PyObject* FemMeshPy::addVolume(PyObject *args)
{
    int n1,n2,n3,n4;
    if (!PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
        return 0;

    try {
        SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
        SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
        const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
        const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
        const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
        const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
        if (!node1 || !node2 || !node3 || !node4)
            throw std::runtime_error("Failed to get node of the given indices");
        SMDS_MeshVolume* vol = meshDS->AddVolume(node1, node2, node3, node4);
        if (!vol)
            throw std::runtime_error("Failed to add volume");
        return Py::new_reference_to(Py::Int(vol->GetID()));
    }
    catch (const std::exception& e) {
        PyErr_SetString(PyExc_Exception, e.what());
        return 0;
    }
}
PyObject* FemMeshPy::addQuad(PyObject *args)
{
    int n1,n2,n3,n4;
    if (!PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
        return 0;

    try {
        SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
        SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
        const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
        const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
        const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
        const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
        if (!node1 || !node2 || !node3 || !node4)
            throw std::runtime_error("Failed to get node of the given indices");
        SMDS_MeshFace* face = meshDS->AddFace(node1, node2, node3, node4);
        if (!face)
            throw std::runtime_error("Failed to add quad");
        return Py::new_reference_to(Py::Long(face->GetID()));
    }
    catch (const std::exception& e) {
        PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
        return 0;
    }
}
SMESH_Mesh* SMESH_Hypothesis::GetMeshByPersistentID(int id)
{
  StudyContextStruct* myStudyContext = _gen->GetStudyContext(_studyId);
  map<int, SMESH_Mesh*>::iterator itm = itm = myStudyContext->mapMesh.begin();
  for ( ; itm != myStudyContext->mapMesh.end(); itm++)
  {
    SMESH_Mesh* mesh = (*itm).second;
    if ( mesh->GetMeshDS()->GetPersistentId() == id )
      return mesh;
  }
  return 0;
}
PyObject* FemMeshPy::addNode(PyObject *args)
{
    double x,y,z;
    int i = -1;
    if (PyArg_ParseTuple(args, "ddd",&x,&y,&z)){
        try {
            SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
            SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
            SMDS_MeshNode* node = meshDS->AddNode(x,y,z);
            if (!node)
                throw std::runtime_error("Failed to add node");
            return Py::new_reference_to(Py::Int(node->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "dddi",&x,&y,&z,&i)){
        try {
            SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
            SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
            SMDS_MeshNode* node = meshDS->AddNodeWithID(x,y,z,i);
            if (!node)
                throw std::runtime_error("Failed to add node");
            return Py::new_reference_to(Py::Int(node->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_SetString(PyExc_TypeError, "addNode() accepts:\n"
        "-- addNode(x,y,z)\n"
        "-- addNode(x,y,z,ElemId)\n");
    return 0;

}
Example #5
0
TSideVector StdMeshers_FaceSide::GetFaceWires(const TopoDS_Face& theFace,
                                              SMESH_Mesh &       theMesh,
                                              const bool         theIgnoreMediumNodes,
                                              TError &           theError)
{
  TopoDS_Vertex V1;
  list< TopoDS_Edge > edges;
  list< int > nbEdgesInWires;
  int nbWires = SMESH_Block::GetOrderedEdges (theFace, V1, edges, nbEdgesInWires);

  // split list of all edges into separate wires
  TSideVector wires( nbWires );
  list< int >::iterator nbE = nbEdgesInWires.begin();
  list< TopoDS_Edge >::iterator from, to;
  from = to = edges.begin();
  for ( int iW = 0; iW < nbWires; ++iW )
  {
    std::advance( to, *nbE++ );
    list< TopoDS_Edge > wireEdges( from, to );
    // assure that there is a node on the first vertex
    // as StdMeshers_FaceSide::GetUVPtStruct() requires
    while ( !SMESH_Algo::VertexNode( TopExp::FirstVertex( wireEdges.front(), true),
                                     theMesh.GetMeshDS()))
    {
      wireEdges.splice(wireEdges.end(), wireEdges,
                       wireEdges.begin(), ++wireEdges.begin());
      if ( from->IsSame( wireEdges.front() )) {
        theError = TError
          ( new SMESH_ComputeError(COMPERR_BAD_INPUT_MESH,"No nodes on vertices"));
        return TSideVector(0);
      }
    }
    // find out side orientation, which is important if there are several wires (PAL19080) 
    bool isForward = true;
    if ( nbWires > 1 ) {
      TopExp_Explorer e( theFace, TopAbs_EDGE );
      while ( ! e.Current().IsSame( wireEdges.back() ))
        e.Next();
      isForward = ( e.Current().Orientation() == wireEdges.back().Orientation() );
    }

    StdMeshers_FaceSide* wire = new StdMeshers_FaceSide( theFace, wireEdges, &theMesh,
                                                         isForward, theIgnoreMediumNodes);
    wires[ iW ] = StdMeshers_FaceSidePtr( wire );
    from = to;
  }
  return wires;
}
PyObject* FemMeshPy::addNode(PyObject *args)
{
    double x,y,z;
    if (!PyArg_ParseTuple(args, "ddd",&x,&y,&z))
        return 0;

    try {
        SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
        SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
        SMDS_MeshNode* node = meshDS->AddNode(x,y,z);
        if (!node)
            throw std::runtime_error("Failed to add node");
        return Py::new_reference_to(Py::Int(node->GetID()));
    }
    catch (const std::exception& e) {
        PyErr_SetString(PyExc_Exception, e.what());
        return 0;
    }
}
PyObject* FemMeshPy::addEdge(PyObject *args)
{
    int n1,n2;
    if (!PyArg_ParseTuple(args, "ii",&n1,&n2))
        return 0;

    try {
        SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
        SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
        const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
        const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
        if (!node1 || !node2)
            throw std::runtime_error("Failed to get node of the given indices");
        SMDS_MeshEdge* edge = meshDS->AddEdge(node1, node2);
        if (!edge)
            throw std::runtime_error("Failed to add edge");
        return Py::new_reference_to(Py::Int(edge->GetID()));
    }
    catch (const std::exception& e) {
        PyErr_SetString(PyExc_Exception, e.what());
        return 0;
    }
}
Example #8
0
Mesh::MeshObject* Mesher::createMesh() const
{
    // OCC standard mesher
    if (method == Standard) {
        Handle_StlMesh_Mesh aMesh = new StlMesh_Mesh();

        if (!shape.IsNull()) {
            BRepTools::Clean(shape);
#if OCC_VERSION_HEX >= 0x060801
            BRepMesh_IncrementalMesh bMesh(shape, deflection, Standard_False, angularDeflection);
            StlTransfer::RetrieveMesh(shape,aMesh);
#else
            StlTransfer::BuildIncrementalMesh(shape, deflection,
#if OCC_VERSION_HEX >= 0x060503
                Standard_True,
#endif
                aMesh);
#endif
        }

        std::map<uint32_t, std::vector<std::size_t> > colorMap;
        for (std::size_t i=0; i<colors.size(); i++) {
            colorMap[colors[i]].push_back(i);
        }

        bool createSegm = (static_cast<int>(colors.size()) == aMesh->NbDomains());

        MeshCore::MeshFacetArray faces;
        faces.reserve(aMesh->NbTriangles());

        std::set<Vertex> vertices;
        Standard_Real x1, y1, z1;
        Standard_Real x2, y2, z2;
        Standard_Real x3, y3, z3;

        std::vector< std::vector<unsigned long> > meshSegments;
        std::size_t numMeshFaces = 0;
        StlMesh_MeshExplorer xp(aMesh);
        for (Standard_Integer nbd=1;nbd<=aMesh->NbDomains();nbd++) {
            std::size_t numDomainFaces = 0;
            for (xp.InitTriangle(nbd); xp.MoreTriangle(); xp.NextTriangle()) {
                xp.TriangleVertices(x1,y1,z1,x2,y2,z2,x3,y3,z3);
                std::set<Vertex>::iterator it;
                MeshCore::MeshFacet face;

                // 1st vertex
                Vertex v1(x1,y1,z1);
                it = vertices.find(v1);
                if (it == vertices.end()) {
                    v1.i = vertices.size();
                    face._aulPoints[0] = v1.i;
                    vertices.insert(v1);
                }
                else {
                    face._aulPoints[0] = it->i;
                }

                // 2nd vertex
                Vertex v2(x2,y2,z2);
                it = vertices.find(v2);
                if (it == vertices.end()) {
                    v2.i = vertices.size();
                    face._aulPoints[1] = v2.i;
                    vertices.insert(v2);
                }
                else {
                    face._aulPoints[1] = it->i;
                }

                // 3rd vertex
                Vertex v3(x3,y3,z3);
                it = vertices.find(v3);
                if (it == vertices.end()) {
                    v3.i = vertices.size();
                    face._aulPoints[2] = v3.i;
                    vertices.insert(v3);
                }
                else {
                    face._aulPoints[2] = it->i;
                }

                // make sure that we don't insert invalid facets
                if (face._aulPoints[0] != face._aulPoints[1] &&
                    face._aulPoints[1] != face._aulPoints[2] &&
                    face._aulPoints[2] != face._aulPoints[0]) {
                    faces.push_back(face);
                    numDomainFaces++;
                }
            }

            // add a segment for the face
            if (createSegm || this->segments) {
                std::vector<unsigned long> segment(numDomainFaces);
                std::generate(segment.begin(), segment.end(), Base::iotaGen<unsigned long>(numMeshFaces));
                numMeshFaces += numDomainFaces;
                meshSegments.push_back(segment);
            }
        }

        MeshCore::MeshPointArray verts;
        verts.resize(vertices.size());
        for (auto it : vertices)
            verts[it.i] = it.toPoint();

        MeshCore::MeshKernel kernel;
        kernel.Adopt(verts, faces, true);

        Mesh::MeshObject* meshdata = new Mesh::MeshObject();
        meshdata->swap(kernel);
        if (createSegm) {
            int index = 0;
            for (auto it : colorMap) {
                Mesh::Segment segm(meshdata, false);
                for (auto jt : it.second) {
                    segm.addIndices(meshSegments[jt]);
                }
                segm.save(true);
                std::stringstream str;
                str << "patch" << index++;
                segm.setName(str.str());
                meshdata->addSegment(segm);
            }
        }
        else {
            for (auto it : meshSegments) {
                meshdata->addSegment(it);
            }
        }
        return meshdata;
    }

#ifndef HAVE_SMESH
    throw Base::Exception("SMESH is not available on this platform");
#else
    std::list<SMESH_Hypothesis*> hypoth;

    SMESH_Gen* meshgen = SMESH_Gen::get();
    SMESH_Mesh* mesh = meshgen->CreateMesh(0, true);
    int hyp=0;

    switch (method) {
#if defined (HAVE_NETGEN)
    case Netgen: {
        NETGENPlugin_Hypothesis_2D* hyp2d = new NETGENPlugin_Hypothesis_2D(hyp++,0,meshgen);

        if (fineness >=0 && fineness < 5) {
            hyp2d->SetFineness(NETGENPlugin_Hypothesis_2D::Fineness(fineness));
        }
        // user defined values
        else {
            if (growthRate > 0)
                hyp2d->SetGrowthRate(growthRate);
            if (nbSegPerEdge > 0)
                hyp2d->SetNbSegPerEdge(nbSegPerEdge);
            if (nbSegPerRadius > 0)
                hyp2d->SetNbSegPerRadius(nbSegPerRadius);
        }

        hyp2d->SetQuadAllowed(allowquad);
        hyp2d->SetOptimize(optimize);
        hyp2d->SetSecondOrder(secondOrder); // apply bisecting to create four triangles out of one
        hypoth.push_back(hyp2d);

        NETGENPlugin_NETGEN_2D* alg2d = new NETGENPlugin_NETGEN_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
#if defined (HAVE_MEFISTO)
    case Mefisto: {
        if (maxLength > 0) {
            StdMeshers_MaxLength* hyp1d = new StdMeshers_MaxLength(hyp++, 0, meshgen);
            hyp1d->SetLength(maxLength);
            hypoth.push_back(hyp1d);
        }
        else if (localLength > 0) {
            StdMeshers_LocalLength* hyp1d = new StdMeshers_LocalLength(hyp++,0,meshgen);
            hyp1d->SetLength(localLength);
            hypoth.push_back(hyp1d);
        }
        else if (maxArea > 0) {
            StdMeshers_MaxElementArea* hyp2d = new StdMeshers_MaxElementArea(hyp++,0,meshgen);
            hyp2d->SetMaxArea(maxArea);
            hypoth.push_back(hyp2d);
        }
        else if (deflection > 0) {
            StdMeshers_Deflection1D* hyp1d = new StdMeshers_Deflection1D(hyp++,0,meshgen);
            hyp1d->SetDeflection(deflection);
            hypoth.push_back(hyp1d);
        }
        else if (minLen > 0 && maxLen > 0) {
            StdMeshers_Arithmetic1D* hyp1d = new StdMeshers_Arithmetic1D(hyp++,0,meshgen);
            hyp1d->SetLength(minLen, false);
            hyp1d->SetLength(maxLen, true);
            hypoth.push_back(hyp1d);
        }
        else {
            StdMeshers_AutomaticLength* hyp1d = new StdMeshers_AutomaticLength(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        {
            StdMeshers_NumberOfSegments* hyp1d = new StdMeshers_NumberOfSegments(hyp++,0,meshgen);
            hyp1d->SetNumberOfSegments(1);
            hypoth.push_back(hyp1d);
        }

        if (regular) {
            StdMeshers_Regular_1D* hyp1d = new StdMeshers_Regular_1D(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        StdMeshers_TrianglePreference* hyp2d_1 = new StdMeshers_TrianglePreference(hyp++,0,meshgen);
        hypoth.push_back(hyp2d_1);
        StdMeshers_MEFISTO_2D* alg2d = new StdMeshers_MEFISTO_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
    default:
        break;
    }

    // Set new cout
    MeshingOutput stdcout;
    std::streambuf* oldcout = std::cout.rdbuf(&stdcout);

    // Apply the hypothesis and create the mesh
    mesh->ShapeToMesh(shape);
    for (int i=0; i<hyp;i++)
        mesh->AddHypothesis(shape, i);
    meshgen->Compute(*mesh, mesh->GetShapeToMesh());

    // Restore old cout
    std::cout.rdbuf(oldcout);

    // build up the mesh structure
    SMDS_FaceIteratorPtr aFaceIter = mesh->GetMeshDS()->facesIterator();
    SMDS_NodeIteratorPtr aNodeIter = mesh->GetMeshDS()->nodesIterator();

    MeshCore::MeshPointArray verts;
    MeshCore::MeshFacetArray faces;
    verts.reserve(mesh->NbNodes());
    faces.reserve(mesh->NbFaces());

    int index=0;
    std::map<const SMDS_MeshNode*, int> mapNodeIndex;
    for (;aNodeIter->more();) {
        const SMDS_MeshNode* aNode = aNodeIter->next();
        MeshCore::MeshPoint p;
        p.Set((float)aNode->X(), (float)aNode->Y(), (float)aNode->Z());
        verts.push_back(p);
        mapNodeIndex[aNode] = index++;
    }
    for (;aFaceIter->more();) {
        const SMDS_MeshFace* aFace = aFaceIter->next();
        if (aFace->NbNodes() == 3) {
            MeshCore::MeshFacet f;
            for (int i=0; i<3;i++) {
                const SMDS_MeshNode* node = aFace->GetNode(i);
                f._aulPoints[i] = mapNodeIndex[node];
            }
            faces.push_back(f);
        }
        else if (aFace->NbNodes() == 4) {
            MeshCore::MeshFacet f1, f2;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node1];
            f1._aulPoints[2] = mapNodeIndex[node2];

            f2._aulPoints[0] = mapNodeIndex[node0];
            f2._aulPoints[1] = mapNodeIndex[node2];
            f2._aulPoints[2] = mapNodeIndex[node3];

            faces.push_back(f1);
            faces.push_back(f2);
        }
        else if (aFace->NbNodes() == 6) {
            MeshCore::MeshFacet f1, f2, f3, f4;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node3];
            f1._aulPoints[2] = mapNodeIndex[node5];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node4];
            f2._aulPoints[2] = mapNodeIndex[node3];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node5];
            f3._aulPoints[2] = mapNodeIndex[node4];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node4];
            f4._aulPoints[2] = mapNodeIndex[node5];

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
        }
        else if (aFace->NbNodes() == 8) {
            MeshCore::MeshFacet f1, f2, f3, f4, f5, f6;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);
            const SMDS_MeshNode* node6 = aFace->GetNode(6);
            const SMDS_MeshNode* node7 = aFace->GetNode(7);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node4];
            f1._aulPoints[2] = mapNodeIndex[node7];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node5];
            f2._aulPoints[2] = mapNodeIndex[node4];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node6];
            f3._aulPoints[2] = mapNodeIndex[node5];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node7];
            f4._aulPoints[2] = mapNodeIndex[node6];

            // Two solutions are possible:
            // <4,6,7>, <4,5,6> or <4,5,7>, <5,6,7>
            Base::Vector3d v4(node4->X(),node4->Y(),node4->Z());
            Base::Vector3d v5(node5->X(),node5->Y(),node5->Z());
            Base::Vector3d v6(node6->X(),node6->Y(),node6->Z());
            Base::Vector3d v7(node7->X(),node7->Y(),node7->Z());
            double dist46 = Base::DistanceP2(v4,v6);
            double dist57 = Base::DistanceP2(v5,v7);
            if (dist46 > dist57) {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node6];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node4];
                f6._aulPoints[1] = mapNodeIndex[node5];
                f6._aulPoints[2] = mapNodeIndex[node6];
            }
            else {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node5];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node5];
                f6._aulPoints[1] = mapNodeIndex[node6];
                f6._aulPoints[2] = mapNodeIndex[node7];
            }

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
            faces.push_back(f5);
            faces.push_back(f6);
        }
        else {
            Base::Console().Warning("Face with %d nodes ignored\n", aFace->NbNodes());
        }
    }

    // clean up
    TopoDS_Shape aNull;
    mesh->ShapeToMesh(aNull);
    mesh->Clear();
    delete mesh;
    for (std::list<SMESH_Hypothesis*>::iterator it = hypoth.begin(); it != hypoth.end(); ++it)
        delete *it;
    
