void CRecoImage::FindDescriptors(SIFT& SIFTDetector) { Mat image; if(!this->LoadImg(image)) { CRecoLogMgr::Instance()->WriteLog("CRecoImage -> FindFeatures !FAILURE! Could not open or find the image. Path is: " + this->GetFullImagePath()); } SIFTDetector.detect(image, this->_KeyPoints); SIFTDetector.compute(image, this->_KeyPoints, this->_Descriptors); }
Mat Pyramids::extractFeatures(const Mat &im, vector<KeyPoint> &keypoints, int step) { Mat features; SIFT dec; if (step <= 0) dec.detect(im, keypoints); else keypoints = extractDenseKeypoints(im, step); dec.compute(im, keypoints, features); return features; }
/***************************************************************************** * @brief : siftFeatureDetect * @author : Zhangle * @date : 2014/9/8 11:18 * @version : ver 1.0 * @inparam : * @outparam : *****************************************************************************/ void FeatureDetect::siftFeatureDetect(string inputImageName, string outputImageName,string outputTxtName) { Mat image = imread(inputImageName); Mat descriptors; vector<KeyPoint> keypoints; SIFT sift; time_t beginTime = time(NULL); sift.detect(image,keypoints); time_t endTime = time(NULL); time_t runTime = endTime - beginTime; drawKeypoints(image,keypoints,image,Scalar(0,255,0)); imwrite(outputImageName,image); ofstream outTxt(outputTxtName); outTxt << "SIFT" << endl; outTxt << "影像尺寸:" << image.cols<<" * "<<image.rows<<endl; outTxt << "特征点数目:" << keypoints.size() <<"个"<< endl; outTxt << "提取特征点耗费时间:" << runTime << "s"<< endl; outTxt << "默认参数设置" << endl; outTxt.close(); }
// Main function int main( int argc, char** argv ) { //----------------------------------------------------------Training Start----------------------------------------------------------------------// cout << "---------------Training Starts------------------" << endl << endl; // Read training images------------------------------------------------------------- cout << "Reading training images..." << endl; vector<Mat> training_images; // to store all the training images Mat image; for(unsigned int i=1; i<21; i++) { stringstream filename; filename << "training/car/train_car_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } training_images.push_back(image); } for(unsigned int i=1; i<21; i++) { stringstream filename; filename << "training/face/train_face_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } training_images.push_back(image); } for(unsigned int i=1; i<21; i++) { stringstream filename; filename << "training/laptop/train_laptop_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } training_images.push_back(image); } for(unsigned int i=1; i<21; i++) { stringstream filename; filename << "training/motorbike/train_motorbike_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } training_images.push_back(image); } for(unsigned int i=1; i<21; i++) { stringstream filename; filename << "training/pigeon/train_pigeon_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } training_images.push_back(image); } cout << endl; // --------------------------------------------------------------------------------------- // Compute SIFT feature for each training images------------------------------------------ cout << "Computing SIFT features of each training images..." << endl; vector<Mat> training_SIFT_descriptors; vector<KeyPoint> keypoints; Mat descriptors; Mat all_training_SIFT_descriptors; // to store the SIFT features of all training images in one matrix for(unsigned int i=0; i<training_images.size(); i++) { SIFT siftobject; siftobject.operator()(training_images[i], Mat(), keypoints, descriptors); training_SIFT_descriptors.push_back(descriptors); all_training_SIFT_descriptors.push_back(descriptors); } cout << "training data size is: " << all_training_SIFT_descriptors.rows << "*" << all_training_SIFT_descriptors.cols << endl; cout << endl; // ---------------------------------------------------------------------------------------- // Compute covariance and eigenvectors for all the images---------------------------------- cout << "Computing covariance and eigenvalues..." << endl; Mat covar; Mat mean; calcCovarMatrix(all_training_SIFT_descriptors, covar, mean, CV_COVAR_NORMAL | CV_COVAR_ROWS, CV_32F); cout << "Covariance matrix size is: " << covar.rows << "*" << covar.cols << endl; Mat eigenvalues; Mat eigenvectors; eigen(covar, eigenvalues, eigenvectors); cout << "EigenValue matrix size is: " << eigenvalues.rows << "*" << eigenvalues.cols << endl; cout << "EigenVector matrix size is: " << eigenvectors.rows << "*" << eigenvectors.cols << endl; int pcaReduced = 20; // set the dimension reduction value Mat reduced_eigenvectors(pcaReduced, eigenvectors.cols, CV_32F, 0.0); for(int i=0; i<pcaReduced; i++) { for(int j=0; j<eigenvectors.cols; j++) { reduced_eigenvectors.at<float>(i, j) = eigenvectors.at<float>(i, j); } } reduced_eigenvectors = reduced_eigenvectors.t(); cout << endl; // ---------------------------------------------------------------------------------------- // Computing PCA SIFT feature for each training images------------------------------------- cout << "Computing PCA SIFT