void PNS_LINE::Walkaround( const SHAPE_LINE_CHAIN& aObstacle, SHAPE_LINE_CHAIN& aPath, bool aCw ) const { SHAPE_LINE_CHAIN walk, post; Walkaround( aObstacle, aPath, walk, post, aCw ); aPath.Append( walk ); aPath.Append( post ); aPath.Simplify(); }
void PNS_LINE::DragCorner ( const VECTOR2I& aP, int aIndex, int aSnappingThreshold ) { SHAPE_LINE_CHAIN path; VECTOR2I snapped = snapDraggedCorner( m_line, aP, aIndex, aSnappingThreshold ); if( aIndex == 0 ) path = dragCornerInternal( m_line.Reverse(), snapped ).Reverse(); else if ( aIndex == m_line.SegmentCount() ) path = dragCornerInternal( m_line, snapped ); else { // fixme: awkward behaviour for "outwards" drags path = dragCornerInternal( m_line.Slice( 0, aIndex ), snapped ); SHAPE_LINE_CHAIN path_rev = dragCornerInternal( m_line.Slice( aIndex, -1 ).Reverse(), snapped ).Reverse(); path.Append( path_rev ); } path.Simplify(); m_line = path; }
PNS_WALKAROUND::WalkaroundStatus PNS_WALKAROUND::singleStep( PNS_LINE& aPath, bool aWindingDirection ) { optional<PNS_OBSTACLE>& current_obs = aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1]; bool& prev_recursive = aWindingDirection ? m_recursiveCollision[0] : m_recursiveCollision[1]; if( !current_obs ) return DONE; SHAPE_LINE_CHAIN path_pre[2], path_walk[2], path_post[2]; VECTOR2I last = aPath.GetCLine().CPoint( -1 ); if( ( current_obs->hull ).PointInside( last ) ) { m_recursiveBlockageCount++; if( m_recursiveBlockageCount < 3 ) aPath.GetLine().Append( current_obs->hull.NearestPoint( last ) ); else { aPath = aPath.ClipToNearestObstacle( m_world ); return STUCK; } } aPath.NewWalkaround( current_obs->hull, path_pre[0], path_walk[0], path_post[0], aWindingDirection ); aPath.NewWalkaround( current_obs->hull, path_pre[1], path_walk[1], path_post[1], !aWindingDirection ); int len_pre = path_walk[0].Length(); int len_alt = path_walk[1].Length(); PNS_LINE walk_path( aPath, path_walk[1] ); bool alt_collides = m_world->CheckColliding( &walk_path, m_solids_only ? PNS_ITEM::SOLID : PNS_ITEM::ANY ); SHAPE_LINE_CHAIN pnew; if( !m_forceSingleDirection && len_alt < len_pre && !alt_collides && !prev_recursive ) { pnew = path_pre[1]; pnew.Append( path_walk[1] ); pnew.Append( path_post[1] ); current_obs = nearestObstacle( PNS_LINE( aPath, path_post[1] ) ); prev_recursive = false; } else { pnew = path_pre[0]; pnew.Append( path_walk[0] ); pnew.Append( path_post[0] ); current_obs = nearestObstacle( PNS_LINE( aPath, path_walk[0] ) ); if( !current_obs ) { prev_recursive = false; current_obs = nearestObstacle( PNS_LINE( aPath, path_post[0] ) ); } else prev_recursive = true; } pnew.Simplify(); aPath.SetShape( pnew ); return IN_PROGRESS; }
PNS_WALKAROUND::WalkaroundStatus PNS_WALKAROUND::Route( const PNS_LINE& aInitialPath, PNS_LINE& aWalkPath, bool aOptimize ) { PNS_LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WalkaroundStatus s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; while( m_iteration < m_iteration_limit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.GetCLine().Length(); int len_ccw = path_ccw.GetCLine().Length(); if( m_forceLongerPath ) aWalkPath = (len_cw > len_ccw ? path_cw : path_ccw); else aWalkPath = (len_cw < len_ccw ? path_cw : path_ccw); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iteration_limit ) { int len_cw = path_cw.GetCLine().Length(); int len_ccw = path_ccw.GetCLine().Length(); if( m_forceLongerPath ) aWalkPath = (len_cw > len_ccw ? path_cw : path_ccw); else aWalkPath = (len_cw < len_ccw ? path_cw : path_ccw); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.GetCLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { // PNSDisplayDebugLine( l, 3 ); l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.SetWorld( m_world ); aWalkPath.GetLine().Simplify(); WalkaroundStatus st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( aOptimize && st == DONE ) PNS_OPTIMIZER::Optimize( &aWalkPath, PNS_OPTIMIZER::MERGE_OBTUSE, m_world ); return st; }
WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath, bool aWindingDirection ) { optional<OBSTACLE>& current_obs = aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1]; bool& prev_recursive = aWindingDirection ? m_recursiveCollision[0] : m_recursiveCollision[1]; if( !current_obs ) return DONE; SHAPE_LINE_CHAIN path_pre[2], path_walk[2], path_post[2]; VECTOR2I last = aPath.CPoint( -1 ); if( ( current_obs->m_hull ).PointInside( last ) || ( current_obs->m_hull ).PointOnEdge( last ) ) { m_recursiveBlockageCount++; if( m_recursiveBlockageCount < 3 ) aPath.Line().Append( current_obs->m_hull.NearestPoint( last ) ); else { aPath = aPath.ClipToNearestObstacle( m_world ); return DONE; } } aPath.Walkaround( current_obs->m_hull, path_pre[0], path_walk[0], path_post[0], aWindingDirection ); aPath.Walkaround( current_obs->m_hull, path_pre[1], path_walk[1], path_post[1], !aWindingDirection ); #ifdef DEBUG m_logger.NewGroup( aWindingDirection ? "walk-cw" : "walk-ccw", m_iteration ); m_logger.Log( &path_walk[0], 0, "path-walk" ); m_logger.Log( &path_pre[0], 1, "path-pre" ); m_logger.Log( &path_post[0], 4, "path-post" ); m_logger.Log( ¤t_obs->m_hull, 2, "hull" ); m_logger.Log( current_obs->m_item, 3, "item" ); #endif int len_pre = path_walk[0].Length(); int len_alt = path_walk[1].Length(); LINE walk_path( aPath, path_walk[1] ); bool alt_collides = static_cast<bool>( m_world->CheckColliding( &walk_path, m_itemMask ) ); SHAPE_LINE_CHAIN pnew; if( !m_forceLongerPath && len_alt < len_pre && !alt_collides && !prev_recursive ) { pnew = path_pre[1]; pnew.Append( path_walk[1] ); pnew.Append( path_post[1] ); if( !path_post[1].PointCount() || !path_walk[1].PointCount() ) current_obs = nearestObstacle( LINE( aPath, path_pre[1] ) ); else current_obs = nearestObstacle( LINE( aPath, path_post[1] ) ); prev_recursive = false; } else { pnew = path_pre[0]; pnew.Append( path_walk[0] ); pnew.Append( path_post[0] ); if( !path_post[0].PointCount() || !path_walk[0].PointCount() ) current_obs = nearestObstacle( LINE( aPath, path_pre[0] ) ); else current_obs = nearestObstacle( LINE( aPath, path_walk[0] ) ); if( !current_obs ) { prev_recursive = false; current_obs = nearestObstacle( LINE( aPath, path_post[0] ) ); } else prev_recursive = true; } pnew.Simplify(); aPath.SetShape( pnew ); return IN_PROGRESS; }
WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath, bool aOptimize ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return STUCK; aWalkPath = aInitialPath; return DONE; } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iterationLimit ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.Line().Simplify(); if( aWalkPath.SegmentCount() < 1 ) return STUCK; if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) return STUCK; if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) return STUCK; WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( st == DONE ) { if( aOptimize ) OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world ); } return st; }
bool PNS_LINE::Walkaround( SHAPE_LINE_CHAIN aObstacle, SHAPE_LINE_CHAIN& aPre, SHAPE_LINE_CHAIN& aWalk, SHAPE_LINE_CHAIN& aPost, bool aCw ) const { const SHAPE_LINE_CHAIN& line ( CLine() ); VECTOR2I ip_start; VECTOR2I ip_end; if( line.SegmentCount() < 1 ) return false; if( aObstacle.PointInside( line.CPoint( 0 ) ) || aObstacle.PointInside( line.CPoint( -1 ) ) ) return false; SHAPE_LINE_CHAIN::INTERSECTIONS ips, ips2; line.Intersect( aObstacle, ips ); int nearest_dist = INT_MAX; int farthest_dist = 0; SHAPE_LINE_CHAIN::INTERSECTION nearest, farthest; for( int i = 0; i < (int) ips.size(); i++ ) { const VECTOR2I p = ips[i].p; int dist = line.PathLength( p ); if( dist < 0 ) return false; if( dist <= nearest_dist ) { nearest_dist = dist; nearest = ips[i]; } if( dist >= farthest_dist ) { farthest_dist = dist; farthest = ips[i]; } } if( ips.size() <= 1 || nearest.p == farthest.p ) { aPre = line; return true; } aPre = line.Slice( 0, nearest.our.Index() ); aPre.Append( nearest.p ); aPre.Simplify(); aWalk.Clear(); aWalk.SetClosed( false ); aWalk.Append( nearest.p ); int i = nearest.their.Index(); assert( nearest.their.Index() >= 0 ); assert( farthest.their.Index() >= 0 ); assert( nearest_dist <= farthest_dist ); aObstacle.Split( nearest.p ); aObstacle.Split( farthest.p ); int i_first = aObstacle.Find( nearest.p ); int i_last = aObstacle.Find( farthest.p ); i = i_first; while( i != i_last ) { aWalk.Append( aObstacle.CPoint( i ) ); i += ( aCw ? 1 : -1 ); if( i < 0 ) i = aObstacle.PointCount() - 1; else if( i == aObstacle.PointCount() ) i = 0; } aWalk.Append( farthest.p ); aWalk.Simplify(); aPost.Clear(); aPost.Append( farthest.p ); aPost.Append( line.Slice( farthest.our.Index() + 1, -1 ) ); aPost.Simplify(); return true; }