    MeshCore::MeshKernel kernel;
    kernel.Adopt(verts, faces, true);

    Mesh::MeshObject* meshdata = new Mesh::MeshObject();
    meshdata->swap(kernel);
    return meshdata;
#endif // HAVE_SMESH
}
PyObject* FemMeshPy::addVolume(PyObject *args)
{
    SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
    SMESHDS_Mesh* meshDS = mesh->GetMeshDS();

    int n1,n2,n3,n4;
    if (PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
    {
        try {
            const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
            const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
            const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
            const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
            if (!node1 || !node2 || !node3 || !node4)
                throw std::runtime_error("Failed to get node of the given indices");
            SMDS_MeshVolume* vol = meshDS->AddVolume(node1, node2, node3, node4);
            if (!vol)
                throw std::runtime_error("Failed to add volume");
            return Py::new_reference_to(Py::Long(vol->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    PyObject *obj;
    int ElementId=-1;
    if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
    {
        Py::List list(obj);
        std::vector<const SMDS_MeshNode*> Nodes;
        for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
#if PY_MAJOR_VERSION >= 3
            Py::Long NoNr(*it);
#else
            Py::Int NoNr(*it);
#endif
            const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
            if (!node)
                throw std::runtime_error("Failed to get node of the given indices");
            Nodes.push_back(node);
        }

        SMDS_MeshVolume* vol=0;
        if(ElementId != -1) {
            switch(Nodes.size()){
                case 4:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet4 volume with given ElementId");
                    break;
                case 5:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Pyra5 volume with given ElementId");
                    break;
                case 6:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Penta6 volume with given ElementId");
                    break;
                case 8:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Hexa8 volume with given ElementId");
                    break;
                case 10:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume with given ElementId");
                    break;
                case 13:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Pyra13 volume with given ElementId");
                    break;
                case 15:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Penta15 volume with given ElementId");
                    break;
                case 20:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],Nodes[15],Nodes[16],Nodes[17],Nodes[18],Nodes[19],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Hexa20 volume with given ElementId");
                    break;
                default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|15|20] are allowed"); //unknown volume type
            }
        }else{
            switch(Nodes.size()){
                case 4:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet4 volume");
                    break;
                case 5:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Pyra5 volume");
                    break;
                case 6:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Penta6 volume");
                    break;
                case 8:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Hexa8 volume");
                    break;
                case 10:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume");
                    break;
                case 13:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Pyra13 volume");
                    break;
                case 15:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Penta15 volume");
                    break;
                case 20:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],Nodes[15],Nodes[16],Nodes[17],Nodes[18],Nodes[19]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Hexa20 volume");
                    break;
                default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|15|20] are allowed"); //unknown volume type
            }
        }

        return Py::new_reference_to(Py::Long(vol->GetID()));

    }
    PyErr_SetString(PyExc_TypeError, "addVolume accepts:\n"
        "-- int,int,int,int\n"
        "-- [4|5|6|8|10|13|15|20 int],[int]\n");
    return 0;
}
PyObject* FemMeshPy::addEdge(PyObject *args)
{
    SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
    SMESHDS_Mesh* meshDS = mesh->GetMeshDS();

    int n1,n2;
    if (PyArg_ParseTuple(args, "ii",&n1,&n2)) {
        try {
            const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
            const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
            if (!node1 || !node2)
                throw std::runtime_error("Failed to get node of the given indices");
            SMDS_MeshEdge* edge = meshDS->AddEdge(node1, node2);
            if (!edge)
                throw std::runtime_error("Failed to add edge");
            return Py::new_reference_to(Py::Long(edge->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    PyObject *obj;
    int ElementId=-1;
    if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
    {
        Py::List list(obj);
        std::vector<const SMDS_MeshNode*> Nodes;
        for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
#if PY_MAJOR_VERSION >= 3
            Py::Long NoNr(*it);
#else
            Py::Int NoNr(*it);
#endif
            const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
            if (!node)
                throw std::runtime_error("Failed to get node of the given indices");
            Nodes.push_back(node);
        }

        SMDS_MeshEdge* edge=0;
        if(ElementId != -1) {
            switch(Nodes.size()){
                case 2:
                    edge = meshDS->AddEdgeWithID(Nodes[0],Nodes[1],ElementId);
                    if (!edge)
                        throw std::runtime_error("Failed to add edge with given ElementId");
                    break;
                case 3:
                    edge = meshDS->AddEdgeWithID(Nodes[0],Nodes[1],Nodes[2],ElementId);
                    if (!edge)
                        throw std::runtime_error("Failed to add edge with given ElementId");
                    break;
                default:
                    throw std::runtime_error("Unknown node count, [2|3] are allowed"); //unknown edge type
            }
        }
        else {
            switch(Nodes.size()){
            case 2:
                edge = meshDS->AddEdge(Nodes[0],Nodes[1]);
                if (!edge)
                    throw std::runtime_error("Failed to add edge");
                break;
            case 3:
                edge = meshDS->AddEdge(Nodes[0],Nodes[1],Nodes[2]);
                if (!edge)
                    throw std::runtime_error("Failed to add edge");
                break;
            default:
                throw std::runtime_error("Unknown node count, [2|3] are allowed"); //unknown edge type
            }
        }
#if PY_MAJOR_VERSION >= 3
        return Py::new_reference_to(Py::Long(edge->GetID()));
#else
        return Py::new_reference_to(Py::Int(edge->GetID()));
#endif
    }
    PyErr_SetString(PyExc_TypeError, "addEdge accepts:\n"
        "-- int,int\n"
        "-- [2|3],[int]\n");
    return 0;
}
PyObject* FemMeshPy::addFace(PyObject *args)
{
    SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
    SMESHDS_Mesh* meshDS = mesh->GetMeshDS();

    int n1,n2,n3;
    if (PyArg_ParseTuple(args, "iii",&n1,&n2,&n3))
    {
        // old form, deprecated
        try {
            const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
            const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
            const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
            if (!node1 || !node2 || !node3)
                throw std::runtime_error("Failed to get node of the given indices");
            SMDS_MeshFace* face = meshDS->AddFace(node1, node2, node3);
            if (!face)
                throw std::runtime_error("Failed to add face");
            return Py::new_reference_to(Py::Long(face->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    PyObject *obj;
    int ElementId=-1;
    if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
    {
        Py::List list(obj);
        std::vector<const SMDS_MeshNode*> Nodes;
        for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
#if PY_MAJOR_VERSION >= 3
            Py::Long NoNr(*it);
#else
            Py::Int NoNr(*it);
#endif
            const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
            if (!node)
                throw std::runtime_error("Failed to get node of the given indices");
            Nodes.push_back(node);
        }

        SMDS_MeshFace* face=0;
        if(ElementId != -1) {
            switch(Nodes.size()){
                case 3:
                    face = meshDS->AddFaceWithID(Nodes[0],Nodes[1],Nodes[2],ElementId);
                    if (!face)
                        throw std::runtime_error("Failed to add triangular face with given ElementId");
                    break;
                case 4:
                    face = meshDS->AddFaceWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],ElementId);
                    if (!face)
                        throw std::runtime_error("Failed to add face with given ElementId");
                    break;
                case 6:
                    face = meshDS->AddFaceWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],ElementId);
                    if (!face)
                        throw std::runtime_error("Failed to add face with given ElementId");
                    break;
                case 8:
                    face = meshDS->AddFaceWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],ElementId);
                    if (!face)
                        throw std::runtime_error("Failed to add face with given ElementId");
                    break;
                default:
                    throw std::runtime_error("Unknown node count, [3|4|6|8] are allowed"); //unknown face type
            }
        }else{
            switch(Nodes.size()){
                case 3:
                    face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2]);
                    if (!face)
                        throw std::runtime_error("Failed to add triangular face");
                    break;
                case 4:
                    face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3]);
                    if (!face)
                        throw std::runtime_error("Failed to add face");
                    break;
                case 6:
                    face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5]);
                    if (!face)
                        throw std::runtime_error("Failed to add face");
                    break;
                case 8:
                    face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7]);
                    if (!face)
                        throw std::runtime_error("Failed to add face");
                    break;
                default:
                    throw std::runtime_error("Unknown node count, [4|5|6|8] are allowed"); //unknown face type
            }
        }

        return Py::new_reference_to(Py::Long(face->GetID()));

    }
    PyErr_SetString(PyExc_TypeError, "addFace accepts:\n"
        "-- int,int,int\n"
        "-- [3|4|6|8 int],[int]\n");
    return 0;
}
bool StdMeshers_CompositeSegment_1D::Compute(SMESH_Mesh &         aMesh,
                                             const TopoDS_Shape & aShape)
{
  TopoDS_Edge edge = TopoDS::Edge( aShape );
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  // Get edges to be discretized as a whole
  TopoDS_Face nullFace;
  auto_ptr< StdMeshers_FaceSide > side( GetFaceSide(aMesh, edge, nullFace, true ));
  //side->dump("IN COMPOSITE SEG");

  if ( side->NbEdges() < 2 )
    return StdMeshers_Regular_1D::Compute( aMesh, aShape );

  // update segment lenght computed by StdMeshers_AutomaticLength
  const list <const SMESHDS_Hypothesis * > & hyps = GetUsedHypothesis(aMesh, aShape);
  if ( !hyps.empty() ) {
    StdMeshers_AutomaticLength * autoLenHyp = const_cast<StdMeshers_AutomaticLength *>
      (dynamic_cast <const StdMeshers_AutomaticLength * >(hyps.front()));
    if ( autoLenHyp )
      _value[ BEG_LENGTH_IND ]= autoLenHyp->GetLength( &aMesh, side->Length() );
  }

  // Compute node parameters
  auto_ptr< BRepAdaptor_CompCurve > C3d ( side->GetCurve3d() );
  double f = C3d->FirstParameter(), l = C3d->LastParameter();
  list< double > params;
  if ( !computeInternalParameters ( aMesh, *C3d, side->Length(), f, l, params, false ))
    return false;

  // Redistribute parameters near ends
  TopoDS_Vertex VFirst = side->FirstVertex();
  TopoDS_Vertex VLast  = side->LastVertex();
  redistributeNearVertices( aMesh, *C3d, side->Length(), params, VFirst, VLast );

  params.push_front(f);
  params.push_back(l);
  int nbNodes = params.size();

  // Create mesh

  const SMDS_MeshNode * nFirst = SMESH_Algo::VertexNode( VFirst, meshDS );
  const SMDS_MeshNode * nLast  = SMESH_Algo::VertexNode( VLast, meshDS );
  if (!nFirst)
    return error(COMPERR_BAD_INPUT_MESH, TComm("No node on vertex ")
                 <<meshDS->ShapeToIndex(VFirst));
  if (!nLast)
    return error(COMPERR_BAD_INPUT_MESH, TComm("No node on vertex ")
                 <<meshDS->ShapeToIndex(VLast));

  vector<const SMDS_MeshNode*> nodes( nbNodes, (const SMDS_MeshNode*)0 );
  nodes.front() = nFirst;
  nodes.back()  = nLast;

  // create internal nodes
  list< double >::iterator parIt = params.begin();
  double prevPar = *parIt;
  Standard_Real u;
  for ( int iN = 0; parIt != params.end(); ++iN, ++parIt)
  {
    if ( !nodes[ iN ] ) {
      gp_Pnt p = C3d->Value( *parIt );
      SMDS_MeshNode* n = meshDS->AddNode( p.X(), p.Y(), p.Z());
      C3d->Edge( *parIt, edge, u );
      meshDS->SetNodeOnEdge( n, edge, u );
//       cout << "new NODE: par="<<*parIt<<" ePar="<<u<<" e="<<edge.TShape().operator->()
//            << " " << n << endl;
      nodes[ iN ] = n;
    }
    // create edges
    if ( iN ) {
      double mPar = ( prevPar + *parIt )/2;
      if ( _quadraticMesh ) {
        // create medium node
        double segLen = GCPnts_AbscissaPoint::Length(*C3d, prevPar, *parIt);
        GCPnts_AbscissaPoint ruler( *C3d, segLen/2., prevPar );
        if ( ruler.IsDone() )
          mPar = ruler.Parameter();
        gp_Pnt p = C3d->Value( mPar );
        SMDS_MeshNode* n = meshDS->AddNode( p.X(), p.Y(), p.Z());
        //cout << "new NODE "<< n << endl;
        meshDS->SetNodeOnEdge( n, edge, u );
        SMDS_MeshEdge * seg = meshDS->AddEdge(nodes[ iN-1 ], nodes[ iN ], n);
        meshDS->SetMeshElementOnShape(seg, edge);
      }
      else {
        C3d->Edge( mPar, edge, u );
        SMDS_MeshEdge * seg = meshDS->AddEdge(nodes[ iN-1 ], nodes[ iN ]);
        meshDS->SetMeshElementOnShape(seg, edge);
      }
    }
    prevPar = *parIt;
  }

  // remove nodes on internal vertices
  for ( int iE = 1; iE < side->NbEdges(); ++iE )
  {
    TopoDS_Vertex V = side->FirstVertex( iE );
    while ( const SMDS_MeshNode * n = SMESH_Algo::VertexNode( V, meshDS ))
      meshDS->RemoveNode( n );
  }

  // Update submeshes state for all edges and internal vertices,
  // make them look computed even if none edge or node is set on them
  careOfSubMeshes( *side, _EventListener );

  return true;
}
Example #13
0
bool SMESH_Gen::IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh)
{
  SMESH_HypoFilter filter( SMESH_HypoFilter::Is( theHyp ));
  return aMesh.GetHypothesis( aMesh.GetMeshDS()->ShapeToMesh(), filter, false );
}
Example #14
0
Mesh::MeshObject* Mesher::createMesh() const
{
#ifndef HAVE_SMESH
    throw Base::Exception("SMESH is not available on this platform");
#else
    std::list<SMESH_Hypothesis*> hypoth;

    SMESH_Gen* meshgen = SMESH_Gen::get();
    SMESH_Mesh* mesh = meshgen->CreateMesh(0, true);
    int hyp=0;

    switch (method) {
#if defined (HAVE_NETGEN)
    case Netgen: {
        NETGENPlugin_Hypothesis_2D* hyp2d = new NETGENPlugin_Hypothesis_2D(hyp++,0,meshgen);

        if (fineness >=0 && fineness < 5) {
            hyp2d->SetFineness(NETGENPlugin_Hypothesis_2D::Fineness(fineness));
        }
        // user defined values
        else {
            if (growthRate > 0)
                hyp2d->SetGrowthRate(growthRate);
            if (nbSegPerEdge > 0)
                hyp2d->SetNbSegPerEdge(nbSegPerEdge);
            if (nbSegPerRadius > 0)
                hyp2d->SetNbSegPerRadius(nbSegPerRadius);
        }

        hyp2d->SetQuadAllowed(allowquad);
        hyp2d->SetOptimize(optimize);
        hyp2d->SetSecondOrder(secondOrder); // apply bisecting to create four triangles out of one
        hypoth.push_back(hyp2d);

        NETGENPlugin_NETGEN_2D* alg2d = new NETGENPlugin_NETGEN_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
#if defined (HAVE_MEFISTO)
    case Mefisto: {
        if (maxLength > 0) {
            StdMeshers_MaxLength* hyp1d = new StdMeshers_MaxLength(hyp++, 0, meshgen);
            hyp1d->SetLength(maxLength);
            hypoth.push_back(hyp1d);
        }
        else if (localLength > 0) {
            StdMeshers_LocalLength* hyp1d = new StdMeshers_LocalLength(hyp++,0,meshgen);
            hyp1d->SetLength(localLength);
            hypoth.push_back(hyp1d);
        }
        else if (maxArea > 0) {
            StdMeshers_MaxElementArea* hyp2d = new StdMeshers_MaxElementArea(hyp++,0,meshgen);
            hyp2d->SetMaxArea(maxArea);
            hypoth.push_back(hyp2d);
        }
        else if (deflection > 0) {
            StdMeshers_Deflection1D* hyp1d = new StdMeshers_Deflection1D(hyp++,0,meshgen);
            hyp1d->SetDeflection(deflection);
            hypoth.push_back(hyp1d);
        }
        else if (minLen > 0 && maxLen > 0) {
            StdMeshers_Arithmetic1D* hyp1d = new StdMeshers_Arithmetic1D(hyp++,0,meshgen);
            hyp1d->SetLength(minLen, false);
            hyp1d->SetLength(maxLen, true);
            hypoth.push_back(hyp1d);
        }
        else {
            StdMeshers_AutomaticLength* hyp1d = new StdMeshers_AutomaticLength(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        {
            StdMeshers_NumberOfSegments* hyp1d = new StdMeshers_NumberOfSegments(hyp++,0,meshgen);
            hyp1d->SetNumberOfSegments(1);
            hypoth.push_back(hyp1d);
        }

        if (regular) {
            StdMeshers_Regular_1D* hyp1d = new StdMeshers_Regular_1D(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        StdMeshers_TrianglePreference* hyp2d_1 = new StdMeshers_TrianglePreference(hyp++,0,meshgen);
        hypoth.push_back(hyp2d_1);
        StdMeshers_MEFISTO_2D* alg2d = new StdMeshers_MEFISTO_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
    default:
        break;
    }

    // Set new cout
    MeshingOutput stdcout;
    std::streambuf* oldcout = std::cout.rdbuf(&stdcout);

    // Apply the hypothesis and create the mesh
    mesh->ShapeToMesh(shape);
    for (int i=0; i<hyp;i++)
        mesh->AddHypothesis(shape, i);
    meshgen->Compute(*mesh, mesh->GetShapeToMesh());

    // Restore old cout
    std::cout.rdbuf(oldcout);

    // build up the mesh structure
    SMDS_FaceIteratorPtr aFaceIter = mesh->GetMeshDS()->facesIterator();
    SMDS_NodeIteratorPtr aNodeIter = mesh->GetMeshDS()->nodesIterator();