features of training images..." << endl; vector<Mat> training_PCA_SIFT_features; Mat all_training_PCA_SIFT_features; // for k-means clustering we require it in one matrix Mat projection; for(unsigned int i=0; i<training_images.size(); i++) { projection = training_SIFT_descriptors[i]*reduced_eigenvectors; training_PCA_SIFT_features.push_back(projection); all_training_PCA_SIFT_features.push_back(projection); } cout << "training data size after reducing features is: " << all_training_PCA_SIFT_features.rows << "*" << all_training_PCA_SIFT_features.cols << endl; cout << endl; // ---------------------------------------------------------------------------------------- // Compute Codewords, Cluster the PCA SIFT features----------------------------------------- cout << "Computing Code words, Vocabulary of training images by clustering PCA SIFT features..." << endl; int nclusters = 100; // set the number of clusters you want Mat labels; int attempts = 20; Mat centers; TermCriteria criteria; criteria.epsilon = 1e-4; criteria.maxCount = 1; kmeans(all_training_PCA_SIFT_features, nclusters, labels, criteria, attempts, KMEANS_RANDOM_CENTERS, centers); cout << "training centers size: " << centers.rows << "*" << centers.cols << endl; cout << endl; // ----------------------------------------------------------------------------------------- // Calculating Histogram for images--------------------------------------------------------- cout << "Calculating histogram for each images..." << endl; vector< vector<double> > training_histogram; for(unsigned int i=0; i<training_images.size(); i++) { training_histogram.push_back(vector< double >(nclusters, 0.0)); } int index = 0; for(int i=0; i<training_images.size(); i++) { for(int j=0; j<training_SIFT_descriptors[i].rows; j++) { training_histogram[i][labels.at<uchar>(index, 0)]++; index++; } // Normalize histogram if requires, uncomment below /*for(int j=0; j<nclusters; j++) { training_histogram[i][j] = (training_histogram[i][j]*100)/training_SIFT_descriptors[i].rows; }*/ } cout << endl; // ----------------------------------------------------------------------------- //----------------------------------------------------------Training Done----------------------------------------------------------------------// cout << "---------------Testing Starts------------------" << endl << endl; //----------------------------------------------------------Testing Start----------------------------------------------------------------------// // Read test images------------------------------------------------------------- cout << "Reading test images..." << endl; vector<Mat> testing_images; for(unsigned int i=1; i<11; i++) { stringstream filename; filename << "testing/car/test_car_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } testing_images.push_back(image); } for(unsigned int i=1; i<11; i++) { stringstream filename; filename << "testing/face/test_face_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } testing_images.push_back(image); } for(unsigned int i=1; i<11; i++) { stringstream filename; filename << "testing/laptop/test_laptop_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } testing_images.push_back(image); } for(unsigned int i=1; i<11; i++) { stringstream filename; filename << "testing/motorbike/test_motorbike_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } testing_images.push_back(image); } for(unsigned int i=1; i<11; i++) { stringstream filename; filename << "testing/pigeon/test_pigeon_" << i << ".jpg"; image = imread(filename.str(), 1); if(!image.data) // check whether reading is successful or not { cout << "No image data in file: " << filename.str() << endl; return -1; } testing_images.push_back(image); } cout << endl; // --------------------------------------------------------------------------------------- // Compute SIFT feature for each test images---------------------------------------------- cout << "Computing SIFT features of each testing images..." << endl; vector<Mat> testing_SIFT_descriptors; for(unsigned int i=0; i<testing_images.size(); i++) { SIFT siftobject; siftobject.operator()(testing_images[i], Mat(), keypoints, descriptors); testing_SIFT_descriptors.push_back(descriptors); } cout << endl; // ---------------------------------------------------------------------------------------- // Computing PCA SIFT feature for each testing images-------------------------------------- cout << "Computing PCA SIFT features of testing images..." << endl; vector<Mat> testing_PCA_SIFT_features; for(unsigned int i=0; i<testing_images.size(); i++) { projection = testing_SIFT_descriptors[i]*reduced_eigenvectors; testing_PCA_SIFT_features.push_back(projection); } cout << endl; // ---------------------------------------------------------------------------------------- //cout << "Computing histogram for each testing images------------------------------------- cout << "Computing histogram of each test images..." << endl; vector< vector<double> > testing_histogram; for(unsigned int i=0; i<testing_images.size(); i++) { testing_histogram.push_back(vector< double >(nclusters, 0.0)); } // histogram