f[0]->vnum(f->v[v0]->P);
				u_int otherv1 = e.f[0]->vnum(f->v[v1]->P);
				if (PREV(otherv0) != otherv1) {
					SHAPE_LOG(name, LUX_ERROR,LUX_CONSISTENCY)<< "Inconsistent vertex winding in mesh, aborting subdivision.";
					// prevent subdivision
					nLevels = 0;
					return;
				};
				edges.erase(e);
			}
		}
	}

	// Finish vertex initialization
	for (u_int i = 0; i < nvertices; ++i) {
		SDVertex *v = vertices[i];
		SDFace *f = v->startFace;
		do {
			f = f->nextFace(v->P);
		} while (f && f != v->startFace);
		v->boundary = (f == NULL);
		if (!v->boundary && v->valence() == 6)
			v->regular = true;
		else if (v->boundary && v->valence() == 4)
			v->regular = true;
		else
			v->regular = false;
	}
}