    MeshCore::MeshPointArray verts;
    MeshCore::MeshFacetArray faces;
    verts.reserve(mesh->NbNodes());
    faces.reserve(mesh->NbFaces());

    int index=0;
    std::map<const SMDS_MeshNode*, int> mapNodeIndex;
    for (;aNodeIter->more();) {
        const SMDS_MeshNode* aNode = aNodeIter->next();
        MeshCore::MeshPoint p;
        p.Set((float)aNode->X(), (float)aNode->Y(), (float)aNode->Z());
        verts.push_back(p);
        mapNodeIndex[aNode] = index++;
    }
    for (;aFaceIter->more();) {
        const SMDS_MeshFace* aFace = aFaceIter->next();
        if (aFace->NbNodes() == 3) {
            MeshCore::MeshFacet f;
            for (int i=0; i<3;i++) {
                const SMDS_MeshNode* node = aFace->GetNode(i);
                f._aulPoints[i] = mapNodeIndex[node];
            }
            faces.push_back(f);
        }
        else if (aFace->NbNodes() == 4) {
            MeshCore::MeshFacet f1, f2;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node1];
            f1._aulPoints[2] = mapNodeIndex[node2];

            f2._aulPoints[0] = mapNodeIndex[node0];
            f2._aulPoints[1] = mapNodeIndex[node2];
            f2._aulPoints[2] = mapNodeIndex[node3];

            faces.push_back(f1);
            faces.push_back(f2);
        }
        else if (aFace->NbNodes() == 6) {
            MeshCore::MeshFacet f1, f2, f3, f4;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node3];
            f1._aulPoints[2] = mapNodeIndex[node5];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node4];
            f2._aulPoints[2] = mapNodeIndex[node3];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node5];
            f3._aulPoints[2] = mapNodeIndex[node4];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node4];
            f4._aulPoints[2] = mapNodeIndex[node5];

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
        }
        else if (aFace->NbNodes() == 8) {
            MeshCore::MeshFacet f1, f2, f3, f4, f5, f6;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);
            const SMDS_MeshNode* node6 = aFace->GetNode(6);
            const SMDS_MeshNode* node7 = aFace->GetNode(7);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node4];
            f1._aulPoints[2] = mapNodeIndex[node7];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node5];
            f2._aulPoints[2] = mapNodeIndex[node4];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node6];
            f3._aulPoints[2] = mapNodeIndex[node5];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node7];
            f4._aulPoints[2] = mapNodeIndex[node6];

            // Two solutions are possible:
            // <4,6,7>, <4,5,6> or <4,5,7>, <5,6,7>
            Base::Vector3d v4(node4->X(),node4->Y(),node4->Z());
            Base::Vector3d v5(node5->X(),node5->Y(),node5->Z());
            Base::Vector3d v6(node6->X(),node6->Y(),node6->Z());
            Base::Vector3d v7(node7->X(),node7->Y(),node7->Z());
            double dist46 = Base::DistanceP2(v4,v6);
            double dist57 = Base::DistanceP2(v5,v7);
            if (dist46 > dist57) {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node6];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node4];
                f6._aulPoints[1] = mapNodeIndex[node5];
                f6._aulPoints[2] = mapNodeIndex[node6];
            }
            else {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node5];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node5];
                f6._aulPoints[1] = mapNodeIndex[node6];
                f6._aulPoints[2] = mapNodeIndex[node7];
            }

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
            faces.push_back(f5);
            faces.push_back(f6);
        }
        else {
            Base::Console().Warning("Face with %d nodes ignored\n", aFace->NbNodes());
        }
    }

    // clean up
    TopoDS_Shape aNull;
    mesh->ShapeToMesh(aNull);
    mesh->Clear();
    delete mesh;
    for (std::list<SMESH_Hypothesis*>::iterator it = hypoth.begin(); it != hypoth.end(); ++it)
        delete *it;
    
    MeshCore::MeshKernel kernel;
    kernel.Adopt(verts, faces, true);

    Mesh::MeshObject* meshdata = new Mesh::MeshObject();
    meshdata->swap(kernel);
    return meshdata;
#endif // HAVE_SMESH
}
bool NETGENPlugin_NETGEN_2D_ONLY::Compute(SMESH_Mesh&         aMesh,
        const TopoDS_Shape& aShape)
{
    netgen::multithread.terminate = 0;
    //netgen::multithread.task = "Surface meshing";

    SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
    SMESH_MesherHelper helper(aMesh);
    helper.SetElementsOnShape( true );

    NETGENPlugin_NetgenLibWrapper ngLib;
    ngLib._isComputeOk = false;

    netgen::Mesh   ngMeshNoLocSize;
#if NETGEN_VERSION < 6
    netgen::Mesh * ngMeshes[2] = { (netgen::Mesh*) ngLib._ngMesh,  & ngMeshNoLocSize };
#else
    netgen::Mesh * ngMeshes[2] = { (netgen::Mesh*) ngLib._ngMesh.get(),  & ngMeshNoLocSize };
#endif
    netgen::OCCGeometry occgeoComm;

    // min / max sizes are set as follows:
    // if ( _hypParameters )
    //    min and max are defined by the user
    // else if ( _hypLengthFromEdges )
    //    min = aMesher.GetDefaultMinSize()
    //    max = average segment len of a FACE
    // else if ( _hypMaxElementArea )
    //    min = aMesher.GetDefaultMinSize()
    //    max = f( _hypMaxElementArea )
    // else
    //    min = aMesher.GetDefaultMinSize()
    //    max = max segment len of a FACE

    NETGENPlugin_Mesher aMesher( &aMesh, aShape, /*isVolume=*/false);
    aMesher.SetParameters( _hypParameters ); // _hypParameters -> netgen::mparam
    const bool toOptimize = _hypParameters ? _hypParameters->GetOptimize() : true;
    if ( _hypMaxElementArea )
    {
        netgen::mparam.maxh = sqrt( 2. * _hypMaxElementArea->GetMaxArea() / sqrt(3.0) );
    }
    if ( _hypQuadranglePreference )
        netgen::mparam.quad = true;

    // local size is common for all FACEs in aShape?
    const bool isCommonLocalSize = ( !_hypLengthFromEdges && !_hypMaxElementArea && netgen::mparam.uselocalh );
    const bool isDefaultHyp = ( !_hypLengthFromEdges && !_hypMaxElementArea && !_hypParameters );

    if ( isCommonLocalSize ) // compute common local size in ngMeshes[0]
    {
        //list< SMESH_subMesh* > meshedSM[4]; --> all sub-shapes are added to occgeoComm
        aMesher.PrepareOCCgeometry( occgeoComm, aShape, aMesh );//, meshedSM );

        // local size set at MESHCONST_ANALYSE step depends on
        // minh, face_maxh, grading and curvaturesafety; find minh if not set by the user
        if ( !_hypParameters || netgen::mparam.minh < DBL_MIN )
        {
            if ( !_hypParameters )
                netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam() / 3.;
            netgen::mparam.minh = aMesher.GetDefaultMinSize( aShape, netgen::mparam.maxh );
        }
        // set local size depending on curvature and NOT closeness of EDGEs
        netgen::occparam.resthcloseedgeenable = false;
        //netgen::occparam.resthcloseedgefac = 1.0 + netgen::mparam.grading;
        occgeoComm.face_maxh = netgen::mparam.maxh;
        netgen::OCCSetLocalMeshSize( occgeoComm, *ngMeshes[0] );
        occgeoComm.emap.Clear();
        occgeoComm.vmap.Clear();

        // set local size according to size of existing segments
        const double factor = netgen::occparam.resthcloseedgefac;
        TopTools_IndexedMapOfShape edgeMap;
        TopExp::MapShapes( aMesh.GetShapeToMesh(), TopAbs_EDGE, edgeMap );
        for ( int iE = 1; iE <= edgeMap.Extent(); ++iE )
        {
            const TopoDS_Shape& edge = edgeMap( iE );
            if ( SMESH_Algo::isDegenerated( TopoDS::Edge( edge ))/* ||
           helper.IsSubShape( edge, aShape )*/)
                continue;
            SMESHDS_SubMesh* smDS = meshDS->MeshElements( edge );
            if ( !smDS ) continue;
            SMDS_ElemIteratorPtr segIt = smDS->GetElements();
            while ( segIt->more() )
            {
                const SMDS_MeshElement* seg = segIt->next();
                SMESH_TNodeXYZ n1 = seg->GetNode(0);
                SMESH_TNodeXYZ n2 = seg->GetNode(1);
                gp_XYZ p = 0.5 * ( n1 + n2 );
                netgen::Point3d pi(p.X(), p.Y(), p.Z());
                ngMeshes[0]->RestrictLocalH( pi, factor * ( n1 - n2 ).Modulus() );
            }
        }
    }
    netgen::mparam.uselocalh = toOptimize; // restore as it is used at surface optimization

    // ==================
    // Loop on all FACEs
    // ==================

    vector< const SMDS_MeshNode* > nodeVec;

    TopExp_Explorer fExp( aShape, TopAbs_FACE );
    for ( int iF = 0; fExp.More(); fExp.Next(), ++iF )
    {
        TopoDS_Face F = TopoDS::Face( fExp.Current() /*.Oriented( TopAbs_FORWARD )*/);
        int    faceID = meshDS->ShapeToIndex( F );
        SMESH_ComputeErrorPtr& faceErr = aMesh.GetSubMesh( F )->GetComputeError();

        _quadraticMesh = helper.IsQuadraticSubMesh( F );
        const bool ignoreMediumNodes = _quadraticMesh;

        // build viscous layers if required
        if ( F.Orientation() != TopAbs_FORWARD &&
                F.Orientation() != TopAbs_REVERSED )
            F.Orientation( TopAbs_FORWARD ); // avoid pb with TopAbs_INTERNAL
        SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
        if ( !proxyMesh )
            continue;

        // ------------------------
        // get all EDGEs of a FACE
        // ------------------------
        TSideVector wires =
            StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, faceErr, proxyMesh );
        if ( faceErr && !faceErr->IsOK() )
            continue;
        int nbWires = wires.size();
        if ( nbWires == 0 )
        {
            faceErr.reset
            ( new SMESH_ComputeError
              ( COMPERR_ALGO_FAILED, "Problem in StdMeshers_FaceSide::GetFaceWires()" ));
            continue;
        }
        if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments
        {
            faceErr.reset
            ( new SMESH_ComputeError
              ( COMPERR_BAD_INPUT_MESH, SMESH_Comment("Too few segments: ")<<wires[0]->NbSegments()) );
            continue;
        }

        // ----------------------
        // compute maxh of a FACE
        // ----------------------

        if ( !_hypParameters )
        {
            double edgeLength = 0;
            if (_hypLengthFromEdges )
            {
                // compute edgeLength as an average segment length
                int nbSegments = 0;
                for ( int iW = 0; iW < nbWires; ++iW )
                {
                    edgeLength += wires[ iW ]->Length();
                    nbSegments += wires[ iW ]->NbSegments();
                }
                if ( nbSegments )
                    edgeLength /= nbSegments;
                netgen::mparam.maxh = edgeLength;
            }
            else if ( isDefaultHyp )
            {
                // set edgeLength by a longest segment
                double maxSeg2 = 0;
                for ( int iW = 0; iW < nbWires; ++iW )
                {
                    const UVPtStructVec& points = wires[ iW ]->GetUVPtStruct();
                    if ( points.empty() )
                        return error( COMPERR_BAD_INPUT_MESH );
                    gp_Pnt pPrev = SMESH_TNodeXYZ( points[0].node );
                    for ( size_t i = 1; i < points.size(); ++i )
                    {
                        gp_Pnt p = SMESH_TNodeXYZ( points[i].node );
                        maxSeg2 = Max( maxSeg2, p.SquareDistance( pPrev ));
                        pPrev = p;
                    }
                }
                edgeLength = sqrt( maxSeg2 ) * 1.05;
                netgen::mparam.maxh = edgeLength;
            }
            if ( netgen::mparam.maxh < DBL_MIN )
                netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam();

            if ( !isCommonLocalSize )
            {
                netgen::mparam.minh = aMesher.GetDefaultMinSize( F, netgen::mparam.maxh );
            }
        }

        // prepare occgeom
        netgen::OCCGeometry occgeom;
        occgeom.shape = F;
        occgeom.fmap.Add( F );
        occgeom.CalcBoundingBox();
        occgeom.facemeshstatus.SetSize(1);
        occgeom.facemeshstatus = 0;
        occgeom.face_maxh_modified.SetSize(1);
        occgeom.face_maxh_modified = 0;
        occgeom.face_maxh.SetSize(1);
        occgeom.face_maxh = netgen::mparam.maxh;

        // -------------------------
        // Fill netgen mesh
        // -------------------------

        // MESHCONST_ANALYSE step may lead to a failure, so we make an attempt
        // w/o MESHCONST_ANALYSE at the second loop
        int err = 0;
        enum { LOC_SIZE, NO_LOC_SIZE };
        int iLoop = isCommonLocalSize ? 0 : 1;
        for ( ; iLoop < 2; iLoop++ )
        {
            //bool isMESHCONST_ANALYSE = false;
            InitComputeError();

            netgen::Mesh * ngMesh = ngMeshes[ iLoop ];
            ngMesh->DeleteMesh();

            if ( iLoop == NO_LOC_SIZE )
            {
                ngMesh->SetGlobalH ( mparam.maxh );
                ngMesh->SetMinimalH( mparam.minh );
                Box<3> bb = occgeom.GetBoundingBox();
                bb.Increase (bb.Diam()/10);
                ngMesh->SetLocalH (bb.PMin(), bb.PMax(), mparam.grading);
            }

            nodeVec.clear();
            faceErr = aMesher.AddSegmentsToMesh( *ngMesh, occgeom, wires, helper, nodeVec,
                                                 /*overrideMinH=*/!_hypParameters);
            if ( faceErr && !faceErr->IsOK() )
                break;

            //if ( !isCommonLocalSize )
            //limitSize( ngMesh, mparam.maxh * 0.8);

            // -------------------------
            // Generate surface mesh
            // -------------------------

            const int startWith = MESHCONST_MESHSURFACE;
            const int endWith   = toOptimize ? MESHCONST_OPTSURFACE : MESHCONST_MESHSURFACE;

            SMESH_Comment str;
            try {
                OCC_CATCH_SIGNALS;

#if NETGEN_VERSION >=6
                std::shared_ptr<netgen::Mesh> mesh_ptr(ngMesh,  [](netgen::Mesh*) {});
                err = netgen::OCCGenerateMesh(occgeom, mesh_ptr, netgen::mparam, startWith, endWith);
#elif NETGEN_VERSION > 4
                err = netgen::OCCGenerateMesh(occgeom, ngMesh, netgen::mparam, startWith, endWith);
#else
                char *optstr = 0;
                err = netgen::OCCGenerateMesh(occgeom, ngMesh, startWith, endWith, optstr);
#endif
                if ( netgen::multithread.terminate )
                    return false;
                if ( err )
                    str << "Error in netgen::OCCGenerateMesh() at " << netgen::multithread.task;
            }
            catch (Standard_Failure& ex)
            {
                err = 1;
                str << "Exception in  netgen::OCCGenerateMesh()"
                    << " at " << netgen::multithread.task
                    << ": " << ex.DynamicType()->Name();
                if ( ex.GetMessageString() && strlen( ex.GetMessageString() ))
                    str << ": " << ex.GetMessageString();
            }
            catch (...) {
                err = 1;
                str << "Exception in  netgen::OCCGenerateMesh()"
                    << " at " << netgen::multithread.task;
            }
            if ( err )
            {
                if ( aMesher.FixFaceMesh( occgeom, *ngMesh, 1 ))
                    break;
                if ( iLoop == LOC_SIZE )
                {
                    netgen::mparam.minh = netgen::mparam.maxh;
                    netgen::mparam.maxh = 0;
                    for ( int iW = 0; iW < wires.size(); ++iW )
                    {
                        StdMeshers_FaceSidePtr wire = wires[ iW ];
                        const vector<UVPtStruct>& uvPtVec = wire->GetUVPtStruct();
                        for ( size_t iP = 1; iP < uvPtVec.size(); ++iP )
                        {
                            SMESH_TNodeXYZ   p( uvPtVec[ iP ].node );
                            netgen::Point3d np( p.X(),p.Y(),p.Z());
                            double segLen = p.Distance( uvPtVec[ iP-1 ].node );
                            double   size = ngMesh->GetH( np );
                            netgen::mparam.minh = Min( netgen::mparam.minh, size );
                            netgen::mparam.maxh = Max( netgen::mparam.maxh, segLen );
                        }
                    }
                    //cerr << "min " << netgen::mparam.minh << " max " << netgen::mparam.maxh << endl;
                    netgen::mparam.minh *= 0.9;
                    netgen::mparam.maxh *= 1.1;
                    continue;
                }
                else
                {
                    faceErr.reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED, str ));
                }
            }


            // ----------------------------------------------------
            // Fill the SMESHDS with the generated nodes and faces
            // ----------------------------------------------------

            int nbNodes = ngMesh->GetNP();
            int nbFaces = ngMesh->GetNSE();

            int nbInputNodes = nodeVec.size()-1;
            nodeVec.resize( nbNodes+1, 0 );

            // add nodes
            for ( int ngID = nbInputNodes + 1; ngID <= nbNodes; ++ngID )
            {
                const MeshPoint& ngPoint = ngMesh->Point( ngID );
                SMDS_MeshNode * node = meshDS->AddNode(ngPoint(0), ngPoint(1), ngPoint(2));
                nodeVec[ ngID ] = node;
            }

            // create faces
            int i,j;
            vector<const SMDS_MeshNode*> nodes;
            for ( i = 1; i <= nbFaces ; ++i )
            {
                const Element2d& elem = ngMesh->SurfaceElement(i);
                nodes.resize( elem.GetNP() );
                for (j=1; j <= elem.GetNP(); ++j)
                {
                    int pind = elem.PNum(j);
                    if ( pind < 1 )
                        break;
                    nodes[ j-1 ] = nodeVec[ pind ];
                    if ( nodes[ j-1 ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
                    {
                        const PointGeomInfo& pgi = elem.GeomInfoPi(j);
                        meshDS->SetNodeOnFace( nodes[ j-1 ], faceID, pgi.u, pgi.v);
                    }
                }
                if ( j > elem.GetNP() )
                {
                    SMDS_MeshFace* face = 0;
                    if ( elem.GetType() == TRIG )
                        face = helper.AddFace(nodes[0],nodes[1],nodes[2]);
                    else
                        face = helper.AddFace(nodes[0],nodes[1],nodes[2],nodes[3]);
                }
            }

            break;
        } // two attempts
    } // loop on FACEs

    return true;
}
bool StdMeshers_RadialPrism_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
  TopExp_Explorer exp;
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  myHelper = new SMESH_MesherHelper( aMesh );
  myHelper->IsQuadraticSubMesh( aShape );
  // to delete helper at exit from Compute()
  std::auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );

  // get 2 shells
  TopoDS_Solid solid = TopoDS::Solid( aShape );
  TopoDS_Shell outerShell = BRepClass3d::OuterShell( solid );
  TopoDS_Shape innerShell;
  int nbShells = 0;
  for ( TopoDS_Iterator It (solid); It.More(); It.Next(), ++nbShells )
    if ( !outerShell.IsSame( It.Value() ))
      innerShell = It.Value();
  if ( nbShells != 2 )
    return error(COMPERR_BAD_SHAPE, SMESH_Comment("Must be 2 shells but not ")<<nbShells);

  // ----------------------------------
  // Associate sub-shapes of the shells
  // ----------------------------------

  ProjectionUtils::TShapeShapeMap shape2ShapeMaps[2];
  bool mapOk1 = ProjectionUtils::FindSubShapeAssociation( innerShell, &aMesh,
                                                          outerShell, &aMesh,
                                                          shape2ShapeMaps[0]);
  bool mapOk2 = ProjectionUtils::FindSubShapeAssociation( innerShell.Reversed(), &aMesh,
                                                          outerShell, &aMesh,
                                                          shape2ShapeMaps[1]);
  if ( !mapOk1 && !mapOk2 )
    return error(COMPERR_BAD_SHAPE,"Topology of inner and outer shells seems different" );

  int iMap;
  if ( shape2ShapeMaps[0].Extent() == shape2ShapeMaps[1].Extent() )
  {
    // choose an assiciation by shortest distance between VERTEXes
    double dist1 = 0, dist2 = 0;
    TopTools_DataMapIteratorOfDataMapOfShapeShape ssIt( shape2ShapeMaps[0]._map1to2 );
    for (; ssIt.More(); ssIt.Next() )
    {
      if ( ssIt.Key().ShapeType() != TopAbs_VERTEX ) continue;
      gp_Pnt pIn   = BRep_Tool::Pnt( TopoDS::Vertex( ssIt.Key() ));
      gp_Pnt pOut1 = BRep_Tool::Pnt( TopoDS::Vertex( ssIt.Value() ));
      gp_Pnt pOut2 = BRep_Tool::Pnt( TopoDS::Vertex( shape2ShapeMaps[1]( ssIt.Key() )));
      dist1 += pIn.SquareDistance( pOut1 );
      dist2 += pIn.SquareDistance( pOut2 );
    }
    iMap = ( dist1 < dist2 ) ? 0 : 1;
  }
  else
  {
    iMap = ( shape2ShapeMaps[0].Extent() > shape2ShapeMaps[1].Extent() ) ? 0 : 1;
  }
  ProjectionUtils::TShapeShapeMap& shape2ShapeMap = shape2ShapeMaps[iMap];

  // ------------------
  // Make mesh
  // ------------------

  TNode2ColumnMap node2columnMap;
  myLayerPositions.clear();

  for ( exp.Init( outerShell, TopAbs_FACE ); exp.More(); exp.Next() )
  {
    // Corresponding sub-shapes
    TopoDS_Face outFace = TopoDS::Face( exp.Current() );
    TopoDS_Face inFace;
    if ( !shape2ShapeMap.IsBound( outFace, /*isOut=*/true )) {
      return error(SMESH_Comment("Corresponding inner face not found for face #" )
                   << meshDS->ShapeToIndex( outFace ));
    } else {
      inFace = TopoDS::Face( shape2ShapeMap( outFace, /*isOut=*/true ));
    }

    // Find matching nodes of in and out faces
    ProjectionUtils::TNodeNodeMap nodeIn2OutMap;
    if ( ! ProjectionUtils::FindMatchingNodesOnFaces( inFace, &aMesh, outFace, &aMesh,
                                                      shape2ShapeMap, nodeIn2OutMap ))
      return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #")
                   << meshDS->ShapeToIndex( outFace ) << " and "
                   << meshDS->ShapeToIndex( inFace ) << " seems different" );

    // Create volumes

    SMDS_ElemIteratorPtr faceIt = meshDS->MeshElements( inFace )->GetElements();
    while ( faceIt->more() ) // loop on faces on inFace
    {
      const SMDS_MeshElement* face = faceIt->next();
      if ( !face || face->GetType() != SMDSAbs_Face )
        continue;
      int nbNodes = face->NbNodes();
      if ( face->IsQuadratic() )
        nbNodes /= 2;

      // find node columns for each node
      vector< const TNodeColumn* > columns( nbNodes );
      for ( int i = 0; i < nbNodes; ++i )
      {
        const SMDS_MeshNode* nIn = face->GetNode( i );
        TNode2ColumnMap::iterator n_col = node2columnMap.find( nIn );
        if ( n_col != node2columnMap.end() ) {
          columns[ i ] = & n_col->second;
        }
        else {
          TNodeNodeMap::iterator nInOut = nodeIn2OutMap.find( nIn );
          if ( nInOut == nodeIn2OutMap.end() )
            RETURN_BAD_RESULT("No matching node for "<< nIn->GetID() <<
                              " in face "<< face->GetID());
          columns[ i ] = makeNodeColumn( node2columnMap, nIn, nInOut->second );
        }
      }

      StdMeshers_Prism_3D::AddPrisms( columns, myHelper );
    }
  } // loop on faces of out shell

  return true;
}
bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh&         aMesh,
                                               const TopoDS_Shape& aShape)
{
  TopExp_Explorer exp;
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  myHelper = new SMESH_MesherHelper( aMesh );
  myHelper->IsQuadraticSubMesh( aShape );
  // to delete helper at exit from Compute()
  auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );

  myLayerPositions.clear();

  TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
  int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
  if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
    return error(COMPERR_BAD_SHAPE);
  
  gp_Pnt P0,P1;
  // points for rotation
  TColgp_SequenceOfPnt Points;
  // angles for rotation
  TColStd_SequenceOfReal Angles;
  // Nodes1 and Nodes2 - nodes along radiuses
  // CNodes - nodes on circle edge
  vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes;
  SMDS_MeshNode * NC;
  // parameters edge nodes on face
  TColgp_SequenceOfPnt2d Pnts2d1;
  gp_Pnt2d PC;

  int faceID = meshDS->ShapeToIndex(aShape);
  TopoDS_Face F = TopoDS::Face(aShape);
  Handle(Geom_Surface) S = BRep_Tool::Surface(F);

  if(nbe==1)
  {
    Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));

    bool ok = _gen->Compute( aMesh, CircEdge );
    if( !ok ) return false;
    map< double, const SMDS_MeshNode* > theNodes;
    ok = GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
    if( !ok ) return false;

    CNodes.clear();
    map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
    const SMDS_MeshNode* NF = (*itn).second;
    CNodes.push_back( (*itn).second );
    double fang = (*itn).first;
    if ( itn != theNodes.end() ) {
      itn++;
      for(; itn != theNodes.end(); itn++ ) {
        CNodes.push_back( (*itn).second );
        double ang = (*itn).first - fang;
        if( ang>M_PI ) ang = ang - 2*M_PI;
        if( ang<-M_PI ) ang = ang + 2*M_PI;
        Angles.Append( ang ); 
      }
    }
    P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
    P0 = aCirc->Location();

    myLayerPositions.clear();
    computeLayerPositions(P0,P1);

    exp.Init( CircEdge, TopAbs_VERTEX );
    TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
    gp_Pnt2d p2dV = BRep_Tool::Parameters( V1, TopoDS::Face(aShape) );

    NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
    GeomAPI_ProjectPointOnSurf PPS(P0,S);
    double U0,V0;
    PPS.Parameters(1,U0,V0);
    meshDS->SetNodeOnFace(NC, faceID, U0, V0);
    PC = gp_Pnt2d(U0,V0);

    gp_Vec aVec(P0,P1);
    gp_Vec2d aVec2d(PC,p2dV);
    Nodes1.resize( myLayerPositions.size()+1 );
    Nodes2.resize( myLayerPositions.size()+1 );
    int i = 0;
    for(; i<myLayerPositions.size(); i++) {
      gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
                P0.Y() + aVec.Y()*myLayerPositions[i],
                P0.Z() + aVec.Z()*myLayerPositions[i] );
      Points.Append(P);
      SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
      Nodes1[i] = node;
      Nodes2[i] = node;
      double U = PC.X() + aVec2d.X()*myLayerPositions[i];
      double V = PC.Y() + aVec2d.Y()*myLayerPositions[i];
      meshDS->SetNodeOnFace( node, faceID, U, V );
      Pnts2d1.Append(gp_Pnt2d(U,V));
    }
    Nodes1[Nodes1.size()-1] = NF;
    Nodes2[Nodes1.size()-1] = NF;
  }
  else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL )
  {
    // one curve must be a half of circle and other curve must be
    // a segment of line
    double fp, lp;
    Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
    if( fabs(fabs(lp-fp)-M_PI) > Precision::Confusion() ) {
      // not half of circle
      return error(COMPERR_BAD_SHAPE);
    }
    Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
    if( aLine.IsNull() ) {
      // other curve not line
      return error(COMPERR_BAD_SHAPE);
    }
    bool linEdgeComputed = false;
    if( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1) ) {
      if( !sm1->IsEmpty() ) {
        if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
          linEdgeComputed = true;
        else
          return error("Invalid set of hypotheses");
      }
    }

    bool ok = _gen->Compute( aMesh, CircEdge );
    if( !ok ) return false;
    map< double, const SMDS_MeshNode* > theNodes;
    GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);

    CNodes.clear();
    map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
    double fang = (*itn).first;
    itn++;
    for(; itn != theNodes.end(); itn++ ) {
      CNodes.push_back( (*itn).second );
      double ang = (*itn).first - fang;
      if( ang>M_PI ) ang = ang - 2*M_PI;
      if( ang<-M_PI ) ang = ang + 2*M_PI;
      Angles.Append( ang );
    }
    const SMDS_MeshNode* NF = theNodes.begin()->second;
    const SMDS_MeshNode* NL = theNodes.rbegin()->second;
    CNodes.push_back( NF );
    P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
    gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
    P0 = aCirc->Location();

    myLayerPositions.clear();
    computeLayerPositions(P0,P1);

    if ( linEdgeComputed )
    {
      if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
        return error("Invalid mesh on a straight edge");

      vector< const SMDS_MeshNode* > *pNodes1 = &Nodes1, *pNodes2 = &Nodes2;
      bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
      if ( !nodesFromP0ToP1 ) std::swap( pNodes1, pNodes2 );

      map< double, const SMDS_MeshNode* >::reverse_iterator ritn = theNodes.rbegin();
      itn = theNodes.begin();
      for ( int i = Nodes1.size()-1; i > -1; ++itn, ++ritn, --i )
      {
        (*pNodes1)[i] = ritn->second;
        (*pNodes2)[i] =  itn->second;
        Points.Append( gpXYZ( Nodes1[i]));
        Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i]));
      }
      NC = const_cast<SMDS_MeshNode*>( itn->second );
      Points.Remove( Nodes1.size() );
    }
    else
    {
      gp_Vec aVec(P0,P1);
      int edgeID = meshDS->ShapeToIndex(LinEdge1);
      // check orientation
      Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
      gp_Pnt Ptmp;
      Crv->D0(fp,Ptmp);
      bool ori = true;
      if( P1.Distance(Ptmp) > Precision::Confusion() )
        ori = false;
      // get UV points for edge
      gp_Pnt2d PF,PL;
      BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
      PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 );
      gp_Vec2d V2d;
      if(ori) V2d = gp_Vec2d(PC,PF);
      else V2d = gp_Vec2d(PC,PL);
      // add nodes on edge
      double cp = (fp+lp)/2;
      double dp2 = (lp-fp)/2;
      NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
      meshDS->SetNodeOnEdge(NC, edgeID, cp);
      Nodes1.resize( myLayerPositions.size()+1 );
      Nodes2.resize( myLayerPositions.size()+1 );
      int i = 0;
      for(; i<myLayerPositions.size(); i++) {
        gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
                  P0.Y() + aVec.Y()*myLayerPositions[i],
                  P0.Z() + aVec.Z()*myLayerPositions[i] );
        Points.Append(P);
        SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
        Nodes1[i] = node;
        double param;
        if(ori)
          param = fp + dp2*(1-myLayerPositions[i]);
        else
          param = cp + dp2*myLayerPositions[i];
        meshDS->SetNodeOnEdge(node, edgeID, param);
        P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i],
                    P0.Y() - aVec.Y()*myLayerPositions[i],
                    P0.Z() - aVec.Z()*myLayerPositions[i] );
        node = meshDS->AddNode(P.X(), P.Y(), P.Z());
        Nodes2[i] = node;
        if(!ori)
          param = fp + dp2*(1-myLayerPositions[i]);
        else
          param = cp + dp2*myLayerPositions[i];
        meshDS->SetNodeOnEdge(node, edgeID, param);
        // parameters on face
        gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
                      PC.Y() + V2d.Y()*myLayerPositions[i] );
        Pnts2d1.Append(P2d);
      }
      Nodes1[ myLayerPositions.size() ] = NF;
      Nodes2[ myLayerPositions.size() ] = NL;
      // create 1D elements on edge
      vector< const SMDS_MeshNode* > tmpNodes;
      tmpNodes.resize(2*Nodes1.size()+1);
      for(i=0; i<Nodes2.size(); i++)
        tmpNodes[Nodes2.size()-i-1] = Nodes2[i];
      tmpNodes[Nodes2.size()] = NC;
      for(i=0; i<Nodes1.size(); i++)
        tmpNodes[Nodes2.size()+1+i] = Nodes1[i];
      for(i=1; i<tmpNodes.size(); i++) {
        SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
        if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
      }
      markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
    }
  }
  else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
  {
    if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
      LinEdge2 = LinEdge1;

    // one curve must be a part of circle and other curves must be
    // segments of line
    double fp, lp;
    Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
    Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
    Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
    if( aLine1.IsNull() || aLine2.IsNull() ) {
      // other curve not line
      return error(COMPERR_BAD_SHAPE);
    }

    bool linEdge1Computed = false;
    if ( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1))
      if( !sm1->IsEmpty() ) {
        if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
          linEdge1Computed = true;
        else
          return error("Invalid set of hypotheses");
      }
    bool linEdge2Computed = false;
    if ( SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2))
      if( !sm2->IsEmpty() ) {
        if( isEdgeCompitaballyMeshed( LinEdge2, aMesh.GetSubMesh(F)  ))
          linEdge2Computed = true;
        else
          return error("Invalid set of hypotheses");
      }
    bool ok = _gen->Compute( aMesh, CircEdge );
    if( !ok ) return false;
    map< double, const SMDS_MeshNode* > theNodes;
    GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);

    const SMDS_MeshNode* NF = theNodes.begin()->second;
    const SMDS_MeshNode* NL = theNodes.rbegin()->second;
    CNodes.clear();
    CNodes.push_back( NF );
    map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
    double fang = (*itn).first;
    itn++;
    for(; itn != theNodes.end(); itn++ ) {
      CNodes.push_back( (*itn).second );
      double ang = (*itn).first - fang;
      if( ang>M_PI ) ang = ang - 2*M_PI;
      if( ang<-M_PI ) ang = ang + 2*M_PI;
      Angles.Append( ang );
    }
    P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
    gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
    P0 = aCirc->Location();

    myLayerPositions.clear();
    computeLayerPositions(P0,P1);

    Nodes1.resize( myLayerPositions.size()+1 );
    Nodes2.resize( myLayerPositions.size()+1 );

    exp.Init( LinEdge1, TopAbs_VERTEX );
    TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
    exp.Next();
    TopoDS_Vertex V2 = TopoDS::Vertex( exp.Current() );
    gp_Pnt PE1 = BRep_Tool::Pnt(V1);
    gp_Pnt PE2 = BRep_Tool::Pnt(V2);
    if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
        ( P1.Distance(PE2) > Precision::Confusion() ) )
    {
      std::swap( LinEdge1, LinEdge2 );
      std::swap( linEdge1Computed, linEdge2Computed );
    }
    TopoDS_Vertex VC = V2;
    if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
        ( P2.Distance(PE1) > Precision::Confusion() ) )
      VC = V1;
    int vertID = meshDS->ShapeToIndex(VC);

    // LinEdge1
    if ( linEdge1Computed )
    {
      if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
        return error("Invalid mesh on a straight edge");

      bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
      NC = const_cast<SMDS_MeshNode*>
        ( nodesFromP0ToP1 ? theNodes.begin()->second : theNodes.rbegin()->second );
      int i = 0, ir = Nodes1.size()-1;
      int * pi = nodesFromP0ToP1 ? &i : &ir;
      itn = theNodes.begin();
      if ( nodesFromP0ToP1 ) ++itn;
      for ( ; i < Nodes1.size(); ++i, --ir, ++itn )
      {
        Nodes1[*pi] = itn->second;
      }
      for ( i = 0; i < Nodes1.size()-1; ++i )
      {
        Points.Append( gpXYZ( Nodes1[i]));
        Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i]));
      }
    }
    else
    {
      int edgeID = meshDS->ShapeToIndex(LinEdge1);
      gp_Vec aVec(P0,P1);
      // check orientation
      Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
      gp_Pnt Ptmp = Crv->Value(fp);
      bool ori = false;
      if( P1.Distance(Ptmp) > Precision::Confusion() )
        ori = true;
      // get UV points for edge
      gp_Pnt2d PF,PL;
      BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
      gp_Vec2d V2d;
      if(ori) {
        V2d = gp_Vec2d(PF,PL);
        PC = PF;
      }
      else {
        V2d = gp_Vec2d(PL,PF);
        PC = PL;
      }
      NC = const_cast<SMDS_MeshNode*>( VertexNode( VC, meshDS ));
      if ( !NC )
      {
        NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
        meshDS->SetNodeOnVertex(NC, vertID);
      }
      double dp = lp-fp;
      int i = 0;
      for(; i<myLayerPositions.size(); i++) {
        gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
                  P0.Y() + aVec.Y()*myLayerPositions[i],
                  P0.Z() + aVec.Z()*myLayerPositions[i] );
        Points.Append(P);
        SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
        Nodes1[i] = node;
        double param;
        if(!ori)
          param = fp + dp*(1-myLayerPositions[i]);
        else
          param = fp + dp*myLayerPositions[i];
        meshDS->SetNodeOnEdge(node, edgeID, param);
        // parameters on face
        gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
                      PC.Y() + V2d.Y()*myLayerPositions[i] );
        Pnts2d1.Append(P2d);
      }
      Nodes1[ myLayerPositions.size() ] = NF;
      // create 1D elements on edge
      SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] );
      if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
      for(i=1; i<Nodes1.size(); i++) {
        ME = myHelper->AddEdge( Nodes1[i-1], Nodes1[i] );
        if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
      }
      if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
        Nodes2 = Nodes1;
    }
    markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));