based on nearest neighborhood for(unsigned int i=0; i<testing_images.size(); i++) { for(int j=0; j<testing_PCA_SIFT_features[i].rows; j++) { double min_distance = INT_MAX; int label = 0; for(int k=0; k<nclusters; k++) { double euclidian_distance = 0.0; for(int l=0; l<pcaReduced; l++) { euclidian_distance += ( pow( (testing_PCA_SIFT_features[i].at<float>(j, l) - centers.at<float>(k, l)), 2.0) ); } euclidian_distance = sqrt(euclidian_distance); if(euclidian_distance<min_distance) { min_distance = euclidian_distance; label = k; } } testing_histogram[i][label]++; } // Normalize histogram if requires, uncomment below /*for(int j=0; j<nclusters; j++) { testing_histogram[i][j] = (testing_histogram[i][j]*100)/testing_SIFT_descriptors[i].rows; }*/ } cout << endl; // ---------------------------------------------------------------------------------------- // Computing k-nearest neighbor for test images-------------------------------------------- cout << "Computing k-nearest neighbor for finding class of object..." << endl; map<int, double> dist[50]; map<double, int> sortedDist[50]; map<double, int>::iterator it; // KNN for nearset neighbor based on euclidian distance for(unsigned int i=0; i<testing_images.size(); i++) { for(int j=0; j<training_images.size(); j++) { double euclidian_distance = 0.0; for(int k=0; k<nclusters; k++) { euclidian_distance += ( pow( (testing_histogram[i][k]-training_histogram[j][k]), 2.0) ); } dist[i].insert(pair<int, double>(j, sqrt(euclidian_distance))); } sortedDist[i] = flip_map(dist[i]); } int kNN = 10; // set for number of nearest neighbor //find the class based on weight of K nearest neighbors int classifyLabel[50] = {0}; for(int i=0; i<testing_images.size(); i++) { cout << "For image " << i+1 << " : "; it=sortedDist[i].begin(); double count1=0.0, count2=0.0, count3=0.0, count4=0.0, count5=0.0; for(int j=0; j<kNN; j++) { int label = (it)->second; if(label>=0 && label<20) { count1 += (1/it->first); } else if(label>=20 && label<40) { count2 += (1/it->first); } else if(label>=40 && label<60) { count3 += (1/it->first); } else if(label>=60 && label<80) { count4 += (1/it->first); } else if(label>=80 && label<100) { count5 += (1/it->first); } //cout << (it)->second << ", "; it++; } int labelget = returnLabel(count1, count2, count3, count4, count5); classifyLabel[i] = labelget; cout << labelget; cout << endl; } cout << endl; // ---------------------------------------------------------------------------------------- // Display Confusion Matrix---------------------------------------------------------------- cout << "Displaying confusion matrix: " << endl; int confusionMat[5][5] = {0}; // create cnfusion matrix for(unsigned int i=0; i<5; i++) { int count1=0, count2=0, count3=0, count4=0, count5=0; for(int j=0; j<10; j++) { if(classifyLabel[(10*i)+j]==1) count1++; else if(classifyLabel[(10*i)+j]==2) count2++; else if(classifyLabel[(10*i)+j]==3) count3++; else if(classifyLabel[(10*i)+j]==4) count4++; else if(classifyLabel[(10*i)+j]==5) count5++; } confusionMat[i][0] = count1; confusionMat[i][1] = count2; confusionMat[i][2] = count3; confusionMat[i][3] = count4; confusionMat[i][4] = count5; } cout << "\t\tCAR" << "\tFACE" << "\tLAPTOP" << "\tM_BIKE" << "\tPIGEON" << endl; cout << endl; string arr[5] = { "CAR", "FACE", "LAPTOP", "M_BIKE", "PIGEON"}; for(int i=0; i<5; i++) { cout << arr[i] << "\t"; for(int j=0; j<5; j++) { cout << "\t" << confusionMat[i][j]; } cout << endl << endl; } // ---------------------------------------------------------------------------------------- // Display Accuracy of the program--------------------------------------------------------- cout << "Performance of the program: " << endl; cout << "Number of clusters taken: " << nclusters << endl; cout << "PCA dimension reduced from 128 to : " << pcaReduced << endl; cout << "KNN is chosen to be : " << kNN << endl << endl; cout << "Accuracy for CAR images is : " << (confusionMat[0][0]*100)/10.0 << "%" << endl; cout << "Accuracy for FACE images is : " << (confusionMat[1][1]*100)/10.0 << "%" << endl; cout << "Accuracy for LAPTOP images is : " << (confusionMat[2][2]*100)/10.0 << "%" << endl; cout << "Accuracy for MOTORBIKE images is : " << (confusionMat[3][3]*100)/10.0 << "%" << endl; cout << "Accuracy for PIGEON images is : " << (confusionMat[4][4]*100)/10.0 << "%" << endl; cout << endl; double average_accuracy = (confusionMat[0][0]+confusionMat[1][1]+confusionMat[2][2]+confusionMat[3][3]+confusionMat[4][4])*100/50.0; cout << "Average Accuracy is : " << average_accuracy << "%" << endl; // ---------------------------------------------------------------------------------------- //----------------------------------------------------------Testing Done----------------------------------------------------------------------// // Disply windows namedWindow("Input Image", CV_WINDOW_AUTOSIZE); imshow("Input Image", testing_images[0]); waitKey(0); // wait for stroke key cout << "End of Program: " << endl << endl; return 0; }
void Assignment2::extractSiftFeatures() { SIFT siftobject; siftobject.operator()(image, Mat(), keypoints, descriptors); // Apply SIFT operator }