/// In this function we create the actual cloned function and its proper cloned /// type. But we do not create any body. This implies that the creation of the /// actual arguments in the function is in populateCloned. /// /// \arg PAUser The function that is being passed the partial apply. /// \arg PAI The partial apply that is being passed to PAUser. /// \arg ClosureIndex The index of the partial apply in PAUser's function /// signature. /// \arg ClonedName The name of the cloned function that we will create. SILFunction * ClosureSpecCloner::initCloned(const CallSiteDescriptor &CallSiteDesc, StringRef ClonedName) { SILFunction *ClosureUser = CallSiteDesc.getApplyCallee(); // This is the list of new interface parameters of the cloned function. llvm::SmallVector<SILParameterInfo, 4> NewParameterInfoList; // First add to NewParameterInfoList all of the SILParameterInfo in the // original function except for the closure. CanSILFunctionType ClosureUserFunTy = ClosureUser->getLoweredFunctionType(); unsigned Index = ClosureUserFunTy->getNumIndirectResults(); for (auto ¶m : ClosureUserFunTy->getParameters()) { if (Index != CallSiteDesc.getClosureIndex()) NewParameterInfoList.push_back(param); ++Index; } // Then add any arguments that are captured in the closure to the function's // argument type. Since they are captured, we need to pass them directly into // the new specialized function. SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee(); CanSILFunctionType ClosedOverFunTy = ClosedOverFun->getLoweredFunctionType(); SILModule &M = ClosureUser->getModule(); // Captured parameters are always appended to the function signature. If the // type of the captured argument is trivial, pass the argument as // Direct_Unowned. Otherwise pass it as Direct_Owned. // // We use the type of the closure here since we allow for the closure to be an // external declaration. unsigned NumTotalParams = ClosedOverFunTy->getParameters().size(); unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments(); for (auto &PInfo : ClosedOverFunTy->getParameters().slice(NumNotCaptured)) { if (PInfo.getSILType().isTrivial(M)) { SILParameterInfo NewPInfo(PInfo.getType(), ParameterConvention::Direct_Unowned); NewParameterInfoList.push_back(NewPInfo); continue; } SILParameterInfo NewPInfo(PInfo.getType(), ParameterConvention::Direct_Owned); NewParameterInfoList.push_back(NewPInfo); } // The specialized function is always a thin function. This is important // because we may add additional parameters after the Self parameter of // witness methods. In this case the new function is not a method anymore. auto ExtInfo = ClosureUserFunTy->getExtInfo(); ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin); auto ClonedTy = SILFunctionType::get( ClosureUserFunTy->getGenericSignature(), ExtInfo, ClosureUserFunTy->getCalleeConvention(), NewParameterInfoList, ClosureUserFunTy->getAllResults(), ClosureUserFunTy->getOptionalErrorResult(), M.getASTContext()); // We make this function bare so we don't have to worry about decls in the // SILArgument. auto *Fn = M.createFunction( // It's important to use a shared linkage for the specialized function // and not the original linkage. // Otherwise the new function could have an external linkage (in case the // original function was de-serialized) and would not be code-gen'd. getSpecializedLinkage(ClosureUser, ClosureUser->getLinkage()), ClonedName, ClonedTy, ClosureUser->getGenericEnvironment(), ClosureUser->getLocation(), IsBare, ClosureUser->isTransparent(), CallSiteDesc.isFragile(), ClosureUser->isThunk(), ClosureUser->getClassVisibility(), ClosureUser->getInlineStrategy(), ClosureUser->getEffectsKind(), ClosureUser, ClosureUser->getDebugScope()); Fn->setDeclCtx(ClosureUser->getDeclContext()); if (ClosureUser->hasUnqualifiedOwnership()) { Fn->setUnqualifiedOwnership(); } for (auto &Attr : ClosureUser->getSemanticsAttrs()) Fn->addSemanticsAttr(Attr); return Fn; }