    // LinEdge2
    if ( linEdge2Computed )
    {
      if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge2,true,theNodes))
        return error("Invalid mesh on a straight edge");

      bool nodesFromP0ToP2 = ( theNodes.rbegin()->second == NL );
      int i = 0, ir = Nodes1.size()-1;
      int * pi = nodesFromP0ToP2 ? &i : &ir;
      itn = theNodes.begin();
      if ( nodesFromP0ToP2 ) ++itn;
      for ( ; i < Nodes2.size(); ++i, --ir, ++itn )
        Nodes2[*pi] = itn->second;
    }
    else
    {
      int edgeID = meshDS->ShapeToIndex(LinEdge2);
      gp_Vec aVec = gp_Vec(P0,P2);
      // check orientation
      Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge2,fp,lp);
      gp_Pnt Ptmp = Crv->Value(fp);
      bool ori = false;
      if( P2.Distance(Ptmp) > Precision::Confusion() )
        ori = true;
      // get UV points for edge
      gp_Pnt2d PF,PL;
      BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL );
      gp_Vec2d V2d;
      if(ori) {
        V2d = gp_Vec2d(PF,PL);
        PC = PF;
      }
      else {
        V2d = gp_Vec2d(PL,PF);
        PC = PL;
      }
      double dp = lp-fp;
      for(int i=0; i<myLayerPositions.size(); i++) {
        gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
                  P0.Y() + aVec.Y()*myLayerPositions[i],
                  P0.Z() + aVec.Z()*myLayerPositions[i] );
        SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
        Nodes2[i] = node;
        double param;
        if(!ori)
          param = fp + dp*(1-myLayerPositions[i]);
        else
          param = fp + dp*myLayerPositions[i];
        meshDS->SetNodeOnEdge(node, edgeID, param);
        // parameters on face
        gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
                      PC.Y() + V2d.Y()*myLayerPositions[i] );
      }
      Nodes2[ myLayerPositions.size() ] = NL;
      // create 1D elements on edge
      SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes2[0] );
      if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
      for(int i=1; i<Nodes2.size(); i++) {
        ME = myHelper->AddEdge( Nodes2[i-1], Nodes2[i] );
        if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
      }
    }
    markLinEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
  }

  // orientation
  bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD );

  // create nodes and mesh elements on face
  // find axis of rotation
  gp_Pnt P2 = gp_Pnt( CNodes[1]->X(), CNodes[1]->Y(), CNodes[1]->Z() );
  gp_Vec Vec1(P0,P1);
  gp_Vec Vec2(P0,P2);
  gp_Vec Axis = Vec1.Crossed(Vec2);
  // create elements
  int i = 1;
  //cout<<"Angles.Length() = "<<Angles.Length()<<"   Points.Length() = "<<Points.Length()<<endl;
  //cout<<"Nodes1.size() = "<<Nodes1.size()<<"   Pnts2d1.Length() = "<<Pnts2d1.Length()<<endl;
  for(; i<Angles.Length(); i++) {
    vector< const SMDS_MeshNode* > tmpNodes;
    tmpNodes.reserve(Nodes1.size());
    gp_Trsf aTrsf;
    gp_Ax1 theAxis(P0,gp_Dir(Axis));
    aTrsf.SetRotation( theAxis, Angles.Value(i) );
    gp_Trsf2d aTrsf2d;
    aTrsf2d.SetRotation( PC, Angles.Value(i) );
    // create nodes
    int j = 1;
    for(; j<=Points.Length(); j++) {
      double cx,cy,cz;
      Points.Value(j).Coord( cx, cy, cz );
      aTrsf.Transforms( cx, cy, cz );
      SMDS_MeshNode* node = myHelper->AddNode( cx, cy, cz );
      // find parameters on face
      Pnts2d1.Value(j).Coord( cx, cy );
      aTrsf2d.Transforms( cx, cy );
      // set node on face
      meshDS->SetNodeOnFace( node, faceID, cx, cy );
      tmpNodes[j-1] = node;
    }
    // create faces
    tmpNodes[Points.Length()] = CNodes[i];
    // quad
    for(j=0; j<Nodes1.size()-1; j++) {
      SMDS_MeshFace* MF;
      if(IsForward)
        MF = myHelper->AddFace( tmpNodes[j], Nodes1[j],
                                Nodes1[j+1], tmpNodes[j+1] );
      else
        MF = myHelper->AddFace( tmpNodes[j], tmpNodes[j+1],
                                Nodes1[j+1], Nodes1[j] );
      if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
    }
    // tria
    SMDS_MeshFace* MF;
    if(IsForward)
      MF = myHelper->AddFace( NC, Nodes1[0], tmpNodes[0] );
    else
      MF = myHelper->AddFace( NC, tmpNodes[0], Nodes1[0] );
    if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
    for(j=0; j<Nodes1.size(); j++) {
      Nodes1[j] = tmpNodes[j];
    }
  }
  // create last faces
  // quad
  for(i=0; i<Nodes1.size()-1; i++) {
    SMDS_MeshFace* MF;
    if(IsForward)
      MF = myHelper->AddFace( Nodes2[i], Nodes1[i],
                              Nodes1[i+1], Nodes2[i+1] );
    else
      MF = myHelper->AddFace( Nodes2[i],  Nodes2[i+1],
                              Nodes1[i+1], Nodes1[i] );
    if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
  }
  // tria
  SMDS_MeshFace* MF;
  if(IsForward)
    MF = myHelper->AddFace( NC, Nodes1[0], Nodes2[0] );
  else
    MF = myHelper->AddFace( NC, Nodes2[0], Nodes1[0] );
  if(MF) meshDS->SetMeshElementOnShape(MF, faceID);

  return true;
}
PyObject* FemMeshPy::addVolume(PyObject *args)
{
    SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
    SMESHDS_Mesh* meshDS = mesh->GetMeshDS();

    int n1,n2,n3,n4;
    if (PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
    {
        try {
            const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
            const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
            const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
            const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
            if (!node1 || !node2 || !node3 || !node4)
                throw std::runtime_error("Failed to get node of the given indices");
            SMDS_MeshVolume* vol = meshDS->AddVolume(node1, node2, node3, node4);
            if (!vol)
                throw std::runtime_error("Failed to add volume");
            return Py::new_reference_to(Py::Int(vol->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    PyObject *obj;
    int ElementId=-1;
    if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
    {
        Py::List list(obj);
        std::vector<const SMDS_MeshNode*> Nodes;
        for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
            Py::Int NoNr(*it);
            const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
            if (!node)
                throw std::runtime_error("Failed to get node of the given indices");
            Nodes.push_back(node);
        }
        
        SMDS_MeshVolume* vol=0;
        if(ElementId != -1) {
            switch(Nodes.size()){
                case 4:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet4 volume");
                    break;
                case 8:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume");
                    break;
                case 10:
                    vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],ElementId);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume");
                    break;

                default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|18] are allowed"); //unknown face type
            }
        }else{
            switch(Nodes.size()){
                case 4:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet4 volume");
                    break;
                case 8:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume");
                    break;
                case 10:
                    vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9]);
                    if (!vol)
                        throw std::runtime_error("Failed to add Tet10 volume");
                    break;

                default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|18] are allowed"); //unknown face type
            }

        }

        return Py::new_reference_to(Py::Int(vol->GetID()));

    }

    PyErr_SetString(PyExc_TypeError, "Line constructor accepts:\n"
        "-- empty parameter list\n"
        "-- Line\n"
        "-- Point, Point");
    return 0;

}
PyObject* FemMeshPy::addFace(PyObject *args)
{
    SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
    SMESHDS_Mesh* meshDS = mesh->GetMeshDS();

    int n1,n2,n3;
    if (PyArg_ParseTuple(args, "iii",&n1,&n2,&n3))
    {
        // old form, debrekadet
        try {
            const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
            const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
            const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
            if (!node1 || !node2 || !node3)
                throw std::runtime_error("Failed to get node of the given indices");
            SMDS_MeshFace* face = meshDS->AddFace(node1, node2, node3);
            if (!face)
                throw std::runtime_error("Failed to add face");
            return Py::new_reference_to(Py::Int(face->GetID()));
        }
        catch (const std::exception& e) {
            PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
            return 0;
        }
    }
    PyErr_Clear();

    PyObject *obj;
    int ElementId=-1;
    if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
    {
        Py::List list(obj);
        std::vector<const SMDS_MeshNode*> Nodes;
        for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
            Py::Int NoNr(*it);
            const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
            if (!node)
                throw std::runtime_error("Failed to get node of the given indices");
            Nodes.push_back(node);
        }
        
        SMDS_MeshFace* face=0;
        switch(Nodes.size()){
            case 3:
                face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2]);
                if (!face)
                    throw std::runtime_error("Failed to add triangular face");
                break;

            default: throw std::runtime_error("Unknown node count, [3|4|6|8] are allowed"); //unknown face type
        }

        return Py::new_reference_to(Py::Int(face->GetID()));

    }

    PyErr_SetString(PyExc_TypeError, "Line constructor accepts:\n"
        "-- empty parameter list\n"
        "-- Line\n"
        "-- Point, Point");
    return 0;

}
Example #20
0
bool StdMeshers_Projection_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
  if ( !_sourceHypo )
    return false;

  SMESH_Mesh * srcMesh = _sourceHypo->GetSourceMesh();
  SMESH_Mesh * tgtMesh = & aMesh;
  if ( !srcMesh )
    srcMesh = tgtMesh;

  SMESHDS_Mesh * srcMeshDS = srcMesh->GetMeshDS();
  SMESHDS_Mesh * tgtMeshDS = tgtMesh->GetMeshDS();

  // get shell from shape3D
  TopoDS_Shell srcShell, tgtShell;
  TopExp_Explorer exp( _sourceHypo->GetSource3DShape(), TopAbs_SHELL );
  int nbShell;
  for ( nbShell = 0; exp.More(); exp.Next(), ++nbShell )
    srcShell = TopoDS::Shell( exp.Current() );
  if ( nbShell != 1 )
    return error(COMPERR_BAD_SHAPE,
                 SMESH_Comment("Source shape must have 1 shell but not ") << nbShell);

  exp.Init( aShape, TopAbs_SHELL );
  for ( nbShell = 0; exp.More(); exp.Next(), ++nbShell )
    tgtShell = TopoDS::Shell( exp.Current() );
  if ( nbShell != 1 )
    return error(COMPERR_BAD_SHAPE,
                 SMESH_Comment("Target shape must have 1 shell but not ") << nbShell);

  // Check that shapes are blocks
  if ( TAssocTool::Count( tgtShell, TopAbs_FACE , 1 ) != 6 ||
       TAssocTool::Count( tgtShell, TopAbs_EDGE , 1 ) != 12 ||
       TAssocTool::Count( tgtShell, TopAbs_WIRE , 1 ) != 6 )
    return error(COMPERR_BAD_SHAPE, "Target shape is not a block");
  if ( TAssocTool::Count( srcShell, TopAbs_FACE , 1 ) != 6 ||
       TAssocTool::Count( srcShell, TopAbs_EDGE , 1 ) != 12 ||
       TAssocTool::Count( srcShell, TopAbs_WIRE , 1 ) != 6 )
    return error(COMPERR_BAD_SHAPE, "Source shape is not a block");

  // Assure that mesh on a source shape is computed

  SMESH_subMesh* srcSubMesh = srcMesh->GetSubMesh( _sourceHypo->GetSource3DShape() );
  //SMESH_subMesh* tgtSubMesh = tgtMesh->GetSubMesh( aShape );

  if ( tgtMesh == srcMesh && !aShape.IsSame( _sourceHypo->GetSource3DShape() )) {
    if ( !TAssocTool::MakeComputed( srcSubMesh ))
      return error(COMPERR_BAD_INPUT_MESH,"Source mesh not computed");
  }
  else {
    if ( !srcSubMesh->IsMeshComputed() )
      return error(COMPERR_BAD_INPUT_MESH,"Source mesh not computed");
  }

  // Find 2 pairs of corresponding vertices

  TopoDS_Vertex tgtV000, tgtV100, srcV000, srcV100;
  TAssocTool::TShapeShapeMap shape2ShapeMap;

  if ( _sourceHypo->HasVertexAssociation() )
  {
    tgtV000 = _sourceHypo->GetTargetVertex(1);
    tgtV100 = _sourceHypo->GetTargetVertex(2);
    srcV000 = _sourceHypo->GetSourceVertex(1);
    srcV100 = _sourceHypo->GetSourceVertex(2);
  }
  else
  {
    if ( !TAssocTool::FindSubShapeAssociation( tgtShell, tgtMesh, srcShell, srcMesh,
                                               shape2ShapeMap) )
      return error(COMPERR_BAD_SHAPE,"Topology of source and target shapes seems different" );

    exp.Init( tgtShell, TopAbs_EDGE );
    TopExp::Vertices( TopoDS::Edge( exp.Current() ), tgtV000, tgtV100 );

    if ( !shape2ShapeMap.IsBound( tgtV000 ) || !shape2ShapeMap.IsBound( tgtV100 ))
      return error("Association of subshapes failed" );
    srcV000 = TopoDS::Vertex( shape2ShapeMap( tgtV000 ));
    srcV100 = TopoDS::Vertex( shape2ShapeMap( tgtV100 ));
    if ( !TAssocTool::IsSubShape( srcV000, srcShell ) ||
         !TAssocTool::IsSubShape( srcV100, srcShell ))
      return error("Incorrect association of subshapes" );
  }

  // Load 2 SMESH_Block's with src and tgt shells

  SMESH_Block srcBlock, tgtBlock;
  TopTools_IndexedMapOfOrientedShape scrShapes, tgtShapes;
  if ( !tgtBlock.LoadBlockShapes( tgtShell, tgtV000, tgtV100, tgtShapes ))
    return error(COMPERR_BAD_SHAPE, "Can't detect block subshapes. Not a block?");

  if ( !srcBlock.LoadBlockShapes( srcShell, srcV000, srcV100, scrShapes ))
    return error(COMPERR_BAD_SHAPE, "Can't detect block subshapes. Not a block?");

  // Find matching nodes of src and tgt shells

  TNodeNodeMap src2tgtNodeMap;
  for ( int fId = SMESH_Block::ID_FirstF; fId < SMESH_Block::ID_Shell; ++fId )
  {
    // Corresponding subshapes
    TopoDS_Face srcFace = TopoDS::Face( scrShapes( fId ));
    TopoDS_Face tgtFace = TopoDS::Face( tgtShapes( fId ));
    if ( _sourceHypo->HasVertexAssociation() ) { // associate face subshapes
      shape2ShapeMap.Clear();
      vector< int > edgeIdVec;
      SMESH_Block::GetFaceEdgesIDs( fId, edgeIdVec );
      for ( int i = 0; i < edgeIdVec.size(); ++i ) {
        int eID = edgeIdVec[ i ];
        shape2ShapeMap.Bind( tgtShapes( eID ), scrShapes( eID ));
        if ( i < 2 ) {
          vector< int > vertexIdVec;
          SMESH_Block::GetEdgeVertexIDs( eID, vertexIdVec );
          shape2ShapeMap.Bind( tgtShapes( vertexIdVec[0] ), scrShapes( vertexIdVec[0] ));
          shape2ShapeMap.Bind( tgtShapes( vertexIdVec[1] ), scrShapes( vertexIdVec[1] ));
        }
      }
    }
    // Find matching nodes of tgt and src faces
    TNodeNodeMap faceMatchingNodes;
    if ( ! TAssocTool::FindMatchingNodesOnFaces( srcFace, srcMesh, tgtFace, tgtMesh, 
                                                 shape2ShapeMap, faceMatchingNodes ))
    return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #")
                 << srcMeshDS->ShapeToIndex( srcFace ) << " and "
                 << tgtMeshDS->ShapeToIndex( tgtFace ) << " seems different" );

    // put found matching nodes of 2 faces to the global map
    src2tgtNodeMap.insert( faceMatchingNodes.begin(), faceMatchingNodes.end() );
  }

  // ------------------
  // Make mesh
  // ------------------

  SMDS_VolumeTool volTool;
  SMESH_MesherHelper helper( *tgtMesh );
  helper.IsQuadraticSubMesh( aShape );

  SMESHDS_SubMesh* srcSMDS = srcSubMesh->GetSubMeshDS();
  SMDS_ElemIteratorPtr volIt = srcSMDS->GetElements();
  while ( volIt->more() ) // loop on source volumes
  {
    const SMDS_MeshElement* srcVol = volIt->next();
    if ( !srcVol || srcVol->GetType() != SMDSAbs_Volume )
        continue;
    int nbNodes = srcVol->NbNodes();
    SMDS_VolumeTool::VolumeType  volType = volTool.GetType( nbNodes );
    if ( srcVol->IsQuadratic() )
      nbNodes = volTool.NbCornerNodes( volType );

    // Find or create a new tgt node for each node of a src volume

    vector< const SMDS_MeshNode* > nodes( nbNodes );
    for ( int i = 0; i < nbNodes; ++i )
    {
      const SMDS_MeshNode* srcNode = srcVol->GetNode( i );
      const SMDS_MeshNode* tgtNode = 0;
      TNodeNodeMap::iterator sN_tN = src2tgtNodeMap.find( srcNode );
      if ( sN_tN != src2tgtNodeMap.end() ) // found
      {
        tgtNode = sN_tN->second;
      }
      else // Create a new tgt node
      {
        // compute normalized parameters of source node in srcBlock
        gp_Pnt srcCoord = gpXYZ( srcNode );
        gp_XYZ srcParam;
        if ( !srcBlock.ComputeParameters( srcCoord, srcParam ))
          return error(SMESH_Comment("Can't compute normalized parameters ")
                       << "for source node " << srcNode->GetID());
        // compute coordinates of target node by srcParam
        gp_XYZ tgtXYZ;
        if ( !tgtBlock.ShellPoint( srcParam, tgtXYZ ))
          return error("Can't compute coordinates by normalized parameters");
        // add node
        SMDS_MeshNode* newNode = tgtMeshDS->AddNode( tgtXYZ.X(), tgtXYZ.Y(), tgtXYZ.Z() );
        tgtMeshDS->SetNodeInVolume( newNode, helper.GetSubShapeID() );
        tgtNode = newNode;
        src2tgtNodeMap.insert( make_pair( srcNode, tgtNode ));
      }
      nodes[ i ] = tgtNode;
    }

    // Create a new volume

    SMDS_MeshVolume * tgtVol = 0;
    int id = 0, force3d = false;
    switch ( volType ) {
    case SMDS_VolumeTool::TETRA     :
    case SMDS_VolumeTool::QUAD_TETRA:
      tgtVol = helper.AddVolume( nodes[0],
                                 nodes[1],
                                 nodes[2],
                                 nodes[3], id, force3d); break;
    case SMDS_VolumeTool::PYRAM     :
    case SMDS_VolumeTool::QUAD_PYRAM:
      tgtVol = helper.AddVolume( nodes[0],
                                 nodes[1],
                                 nodes[2],
                                 nodes[3],
                                 nodes[4], id, force3d); break;
    case SMDS_VolumeTool::PENTA     :
    case SMDS_VolumeTool::QUAD_PENTA:
      tgtVol = helper.AddVolume( nodes[0],
                                 nodes[1],
                                 nodes[2],
                                 nodes[3],
                                 nodes[4],
                                 nodes[5], id, force3d); break;
    case SMDS_VolumeTool::HEXA      :
    case SMDS_VolumeTool::QUAD_HEXA :
      tgtVol = helper.AddVolume( nodes[0],
                                 nodes[1],
                                 nodes[2],
                                 nodes[3],
                                 nodes[4],
                                 nodes[5],
                                 nodes[6],
                                 nodes[7], id, force3d); break;
    default: // polyhedron
      const SMDS_PolyhedralVolumeOfNodes * poly =
        dynamic_cast<const SMDS_PolyhedralVolumeOfNodes*>( srcVol );
      if ( !poly )
        RETURN_BAD_RESULT("Unexpected volume type");
      tgtVol = tgtMeshDS->AddPolyhedralVolume( nodes, poly->GetQuanities() );
    }
    if ( tgtVol ) {
      tgtMeshDS->SetMeshElementOnShape( tgtVol, helper.GetSubShapeID() );
    }
  } // loop on volumes of src shell

  return true;
}
bool NETGENPlugin_NETGEN_2D_ONLY::Compute(SMESH_Mesh&         aMesh,
                                          const TopoDS_Shape& aShape)
{
  MESSAGE("NETGENPlugin_NETGEN_2D_ONLY::Compute()");

  SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
  int faceID = meshDS->ShapeToIndex( aShape );

  SMESH_MesherHelper helper(aMesh);
  _quadraticMesh = helper.IsQuadraticSubMesh(aShape);
  helper.SetElementsOnShape( true );
  const bool ignoreMediumNodes = _quadraticMesh;
  
  // ------------------------
  // get all edges of a face
  // ------------------------
  const TopoDS_Face F = TopoDS::Face( aShape.Oriented( TopAbs_FORWARD ));
  TError problem;
  TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, problem );
  if ( problem && !problem->IsOK() )
    return error( problem );
  int nbWires = wires.size();
  if ( nbWires == 0 )
    return error( "Problem in StdMeshers_FaceSide::GetFaceWires()");
  if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments
    return error(COMPERR_BAD_INPUT_MESH,
                 SMESH_Comment("Too few segments: ")<<wires[0]->NbSegments());

  // -------------------------
  // Make input netgen mesh
  // -------------------------

  Ng_Init();
  netgen::Mesh * ngMesh = new netgen::Mesh ();

  netgen::OCCGeometry occgeo;
  NETGENPlugin_Mesher::PrepareOCCgeometry( occgeo, F, aMesh );
  occgeo.fmap.Clear(); // face can be reversed, which is wrong in this case (issue 19978)
  occgeo.fmap.Add( F );

  vector< const SMDS_MeshNode* > nodeVec;
  problem = AddSegmentsToMesh( *ngMesh, occgeo, wires, helper, nodeVec );
  if ( problem && !problem->IsOK() ) {
    delete ngMesh; Ng_Exit();
    return error( problem );
  }

  // --------------------
  // compute edge length
  // --------------------

  double edgeLength = 0;
  if (_hypLengthFromEdges || (!_hypLengthFromEdges && !_hypMaxElementArea))
  {
    int nbSegments = 0;
    for ( int iW = 0; iW < nbWires; ++iW )
    {
      edgeLength += wires[ iW ]->Length();
      nbSegments += wires[ iW ]->NbSegments();
    }
    if ( nbSegments )
      edgeLength /= nbSegments;
  }
  if ( _hypMaxElementArea )
  {
    double maxArea = _hypMaxElementArea->GetMaxArea();
    edgeLength = sqrt(2. * maxArea/sqrt(3.0));
  }
  if ( edgeLength < DBL_MIN )
    edgeLength = occgeo.GetBoundingBox().Diam();

  //cout << " edgeLength = " << edgeLength << endl;

  netgen::mparam.maxh = edgeLength;
  netgen::mparam.quad = _hypQuadranglePreference ? 1 : 0;
  //ngMesh->SetGlobalH ( edgeLength );

  // -------------------------
  // Generate surface mesh
  // -------------------------

  char *optstr = 0;
  int startWith = MESHCONST_MESHSURFACE;
  int endWith   = MESHCONST_OPTSURFACE;
  int err = 1;

  try {
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
    OCC_CATCH_SIGNALS;
#endif
#ifdef NETGEN_V5
    err = netgen::OCCGenerateMesh(occgeo, ngMesh,netgen::mparam, startWith, endWith);
#else
    err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
#endif
  }
  catch (Standard_Failure& ex) {
    string comment = ex.DynamicType()->Name();
    if ( ex.GetMessageString() && strlen( ex.GetMessageString() )) {
      comment += ": ";
      comment += ex.GetMessageString();
    }
    error(COMPERR_OCC_EXCEPTION, comment);
  }
  catch (NgException exc) {
    error( SMESH_Comment("NgException: ") << exc.What() );
  }
  catch (...) {
    error(COMPERR_EXCEPTION,"Exception in netgen::OCCGenerateMesh()");
  }

  // ----------------------------------------------------
  // Fill the SMESHDS with the generated nodes and faces
  // ----------------------------------------------------

  int nbNodes = ngMesh->GetNP();
  int nbFaces = ngMesh->GetNSE();

  int nbInputNodes = nodeVec.size();
  nodeVec.resize( nbNodes, 0 );

  // add nodes
  for ( int i = nbInputNodes + 1; i <= nbNodes; ++i )
  {
    const MeshPoint& ngPoint = ngMesh->Point(i);
    SMDS_MeshNode * node = meshDS->AddNode(ngPoint(0), ngPoint(1), ngPoint(2));
    nodeVec[ i-1 ] = node;
  }

  // create faces
  bool reverse = ( aShape.Orientation() == TopAbs_REVERSED );
  for ( int i = 1; i <= nbFaces ; ++i )
  {
    const Element2d& elem = ngMesh->SurfaceElement(i);
    vector<const SMDS_MeshNode*> nodes( elem.GetNP() );
    for (int j=1; j <= elem.GetNP(); ++j)
    {
      int pind = elem.PNum(j);
      const SMDS_MeshNode* node = nodeVec.at(pind-1);
      if ( reverse )
        nodes[ nodes.size()-j ] = node;
      else
        nodes[ j-1 ] = node;
      if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
      {
        const PointGeomInfo& pgi = elem.GeomInfoPi(j);
        meshDS->SetNodeOnFace((SMDS_MeshNode*)node, faceID, pgi.u, pgi.v);
      }
    }
    SMDS_MeshFace* face = 0;
    if ( elem.GetType() == TRIG )
      face = helper.AddFace(nodes[0],nodes[1],nodes[2]);
    else
      face = helper.AddFace(nodes[0],nodes[1],nodes[2],nodes[3]);
  }

  Ng_DeleteMesh((nglib::Ng_Mesh*)ngMesh);
  Ng_Exit();

  NETGENPlugin_Mesher::RemoveTmpFiles();

  return !err;
}
Example #22
0
static bool checkConformIgnoredAlgos(SMESH_Mesh&               aMesh,
                                     SMESH_subMesh*            aSubMesh,
                                     const SMESH_Algo*         aGlobIgnoAlgo,
                                     const SMESH_Algo*         aLocIgnoAlgo,
                                     bool &                    checkConform,
                                     set<SMESH_subMesh*>&      aCheckedMap,
                                     list< SMESH_Gen::TAlgoStateError > & theErrors)
{
  ASSERT( aSubMesh );
  if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX)
    return true;


  bool ret = true;

  const list<const SMESHDS_Hypothesis*>& listHyp =
    aMesh.GetMeshDS()->GetHypothesis( aSubMesh->GetSubShape() );
  list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
  for ( ; it != listHyp.end(); it++)
  {
    const SMESHDS_Hypothesis * aHyp = *it;
    if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
      continue;

    const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
    ASSERT ( algo );

    if ( aLocIgnoAlgo ) // algo is hidden by a local algo of upper dim
    {
      theErrors.push_back( SMESH_Gen::TAlgoStateError() );
      theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, false );
      INFOS( "Local <" << algo->GetName() << "> is hidden by local <"
            << aLocIgnoAlgo->GetName() << ">");
    }
    else
    {
      bool       isGlobal = (aMesh.IsMainShape( aSubMesh->GetSubShape() ));
      int             dim = algo->GetDim();
      int aMaxGlobIgnoDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->GetDim() : -1 );
      bool    isNeededDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->NeedLowerHyps( dim ) : false );

      if (( dim < aMaxGlobIgnoDim && !isNeededDim ) &&
          ( isGlobal || !aGlobIgnoAlgo->SupportSubmeshes() ))
      {
        // algo is hidden by a global algo
        theErrors.push_back( SMESH_Gen::TAlgoStateError() );
        theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, true );
        INFOS( ( isGlobal ? "Global" : "Local" )
              << " <" << algo->GetName() << "> is hidden by global <"
              << aGlobIgnoAlgo->GetName() << ">");
      }
      else if ( !algo->NeedDiscreteBoundary() && !isGlobal)
      {
        // local algo is not hidden and hides algos on sub-shapes
        if (checkConform && !aSubMesh->IsConform( algo ))
        {
          ret = false;
          checkConform = false; // no more check conformity
          INFOS( "ERROR: Local <" << algo->GetName() <<
                "> would produce not conform mesh: "
                "<Not Conform Mesh Allowed> hypotesis is missing");
          theErrors.push_back( SMESH_Gen::TAlgoStateError() );
          theErrors.back().Set( SMESH_Hypothesis::HYP_NOTCONFORM, algo, false );
        }

        // sub-algos will be hidden by a local <algo> if <algo> does not support sub-meshes
        if ( algo->SupportSubmeshes() )
          algo = 0;
        SMESH_subMeshIteratorPtr revItSub =
          aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/true);
        bool checkConform2 = false;
        while ( revItSub->more() )
        {
          SMESH_subMesh* sm = revItSub->next();
          checkConformIgnoredAlgos (aMesh, sm, aGlobIgnoAlgo,
                                    algo, checkConform2, aCheckedMap, theErrors);
          aCheckedMap.insert( sm );
        }
      }
    }
  }

  return ret;
}
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh&         aMesh,
                                     const TopoDS_Shape& aShape)
{
  netgen::multithread.terminate = 0;
  netgen::multithread.task = "Volume meshing";
  _progressByTic = -1.;

  SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();

  SMESH_MesherHelper helper(aMesh);
  bool _quadraticMesh = helper.IsQuadraticSubMesh(aShape);
  helper.SetElementsOnShape( true );

  int Netgen_NbOfNodes = 0;
  double Netgen_point[3];
  int Netgen_triangle[3];

  NETGENPlugin_NetgenLibWrapper ngLib;
  Ng_Mesh * Netgen_mesh = ngLib._ngMesh;

  // vector of nodes in which node index == netgen ID
  vector< const SMDS_MeshNode* > nodeVec;
  {
    const int invalid_ID = -1;

    SMESH::Controls::Area areaControl;
    SMESH::Controls::TSequenceOfXYZ nodesCoords;

    // maps nodes to ng ID
    typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap;
    typedef TNodeToIDMap::value_type                     TN2ID;
    TNodeToIDMap nodeToNetgenID;

    // find internal shapes
    NETGENPlugin_Internals internals( aMesh, aShape, /*is3D=*/true );

    // ---------------------------------
    // Feed the Netgen with surface mesh
    // ---------------------------------

    TopAbs_ShapeEnum mainType = aMesh.GetShapeToMesh().ShapeType();
    bool checkReverse = ( mainType == TopAbs_COMPOUND || mainType == TopAbs_COMPSOLID );

    SMESH_ProxyMesh::Ptr proxyMesh( new SMESH_ProxyMesh( aMesh ));
    if ( _viscousLayersHyp )
    {
      netgen::multithread.percent = 3;
      proxyMesh = _viscousLayersHyp->Compute( aMesh, aShape );
      if ( !proxyMesh )
        return false;
    }
    if ( aMesh.NbQuadrangles() > 0 )
    {
      netgen::multithread.percent = 6;
      StdMeshers_QuadToTriaAdaptor* Adaptor = new StdMeshers_QuadToTriaAdaptor;
      Adaptor->Compute(aMesh,aShape,proxyMesh.get());
      proxyMesh.reset( Adaptor );
    }

    for ( TopExp_Explorer exFa( aShape, TopAbs_FACE ); exFa.More(); exFa.Next())
    {
      const TopoDS_Shape& aShapeFace = exFa.Current();
      int faceID = meshDS->ShapeToIndex( aShapeFace );
      bool isInternalFace = internals.isInternalShape( faceID );
      bool isRev = false;
      if ( checkReverse && !isInternalFace &&
           helper.NbAncestors(aShapeFace, aMesh, aShape.ShapeType()) > 1 )
        // IsReversedSubMesh() can work wrong on strongly curved faces,
        // so we use it as less as possible
        isRev = helper.IsReversedSubMesh( TopoDS::Face( aShapeFace ));

      const SMESHDS_SubMesh * aSubMeshDSFace = proxyMesh->GetSubMesh( aShapeFace );
      if ( !aSubMeshDSFace ) continue;
      SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
      while ( iteratorElem->more() ) // loop on elements on a geom face
      {
        // check mesh face
        const SMDS_MeshElement* elem = iteratorElem->next();
        if ( !elem )
          return error( COMPERR_BAD_INPUT_MESH, "Null element encounters");
        if ( elem->NbCornerNodes() != 3 )
          return error( COMPERR_BAD_INPUT_MESH, "Not triangle element encounters");

        // Add nodes of triangles and triangles them-selves to netgen mesh

        // add three nodes of triangle
        bool hasDegen = false;
        for ( int iN = 0; iN < 3; ++iN )
        {
          const SMDS_MeshNode* node = elem->GetNode( iN );
          const int shapeID = node->getshapeId();
          if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE &&
               helper.IsDegenShape( shapeID ))
          {
            // ignore all nodes on degeneraged edge and use node on its vertex instead
            TopoDS_Shape vertex = TopoDS_Iterator( meshDS->IndexToShape( shapeID )).Value();
            node = SMESH_Algo::VertexNode( TopoDS::Vertex( vertex ), meshDS );
            hasDegen = true;
          }
          int& ngID = nodeToNetgenID.insert(TN2ID( node, invalid_ID )).first->second;
          if ( ngID == invalid_ID )
          {
            ngID = ++Netgen_NbOfNodes;
            Netgen_point [ 0 ] = node->X();
            Netgen_point [ 1 ] = node->Y();
            Netgen_point [ 2 ] = node->Z();
            Ng_AddPoint(Netgen_mesh, Netgen_point);
          }
          Netgen_triangle[ isRev ? 2-iN : iN ] = ngID;
        }
        // add triangle
        if ( hasDegen && (Netgen_triangle[0] == Netgen_triangle[1] ||
                          Netgen_triangle[0] == Netgen_triangle[2] ||
                          Netgen_triangle[2] == Netgen_triangle[1] ))
          continue;

        Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);

        if ( isInternalFace && !proxyMesh->IsTemporary( elem ))
        {
          swap( Netgen_triangle[1], Netgen_triangle[2] );
          Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
        }
      } // loop on elements on a face
    } // loop on faces of a SOLID or SHELL

    // insert old nodes into nodeVec
    nodeVec.resize( nodeToNetgenID.size() + 1, 0 );
    TNodeToIDMap::iterator n_id = nodeToNetgenID.begin();
    for ( ; n_id != nodeToNetgenID.end(); ++n_id )
      nodeVec[ n_id->second ] = n_id->first;
    nodeToNetgenID.clear();

    if ( internals.hasInternalVertexInSolid() )
    {
      netgen::OCCGeometry occgeo;
      NETGENPlugin_Mesher::AddIntVerticesInSolids( occgeo,
                                                   (netgen::Mesh&) *Netgen_mesh,
                                                   nodeVec,
                                                   internals);
    }
  }

  // -------------------------
  // Generate the volume mesh
  // -------------------------

  return ( ngLib._isComputeOk = compute( aMesh, helper, nodeVec, Netgen_mesh));
}
Example #24
0
bool SMESH_Gen::GetAlgoState(SMESH_Mesh&               theMesh,
                             const TopoDS_Shape&       theShape,
                             list< TAlgoStateError > & theErrors)
{
  //MESSAGE("SMESH_Gen::CheckAlgoState");

  bool ret = true;
  bool hasAlgo = false;

  SMESH_subMesh*          sm = theMesh.GetSubMesh(theShape);
  const SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
  TopoDS_Shape     mainShape = meshDS->ShapeToMesh();