void FunctionSignatureTransform::createFunctionSignatureOptimizedFunction() { // Create the optimized function ! SILModule &M = F->getModule(); std::string Name = createOptimizedSILFunctionName(); SILLinkage linkage = F->getLinkage(); if (isAvailableExternally(linkage)) linkage = SILLinkage::Shared; DEBUG(llvm::dbgs() << " -> create specialized function " << Name << "\n"); NewF = M.createFunction( linkage, Name, createOptimizedSILFunctionType(), nullptr, F->getLocation(), F->isBare(), F->isTransparent(), F->isFragile(), F->isThunk(), F->getClassVisibility(), F->getInlineStrategy(), F->getEffectsKind(), nullptr, F->getDebugScope(), F->getDeclContext()); if (F->hasUnqualifiedOwnership()) { NewF->setUnqualifiedOwnership(); } // Then we transfer the body of F to NewF. NewF->spliceBody(F); NewF->setDeclCtx(F->getDeclContext()); // Array semantic clients rely on the signature being as in the original // version. for (auto &Attr : F->getSemanticsAttrs()) { if (!StringRef(Attr).startswith("array.")) NewF->addSemanticsAttr(Attr); } // Do the last bit of work to the newly created optimized function. ArgumentExplosionFinalizeOptimizedFunction(); DeadArgumentFinalizeOptimizedFunction(); // Create the thunk body ! F->setThunk(IsThunk); // The thunk now carries the information on how the signature is // optimized. If we inline the thunk, we will get the benefit of calling // the signature optimized function without additional setup on the // caller side. F->setInlineStrategy(AlwaysInline); SILBasicBlock *ThunkBody = F->createBasicBlock(); for (auto &ArgDesc : ArgumentDescList) { ThunkBody->createFunctionArgument(ArgDesc.Arg->getType(), ArgDesc.Decl); } SILLocation Loc = ThunkBody->getParent()->getLocation(); SILBuilder Builder(ThunkBody); Builder.setCurrentDebugScope(ThunkBody->getParent()->getDebugScope()); FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF); // Create the args for the thunk's apply, ignoring any dead arguments. llvm::SmallVector<SILValue, 8> ThunkArgs; for (auto &ArgDesc : ArgumentDescList) { addThunkArgument(ArgDesc, Builder, ThunkBody, ThunkArgs); } // We are ignoring generic functions and functions with out parameters for // now. SILValue ReturnValue; SILType LoweredType = NewF->getLoweredType(); SILType ResultType = NewF->getConventions().getSILResultType(); auto FunctionTy = LoweredType.castTo<SILFunctionType>(); if (FunctionTy->hasErrorResult()) { // We need a try_apply to call a function with an error result. SILFunction *Thunk = ThunkBody->getParent(); SILBasicBlock *NormalBlock = Thunk->createBasicBlock(); ReturnValue = NormalBlock->createPHIArgument(ResultType, ValueOwnershipKind::Owned); SILBasicBlock *ErrorBlock = Thunk->createBasicBlock(); SILType Error = SILType::getPrimitiveObjectType(FunctionTy->getErrorResult().getType()); auto *ErrorArg = ErrorBlock->createPHIArgument(Error, ValueOwnershipKind::Owned); Builder.createTryApply(Loc, FRI, LoweredType, ArrayRef<Substitution>(), ThunkArgs, NormalBlock, ErrorBlock); Builder.setInsertionPoint(ErrorBlock); Builder.createThrow(Loc, ErrorArg); Builder.setInsertionPoint(NormalBlock); } else { ReturnValue = Builder.createApply(Loc, FRI, LoweredType, ResultType, ArrayRef<Substitution>(), ThunkArgs, false); } // Set up the return results. if (NewF->isNoReturnFunction()) { Builder.createUnreachable(Loc); } else { Builder.createReturn(Loc, ReturnValue); } // Do the last bit work to finalize the thunk. OwnedToGuaranteedFinalizeThunkFunction(Builder, F); assert(F->getDebugScope()->Parent != NewF->getDebugScope()->Parent); }