  // -----------------
  // get global algos
  // -----------------

  const SMESH_Algo* aGlobAlgoArr[] = {0,0,0,0};

  const list<const SMESHDS_Hypothesis*>& listHyp = meshDS->GetHypothesis( mainShape );
  list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
  for ( ; it != listHyp.end(); it++)
  {
    const SMESHDS_Hypothesis * aHyp = *it;
    if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
      continue;

    const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
    ASSERT ( algo );

    int dim = algo->GetDim();
    aGlobAlgoArr[ dim ] = algo;

    hasAlgo = true;
  }

  // --------------------------------------------------------
  // info on algos that will be ignored because of ones that
  // don't NeedDiscreteBoundary() attached to super-shapes,
  // check that a conform mesh will be produced
  // --------------------------------------------------------


  // find a global algo possibly hiding sub-algos
  int dim;
  const SMESH_Algo* aGlobIgnoAlgo = 0;
  for (dim = 3; dim > 0; dim--)
  {
    if (aGlobAlgoArr[ dim ] &&
        !aGlobAlgoArr[ dim ]->NeedDiscreteBoundary() /*&&
        !aGlobAlgoArr[ dim ]->SupportSubmeshes()*/ )
    {
      aGlobIgnoAlgo = aGlobAlgoArr[ dim ];
      break;
    }
  }

  set<SMESH_subMesh*> aCheckedSubs;
  bool checkConform = ( !theMesh.IsNotConformAllowed() );

  // loop on theShape and its sub-shapes
  SMESH_subMeshIteratorPtr revItSub = sm->getDependsOnIterator( /*includeSelf=*/true,
                                                                /*complexShapeFirst=*/true);
  while ( revItSub->more() )
  {
    SMESH_subMesh* smToCheck = revItSub->next();
    if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
      break;

    if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked
      if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo,
                                     0, checkConform, aCheckedSubs, theErrors))
        ret = false;

    if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO )
      hasAlgo = true;
  }

  // ----------------------------------------------------------------
  // info on missing hypothesis and find out if all needed algos are
  // well defined
  // ----------------------------------------------------------------

  //MESSAGE( "---info on missing hypothesis and find out if all needed algos are");

  // find max dim of global algo
  int aTopAlgoDim = 0;
  for (dim = 3; dim > 0; dim--)
  {
    if (aGlobAlgoArr[ dim ])
    {
      aTopAlgoDim = dim;
      break;
    }
  }
  bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false;
  bool globalChecked[] = { false, false, false, false };

  // loop on theShape and its sub-shapes
  aCheckedSubs.clear();
  revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true);
  while ( revItSub->more() )
  {
    SMESH_subMesh* smToCheck = revItSub->next();
    if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
      break;

    if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim,
                       globalChecked, checkNoAlgo, aCheckedSubs, theErrors))
    {
      ret = false;
      if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO )
        checkNoAlgo = false;
    }
  }

  if ( !hasAlgo ) {
    ret = false;
    theErrors.push_back( TAlgoStateError() );
    theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, theMesh.HasShapeToMesh() ? 1 : 3, true );
  }

  return ret;
}
Example #25
0
bool SMESH_Gen::Compute(SMESH_Mesh &          aMesh,
                        const TopoDS_Shape &  aShape,
                        const bool            aShapeOnly /*=false*/,
                        const bool            anUpward /*=false*/,
                        const ::MeshDimension aDim /*=::MeshDim_3D*/,
                        TSetOfInt*            aShapesId /*=0*/)
{
  MESSAGE("SMESH_Gen::Compute");
  MEMOSTAT;

  bool ret = true;

  SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);

  const bool includeSelf = true;
  const bool complexShapeFirst = true;
  const int  globalAlgoDim = 100;

  SMESH_subMeshIteratorPtr smIt;

  // Fix of Issue 22150. Due to !BLSURF->OnlyUnaryInput(), BLSURF computes edges
  // that must be computed by Projection 1D-2D when Projection asks to compute
  // one face only.
  SMESH_subMesh::compute_event computeEvent =
    aShapeOnly ? SMESH_subMesh::COMPUTE_SUBMESH : SMESH_subMesh::COMPUTE;

  if ( anUpward ) // is called from the below code in this method
  {
    // ===============================================
    // Mesh all the sub-shapes starting from vertices
    // ===============================================

    smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
    while ( smIt->more() )
    {
      SMESH_subMesh* smToCompute = smIt->next();

      // do not mesh vertices of a pseudo shape
      const TopoDS_Shape&        shape = smToCompute->GetSubShape();
      const TopAbs_ShapeEnum shapeType = shape.ShapeType();
      if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
        continue;

      // check for preview dimension limitations
      if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
      {
        // clear compute state not to show previous compute errors
        //  if preview invoked less dimension less than previous
        smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
        continue;
      }

      if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
      {
        if (_compute_canceled)
          return false;
        setCurrentSubMesh( smToCompute );
        smToCompute->ComputeStateEngine( computeEvent );
        setCurrentSubMesh( NULL );
      }

      // we check all the sub-meshes here and detect if any of them failed to compute
      if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE &&
          ( shapeType != TopAbs_EDGE || !SMESH_Algo::isDegenerated( TopoDS::Edge( shape ))))
        ret = false;
      else if ( aShapesId )
        aShapesId->insert( smToCompute->GetId() );
    }
    //aMesh.GetMeshDS()->Modified();
    return ret;
  }
  else
  {
    // ================================================================
    // Apply algos that do NOT require discreteized boundaries
    // ("all-dimensional") and do NOT support sub-meshes, starting from
    // the most complex shapes and collect sub-meshes with algos that 
    // DO support sub-meshes
    // ================================================================

    list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes[4]; // for each dim

    // map to sort sm with same dim algos according to dim of
    // the shape the algo assigned to (issue 0021217).
    // Other issues influenced the algo applying order:
    // 21406, 21556, 21893, 20206
    multimap< int, SMESH_subMesh* > shDim2sm;
    multimap< int, SMESH_subMesh* >::reverse_iterator shDim2smIt;
    TopoDS_Shape algoShape;
    int prevShapeDim = -1, aShapeDim;

    smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
    while ( smIt->more() )
    {
      SMESH_subMesh* smToCompute = smIt->next();
      if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE )
        continue;

      const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
      aShapeDim = GetShapeDim( aSubShape );
      if ( aShapeDim < 1 ) break;
      
      // check for preview dimension limitations
      if ( aShapesId && aShapeDim > (int)aDim )
        continue;

      SMESH_Algo* algo = GetAlgo( smToCompute, &algoShape );
      if ( algo && !algo->NeedDiscreteBoundary() )
      {
        if ( algo->SupportSubmeshes() )
        {
          // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
          // so that more local algos to go first
          if ( prevShapeDim != aShapeDim )
          {
            prevShapeDim = aShapeDim;
            for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
              if ( shDim2smIt->first == globalAlgoDim )
                smWithAlgoSupportingSubmeshes[ aShapeDim ].push_back( shDim2smIt->second );
              else
                smWithAlgoSupportingSubmeshes[ aShapeDim ].push_front( shDim2smIt->second );
            shDim2sm.clear();
          }
          // add smToCompute to shDim2sm map
          if ( algoShape.IsSame( aMesh.GetShapeToMesh() ))
          {
            aShapeDim = globalAlgoDim; // to compute last
          }
          else
          {
            aShapeDim = GetShapeDim( algoShape );
            if ( algoShape.ShapeType() == TopAbs_COMPOUND )
            {
              TopoDS_Iterator it( algoShape );
              aShapeDim += GetShapeDim( it.Value() );
            }
          }
          shDim2sm.insert( make_pair( aShapeDim, smToCompute ));
        }
        else // Compute w/o support of sub-meshes
        {
          if (_compute_canceled)
            return false;
          setCurrentSubMesh( smToCompute );
          smToCompute->ComputeStateEngine( computeEvent );
          setCurrentSubMesh( NULL );
          if ( aShapesId )
            aShapesId->insert( smToCompute->GetId() );
        }
      }
    }
    // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
    for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
      if ( shDim2smIt->first == globalAlgoDim )
        smWithAlgoSupportingSubmeshes[3].push_back( shDim2smIt->second );
      else
        smWithAlgoSupportingSubmeshes[0].push_front( shDim2smIt->second );

    // ======================================================
    // Apply all-dimensional algorithms supporing sub-meshes
    // ======================================================

    std::vector< SMESH_subMesh* > smVec;
    for ( aShapeDim = 0; aShapeDim < 4; ++aShapeDim )
    {
      // ------------------------------------------------
      // sort list of sub-meshes according to mesh order
      // ------------------------------------------------
      smVec.assign( smWithAlgoSupportingSubmeshes[ aShapeDim ].begin(),
                    smWithAlgoSupportingSubmeshes[ aShapeDim ].end() );
      aMesh.SortByMeshOrder( smVec );

      // ------------------------------------------------------------
      // compute sub-meshes with local uni-dimensional algos under
      // sub-meshes with all-dimensional algos
      // ------------------------------------------------------------
      // start from lower shapes
      for ( size_t i = 0; i < smVec.size(); ++i )
      {
        sm = smVec[i];

        // get a shape the algo is assigned to
        if ( !GetAlgo( sm, & algoShape ))
          continue; // strange...

        // look for more local algos
        smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
        while ( smIt->more() )
        {
          SMESH_subMesh* smToCompute = smIt->next();

          const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
          const int aShapeDim = GetShapeDim( aSubShape );
          //if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue;
          if ( aShapeDim < 1 ) continue;

          // check for preview dimension limitations
          if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim )
            continue;

          SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
          filter
            .And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
            .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));

          if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true))
          {
            if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
            SMESH_Hypothesis::Hypothesis_Status status;
            if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
              // mesh a lower smToCompute starting from vertices
              Compute( aMesh, aSubShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
          }
        }
      }
      // --------------------------------
      // apply the all-dimensional algos
      // --------------------------------
      for ( size_t i = 0; i < smVec.size(); ++i )
      {
        sm = smVec[i];
        if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
        {
          const TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType();
          // check for preview dimension limitations
          if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
            continue;

          if (_compute_canceled)
            return false;
          setCurrentSubMesh( sm );
          sm->ComputeStateEngine( computeEvent );
          setCurrentSubMesh( NULL );
          if ( aShapesId )
            aShapesId->insert( sm->GetId() );
        }
      }
    } // loop on shape dimensions

    // -----------------------------------------------
    // mesh the rest sub-shapes starting from vertices
    // -----------------------------------------------
    ret = Compute( aMesh, aShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
  }

  MESSAGE( "VSR - SMESH_Gen::Compute() finished, OK = " << ret);
  MEMOSTAT;

  SMESHDS_Mesh *myMesh = aMesh.GetMeshDS();
  MESSAGE("*** compactMesh after compute");
  myMesh->compactMesh();

  // fix quadratic mesh by bending iternal links near concave boundary
  if ( aShape.IsSame( aMesh.GetShapeToMesh() ) &&
       !aShapesId && // not preview
       ret ) // everything is OK
  {
    SMESH_MesherHelper aHelper( aMesh );
    if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR )
    {
      aHelper.FixQuadraticElements( sm->GetComputeError() );
    }
  }
  return ret;
}
bool StdMeshers_RadialPrism_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
  TopExp_Explorer exp;
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  myHelper = new SMESH_MesherHelper( aMesh );
  myHelper->IsQuadraticSubMesh( aShape );
  // to delete helper at exit from Compute()
  std::auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );

  // get 2 shells
  TopoDS_Solid solid = TopoDS::Solid( aShape );
  TopoDS_Shell outerShell = BRepClass3d::OuterShell( solid );
  TopoDS_Shape innerShell;
  int nbShells = 0;
  for ( TopoDS_Iterator It (solid); It.More(); It.Next(), ++nbShells )
    if ( !outerShell.IsSame( It.Value() ))
      innerShell = It.Value();
  if ( nbShells != 2 )
    return error(COMPERR_BAD_SHAPE, SMESH_Comment("Must be 2 shells but not ")<<nbShells);

  // ----------------------------------
  // Associate subshapes of the shells
  // ----------------------------------

  TAssocTool::TShapeShapeMap shape2ShapeMap;
  if ( !TAssocTool::FindSubShapeAssociation( outerShell, &aMesh,
                                             innerShell, &aMesh,
                                             shape2ShapeMap) )
    return error(COMPERR_BAD_SHAPE,"Topology of inner and outer shells seems different" );

  // ------------------
  // Make mesh
  // ------------------

  TNode2ColumnMap node2columnMap;
  myLayerPositions.clear();

  for ( exp.Init( outerShell, TopAbs_FACE ); exp.More(); exp.Next() )
  {
    // Corresponding subshapes
    TopoDS_Face outFace = TopoDS::Face( exp.Current() );
    TopoDS_Face inFace;
    if ( !shape2ShapeMap.IsBound( outFace )) {
      return error(SMESH_Comment("Corresponding inner face not found for face #" )
                   << meshDS->ShapeToIndex( outFace ));
    } else {
      inFace = TopoDS::Face( shape2ShapeMap( outFace ));
    }

    // Find matching nodes of in and out faces
    TNodeNodeMap nodeIn2OutMap;
    if ( ! TAssocTool::FindMatchingNodesOnFaces( inFace, &aMesh, outFace, &aMesh,
                                                 shape2ShapeMap, nodeIn2OutMap ))
      return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #")
                   << meshDS->ShapeToIndex( outFace ) << " and "
                   << meshDS->ShapeToIndex( inFace ) << " seems different" );

    // Create volumes

    SMDS_ElemIteratorPtr faceIt = meshDS->MeshElements( inFace )->GetElements();
    while ( faceIt->more() ) // loop on faces on inFace
    {
      const SMDS_MeshElement* face = faceIt->next();
      if ( !face || face->GetType() != SMDSAbs_Face )
        continue;
      int nbNodes = face->NbNodes();
      if ( face->IsQuadratic() )
        nbNodes /= 2;

      // find node columns for each node
      vector< const TNodeColumn* > columns( nbNodes );
      for ( int i = 0; i < nbNodes; ++i )
      {
        const SMDS_MeshNode* nIn = face->GetNode( i );
        TNode2ColumnMap::iterator n_col = node2columnMap.find( nIn );
        if ( n_col != node2columnMap.end() ) {
          columns[ i ] = & n_col->second;
        }
        else {
          TNodeNodeMap::iterator nInOut = nodeIn2OutMap.find( nIn );
          if ( nInOut == nodeIn2OutMap.end() )
            RETURN_BAD_RESULT("No matching node for "<< nIn->GetID() <<
                              " in face "<< face->GetID());
          columns[ i ] = makeNodeColumn( node2columnMap, nIn, nInOut->second );
        }
      }

      StdMeshers_Prism_3D::AddPrisms( columns, myHelper );
    }
  } // loop on faces of out shell

  return true;
}
Example #27
0
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh&         aMesh,
                                     const TopoDS_Shape& aShape)
{
    MESSAGE("NETGENPlugin_NETGEN_3D::Compute with maxElmentsize = " << _maxElementVolume);

    SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();

    const int invalid_ID = -1;

    SMESH::Controls::Area areaControl;
    SMESH::Controls::TSequenceOfXYZ nodesCoords;

    // -------------------------------------------------------------------
    // get triangles on aShell and make a map of nodes to Netgen node IDs
    // -------------------------------------------------------------------

    SMESH_MesherHelper helper(aMesh);
    SMESH_MesherHelper* myTool = &helper;
    bool _quadraticMesh = myTool->IsQuadraticSubMesh(aShape);

    typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap;
    TNodeToIDMap nodeToNetgenID;
    list< const SMDS_MeshElement* > triangles;
    list< bool >                    isReversed; // orientation of triangles

    TopAbs_ShapeEnum mainType = aMesh.GetShapeToMesh().ShapeType();
    bool checkReverse = ( mainType == TopAbs_COMPOUND || mainType == TopAbs_COMPSOLID );

    // for the degeneraged edge: ignore all but one node on it;
    // map storing ids of degen edges and vertices and their netgen id:
    map< int, int* > degenShapeIdToPtrNgId;
    map< int, int* >::iterator shId_ngId;
    list< int > degenNgIds;

    StdMeshers_QuadToTriaAdaptor Adaptor;
    Adaptor.Compute(aMesh,aShape);

    for (TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next())
    {
        const TopoDS_Shape& aShapeFace = exp.Current();
        const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
        if ( aSubMeshDSFace )
        {
            bool isRev = false;
            if ( checkReverse && helper.NbAncestors(aShapeFace, aMesh, aShape.ShapeType()) > 1 )
                // IsReversedSubMesh() can work wrong on strongly curved faces,
                // so we use it as less as possible
                isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS );

            SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
            while ( iteratorElem->more() ) // loop on elements on a face
            {
                // check element
                const SMDS_MeshElement* elem = iteratorElem->next();
                if ( !elem )
                    return error( COMPERR_BAD_INPUT_MESH, "Null element encounters");
                bool isTraingle = ( elem->NbNodes()==3 || (_quadraticMesh && elem->NbNodes()==6 ));
                if ( !isTraingle ) {
                    //return error( COMPERR_BAD_INPUT_MESH,
                    //              SMESH_Comment("Not triangle element ")<<elem->GetID());
                    // using adaptor
                    const list<const SMDS_FaceOfNodes*>* faces = Adaptor.GetTriangles(elem);
                    if(faces==0) {
                        return error( COMPERR_BAD_INPUT_MESH,
                                      SMESH_Comment("Not triangles in adaptor for element ")<<elem->GetID());
                    }
                    list<const SMDS_FaceOfNodes*>::const_iterator itf = faces->begin();
                    for(; itf!=faces->end(); itf++ ) {
                        triangles.push_back( (*itf) );
                        isReversed.push_back( isRev );
                        // put triange's nodes to nodeToNetgenID map
                        SMDS_ElemIteratorPtr triangleNodesIt = (*itf)->nodesIterator();
                        while ( triangleNodesIt->more() ) {
                            const SMDS_MeshNode * node =
                                static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
                            if(myTool->IsMedium(node))
                                continue;
                            nodeToNetgenID.insert( make_pair( node, invalid_ID ));
                        }
                    }
                }
                else {
                    // keep a triangle
                    triangles.push_back( elem );
                    isReversed.push_back( isRev );
                    // put elem nodes to nodeToNetgenID map
                    SMDS_ElemIteratorPtr triangleNodesIt = elem->nodesIterator();
                    while ( triangleNodesIt->more() ) {
                        const SMDS_MeshNode * node =
                            static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
                        if(myTool->IsMedium(node))
                            continue;
                        nodeToNetgenID.insert( make_pair( node, invalid_ID ));
                    }
                }
#ifdef _DEBUG_
                // check if a trainge is degenerated
                areaControl.GetPoints( elem, nodesCoords );
                double area = areaControl.GetValue( nodesCoords );
                if ( area <= DBL_MIN ) {
                    MESSAGE( "Warning: Degenerated " << elem );
                }
#endif
            }
            // look for degeneraged edges and vetices
            for (TopExp_Explorer expE(aShapeFace,TopAbs_EDGE); expE.More(); expE.Next())
            {
                TopoDS_Edge aShapeEdge = TopoDS::Edge( expE.Current() );
                if ( BRep_Tool::Degenerated( aShapeEdge ))
                {
                    degenNgIds.push_back( invalid_ID );
                    int* ptrIdOnEdge = & degenNgIds.back();
                    // remember edge id
                    int edgeID = meshDS->ShapeToIndex( aShapeEdge );
                    degenShapeIdToPtrNgId.insert( make_pair( edgeID, ptrIdOnEdge ));
                    // remember vertex id
                    int vertexID = meshDS->ShapeToIndex( TopExp::FirstVertex( aShapeEdge ));
                    degenShapeIdToPtrNgId.insert( make_pair( vertexID, ptrIdOnEdge ));
                }
            }
        }
    }
    // ---------------------------------
    // Feed the Netgen with surface mesh
    // ---------------------------------

    int Netgen_NbOfNodes = 0;
    int Netgen_param2ndOrder = 0;
    double Netgen_paramFine = 1.;
    double Netgen_paramSize = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. );

    double Netgen_point[3];
    int Netgen_triangle[3];
    int Netgen_tetrahedron[4];

    Ng_Init();

    Ng_Mesh * Netgen_mesh = Ng_NewMesh();

    // set nodes and remember thier netgen IDs
    bool isDegen = false, hasDegen = !degenShapeIdToPtrNgId.empty();
    TNodeToIDMap::iterator n_id = nodeToNetgenID.begin();
    for ( ; n_id != nodeToNetgenID.end(); ++n_id )
    {
        const SMDS_MeshNode* node = n_id->first;

        // ignore nodes on degenerated edge
        if ( hasDegen ) {
            int shapeId = node->GetPosition()->GetShapeId();
            shId_ngId = degenShapeIdToPtrNgId.find( shapeId );
            isDegen = ( shId_ngId != degenShapeIdToPtrNgId.end() );
            if ( isDegen && *(shId_ngId->second) != invalid_ID ) {
                n_id->second = *(shId_ngId->second);
                continue;
            }
        }
        Netgen_point [ 0 ] = node->X();
        Netgen_point [ 1 ] = node->Y();
        Netgen_point [ 2 ] = node->Z();
        Ng_AddPoint(Netgen_mesh, Netgen_point);
        n_id->second = ++Netgen_NbOfNodes; // set netgen ID

        if ( isDegen ) // all nodes on a degen edge get one netgen ID
            *(shId_ngId->second) = n_id->second;
    }

    // set triangles
    list< const SMDS_MeshElement* >::iterator tria = triangles.begin();
    list< bool >::iterator                 reverse = isReversed.begin();
    for ( ; tria != triangles.end(); ++tria, ++reverse )
    {
        int i = 0;
        SMDS_ElemIteratorPtr triangleNodesIt = (*tria)->nodesIterator();
        while ( triangleNodesIt->more() ) {
            const SMDS_MeshNode * node =
                static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
            if(myTool->IsMedium(node))
                continue;
            Netgen_triangle[ *reverse ? 2 - i : i ] = nodeToNetgenID[ node ];
            ++i;
        }
        if ( !hasDegen ||
                // ignore degenerated triangles, they have 2 or 3 same ids
                (Netgen_triangle[0] != Netgen_triangle[1] &&
                 Netgen_triangle[0] != Netgen_triangle[2] &&
                 Netgen_triangle[2] != Netgen_triangle[1] ))
        {
            Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
        }
    }

    // -------------------------
    // Generate the volume mesh
    // -------------------------

    Ng_Meshing_Parameters Netgen_param;

    Netgen_param.secondorder = Netgen_param2ndOrder;
    Netgen_param.fineness = Netgen_paramFine;
    Netgen_param.maxh = Netgen_paramSize;

    Ng_Result status;

    try {
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
        OCC_CATCH_SIGNALS;
#endif
        status = Ng_GenerateVolumeMesh(Netgen_mesh, &Netgen_param);
    }
    catch (Standard_Failure& exc) {
        error(COMPERR_OCC_EXCEPTION, exc.GetMessageString());
        status = NG_VOLUME_FAILURE;
    }
    catch (...) {
        error("Exception in Ng_GenerateVolumeMesh()");
        status = NG_VOLUME_FAILURE;
    }
    if ( GetComputeError()->IsOK() ) {
        switch ( status ) {
        case NG_SURFACE_INPUT_ERROR:
            error( status, "NG_SURFACE_INPUT_ERROR");
        case NG_VOLUME_FAILURE:
            error( status, "NG_VOLUME_FAILURE");
        case NG_STL_INPUT_ERROR:
            error( status, "NG_STL_INPUT_ERROR");
        case NG_SURFACE_FAILURE:
            error( status, "NG_SURFACE_FAILURE");
        case NG_FILE_NOT_FOUND:
            error( status, "NG_FILE_NOT_FOUND");
        };
    }

    int Netgen_NbOfNodesNew = Ng_GetNP(Netgen_mesh);

    int Netgen_NbOfTetra = Ng_GetNE(Netgen_mesh);

    MESSAGE("End of Volume Mesh Generation. status=" << status <<
            ", nb new nodes: " << Netgen_NbOfNodesNew - Netgen_NbOfNodes <<
            ", nb tetra: " << Netgen_NbOfTetra);

    // -------------------------------------------------------------------
    // Feed back the SMESHDS with the generated Nodes and Volume Elements
    // -------------------------------------------------------------------

    bool isOK = ( /*status == NG_OK &&*/ Netgen_NbOfTetra > 0 );// get whatever built
    if ( isOK )
    {
        // vector of nodes in which node index == netgen ID
        vector< const SMDS_MeshNode* > nodeVec ( Netgen_NbOfNodesNew + 1 );
        // insert old nodes into nodeVec
        for ( n_id = nodeToNetgenID.begin(); n_id != nodeToNetgenID.end(); ++n_id ) {
            nodeVec.at( n_id->second ) = n_id->first;
        }
        // create and insert new nodes into nodeVec
        int nodeIndex = Netgen_NbOfNodes + 1;
        int shapeID = meshDS->ShapeToIndex( aShape );
        for ( ; nodeIndex <= Netgen_NbOfNodesNew; ++nodeIndex )
        {
            Ng_GetPoint( Netgen_mesh, nodeIndex, Netgen_point );
            SMDS_MeshNode * node = meshDS->AddNode(Netgen_point[0],
                                                   Netgen_point[1],
                                                   Netgen_point[2]);
            meshDS->SetNodeInVolume(node, shapeID);
            nodeVec.at(nodeIndex) = node;
        }

        // create tetrahedrons
        for ( int elemIndex = 1; elemIndex <= Netgen_NbOfTetra; ++elemIndex )
        {
            Ng_GetVolumeElement(Netgen_mesh, elemIndex, Netgen_tetrahedron);
            SMDS_MeshVolume * elt = myTool->AddVolume (nodeVec.at( Netgen_tetrahedron[0] ),
                                    nodeVec.at( Netgen_tetrahedron[1] ),
                                    nodeVec.at( Netgen_tetrahedron[2] ),
                                    nodeVec.at( Netgen_tetrahedron[3] ));
            meshDS->SetMeshElementOnShape(elt, shapeID );
        }
    }

    Ng_DeleteMesh(Netgen_mesh);
    Ng_Exit();

    NETGENPlugin_Mesher::RemoveTmpFiles();

    return (status == NG_OK);
}
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh &         aMesh,
                                 const TopoDS_Shape & aShape)// throw(SALOME_Exception)
{
  // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
  //Unexpect aCatch(SalomeException);
  MESSAGE("StdMeshers_Hexa_3D::Compute");
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  // 0.  - shape and face mesh verification
  // 0.1 - shape must be a solid (or a shell) with 6 faces

  vector < SMESH_subMesh * >meshFaces;
  for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
    SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
    ASSERT(aSubMesh);
    meshFaces.push_back(aSubMesh);
  }
  if (meshFaces.size() != 6) {
    //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
    static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
    if ( !compositeHexa.Compute( aMesh, aShape ))
      return error( compositeHexa.GetComputeError() );
    return true;
  }

  // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)

  // tool for working with quadratic elements
  SMESH_MesherHelper aTool (aMesh);
  _quadraticMesh = aTool.IsQuadraticSubMesh(aShape);

  // cube structure
  typedef struct cubeStruct
  {
    TopoDS_Vertex V000;
    TopoDS_Vertex V001;
    TopoDS_Vertex V010;
    TopoDS_Vertex V011;
    TopoDS_Vertex V100;
    TopoDS_Vertex V101;
    TopoDS_Vertex V110;
    TopoDS_Vertex V111;
    faceQuadStruct* quad_X0;
    faceQuadStruct* quad_X1;
    faceQuadStruct* quad_Y0;
    faceQuadStruct* quad_Y1;
    faceQuadStruct* quad_Z0;
    faceQuadStruct* quad_Z1;
    Point3DStruct* np; // normalised 3D coordinates
  } CubeStruct;

  CubeStruct aCube;

  // bounding faces
  FaceQuadStruct* aQuads[6];
  for (int i = 0; i < 6; i++)
    aQuads[i] = 0;

  for (int i = 0; i < 6; i++)
  {
    TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
    SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
    string algoName = algo->GetName();
    bool isAllQuad = false;
    if (algoName == "Quadrangle_2D") {
      SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
      if ( sm ) {
        isAllQuad = true;
        SMDS_ElemIteratorPtr eIt = sm->GetElements();
        while ( isAllQuad && eIt->more() ) {
          const SMDS_MeshElement* elem =  eIt->next();
          isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) );
        }
      }
    }
    if ( ! isAllQuad ) {
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
    StdMeshers_Quadrangle_2D *quadAlgo =
      dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
    ASSERT(quadAlgo);
    try {
      aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
      if(!aQuads[i]) {
        return error( quadAlgo->GetComputeError());
      }
    }
    catch(SALOME_Exception & S_ex) {
      return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) <<
                                           " Raised by StdMeshers_Quadrangle_2D "
                                           " on face #" << meshDS->ShapeToIndex( aFace )));
    }

    // 0.2.1 - number of points on the opposite edges must be the same
    if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() ||
        aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints()
        /*aQuads[i]->side[0]->NbEdges() != 1 ||
        aQuads[i]->side[1]->NbEdges() != 1 ||
        aQuads[i]->side[2]->NbEdges() != 1 ||
        aQuads[i]->side[3]->NbEdges() != 1*/) {
      MESSAGE("different number of points on the opposite edges of face " << i);
      // Try to go into penta algorithm 'cause it has been improved.
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
  }

  // 1.  - identify faces and vertices of the "cube"
  // 1.1 - ancestor maps vertex->edges in the cube

//   TopTools_IndexedDataMapOfShapeListOfShape MS;
//   TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);

  // 1.2 - first face is choosen as face Y=0 of the unit cube

  const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
  //const TopoDS_Face & F = TopoDS::Face(aFace);

  // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001

  aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube
  aCube.V100 = aQuads[0]->side[0]->LastVertex();  // will be (1,0,0) on the unit cube
  aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube
  aCube.V101 = aQuads[0]->side[2]->LastVertex();  // will be (1,0,1) on the unit cube

  TopTools_IndexedMapOfShape MV0;
  TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0);

  aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads);
  aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads);
  aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads);
  aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads);

  // 1.6 - find remaining faces given 4 vertices

  int _indY0 = 0;
  int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V010, aCube.V011, aCube.V110, aCube.V111);
  int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V010, aCube.V100, aCube.V110);
  int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V001, aCube.V011, aCube.V101, aCube.V111);
  int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V001, aCube.V010, aCube.V011);
  int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V100, aCube.V101, aCube.V110, aCube.V111);

  // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
  if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
    return error(COMPERR_BAD_SHAPE);

  aCube.quad_Y0 = aQuads[_indY0];
  aCube.quad_Y1 = aQuads[_indY1];
  aCube.quad_Z0 = aQuads[_indZ0];
  aCube.quad_Z1 = aQuads[_indZ1];
  aCube.quad_X0 = aQuads[_indX0];
  aCube.quad_X1 = aQuads[_indX1];

  // 1.7 - get convertion coefs from face 2D normalized to 3D normalized

  Conv2DStruct cx0;                     // for face X=0
  Conv2DStruct cx1;                     // for face X=1
  Conv2DStruct cy0;
  Conv2DStruct cy1;
  Conv2DStruct cz0;
  Conv2DStruct cz1;

  GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(),
                 aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0);
  GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(),
                 aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1);
  GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0);
  GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
                 aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1);
  GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0);
  GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
                 aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1);

  // 1.8 - create a 3D structure for normalized values
  
  int nbx = aCube.quad_Z0->side[0]->NbPoints();
  if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints();
 
  int nby = aCube.quad_X0->side[0]->NbPoints();
  if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints();
 
  int nbz = aCube.quad_Y0->side[0]->NbPoints();
  if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints();

  int i1, j1, nbxyz = nbx * nby * nbz;
  Point3DStruct *np = new Point3DStruct[nbxyz];

  // 1.9 - store node indexes of faces

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());

    faceQuadStruct *quad = aCube.quad_X0;
    int i = 0;                          // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
                        
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic;     // j = x/face
        int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_X1;
    int i = nbx - 1;            // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic;     // j = x/face
        int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y0;
    int j = 0;                          // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic;     // i = x/face
        int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y1;
    int j = nby - 1;            // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic;     // i = x/face
        int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z0;
    int k = 0;                          // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic;     // i = x/face
        int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z1;
    int k = nbz - 1;            // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();
    
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic;     // i = x/face
        int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  // 2.0 - for each node of the cube:
  //       - get the 8 points 3D = 8 vertices of the cube
  //       - get the 12 points 3D on the 12 edges of the cube
  //       - get the 6 points 3D on the 6 faces with their ID
  //       - compute the point 3D
  //       - store the point 3D in SMESHDS, store its ID in 3D structure

  int shapeID = meshDS->ShapeToIndex( aShape );

  Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
  Pt3 px00, px01, px10, px11;
  Pt3 p0y0, p0y1, p1y0, p1y1;
  Pt3 p00z, p01z, p10z, p11z;
  Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;

  GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

  for (int i = 1; i < nbx - 1; i++) {
    for (int j = 1; j < nby - 1; j++) {
      for (int k = 1; k < nbz - 1; k++) {
        // *** seulement maillage regulier
        // 12 points on edges
        GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);

        // 12 points on faces
        GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);

        int ijk = k * nbx * nby + j * nbx + i;
        double x = double (i) / double (nbx - 1);       // *** seulement
        double y = double (j) / double (nby - 1);       // *** maillage
        double z = double (k) / double (nbz - 1);       // *** regulier

        Pt3 X;
        for (int i = 0; i < 3; i++) {
          X[i] = (1 - x) * p0yz[i] + x * p1yz[i]
                 + (1 - y) * px0z[i] + y * px1z[i]
                 + (1 - z) * pxy0[i] + z * pxy1[i]
                 - (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
                 - x * ((1 - y) * p10z[i] + y * p11z[i])
                 - (1 - y) * ((1 - z) * px00[i] + z * px01[i])
                 - y * ((1 - z) * px10[i] + z * px11[i])
                 - (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
                 - z * ((1 - x) * p0y1[i] + x * p1y1[i])
                 + (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
                 + y * ((1 - z) * p010[i] + z * p011[i]))
                 + x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
                 + y * ((1 - z) * p110[i] + z * p111[i]));
        }

        SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
        np[ijk].node = node;
        meshDS->SetNodeInVolume(node, shapeID);
      }
    }
  }

  // find orientation of furute volumes according to MED convention
  vector< bool > forward( nbx * nby );
  SMDS_VolumeTool vTool;
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      int n1 = j * nbx + i;
      int n2 = j * nbx + i + 1;
      int n3 = (j + 1) * nbx + i + 1;
      int n4 = (j + 1) * nbx + i;
      int n5 = nbx * nby + j * nbx + i;
      int n6 = nbx * nby + j * nbx + i + 1;
      int n7 = nbx * nby + (j + 1) * nbx + i + 1;
      int n8 = nbx * nby + (j + 1) * nbx + i;

      SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
                                 np[n5].node,np[n6].node,np[n7].node,np[n8].node);
      vTool.Set( &tmpVol );
      forward[ n1 ] = vTool.IsForward();
    }
  }

  //2.1 - for each node of the cube (less 3 *1 Faces):
  //      - store hexahedron in SMESHDS
  MESSAGE("Storing hexahedron into the DS");
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      bool isForw = forward.at( j * nbx + i );
      for (int k = 0; k < nbz - 1; k++) {
        int n1 = k * nbx * nby + j * nbx + i;
        int n2 = k * nbx * nby + j * nbx + i + 1;
        int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
        int n4 = k * nbx * nby + (j + 1) * nbx + i;
        int n5 = (k + 1) * nbx * nby + j * nbx + i;
        int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
        int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
        int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;

        SMDS_MeshVolume * elt;
        if ( isForw ) {
          elt = aTool.AddVolume(np[n1].node, np[n2].node,
                                np[n3].node, np[n4].node,
                                np[n5].node, np[n6].node,
                                np[n7].node, np[n8].node);
        }
        else {
          elt = aTool.AddVolume(np[n1].node, np[n4].node,
                                np[n3].node, np[n2].node,
                                np[n5].node, np[n8].node,
                                np[n7].node, np[n6].node);
        }
        
        meshDS->SetMeshElementOnShape(elt, shapeID);
      }
    }
  }
  if ( np ) delete [] np;
  return ClearAndReturn( aQuads, true );
}