void PatmosLatencyQueue::dump()
{
  dbgs() << "PendingQueue:";
  for (unsigned i = 0; i < PendingQueue.size(); i++) {
    SUnit *SU = PendingQueue[i];
    if (i > 0) dbgs() << ",";
    dbgs() << " SU(" << SU->NodeNum << "): Height " << SU->getHeight()
           << " Depth " << SU->getDepth()
           << " Tree: " << Cmp.DFSResult->getSubtreeID(SU) << " @"
           << Cmp.DFSResult->getSubtreeLevel(Cmp.DFSResult->getSubtreeID(SU));
    if (SU->isScheduleLow) dbgs() << " low ";
  }
  dbgs() << "\nAvailableQueue:";
  for (unsigned i = 0; i < AvailableQueue.size(); i++) {
    SUnit *SU = AvailableQueue[i];
    if (i > 0) dbgs() << ",";
    dbgs() << " SU(" << SU->NodeNum << ") Height " << SU->getHeight()
           << " Depth " << SU->getDepth()
           << " ILP: " << Cmp.DFSResult->getILP(SU);
    if (SU->isScheduleLow) dbgs() << " low ";
  }
  dbgs() << "\n";
}
Example #2
0
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
/// critical path.
static SDep *CriticalPathStep(SUnit *SU) {
  SDep *Next = 0;
  unsigned NextDepth = 0;
  // Find the predecessor edge with the greatest depth.
  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
       P != PE; ++P) {
    SUnit *PredSU = P->getSUnit();
    unsigned PredLatency = P->getLatency();
    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    // In the case of a latency tie, prefer an anti-dependency edge over
    // other types of edges.
    if (NextDepth < PredTotalLatency ||
        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
      NextDepth = PredTotalLatency;
      Next = &*P;
    }
  }
  return Next;
}
Example #3
0
unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(std::vector<SUnit>& SUnits,
                      MachineBasicBlock::iterator& Begin,
                      MachineBasicBlock::iterator& End,
                      unsigned InsertPosIndex) {
  // The code below assumes that there is at least one instruction,
  // so just duck out immediately if the block is empty.
  if (SUnits.empty()) return 0;

  // Find the node at the bottom of the critical path.
  SUnit *Max = 0;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    SUnit *SU = &SUnits[i];
    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
      Max = SU;
  }

#ifndef NDEBUG
  {
    DEBUG(errs() << "Critical path has total latency "
          << (Max->getDepth() + Max->Latency) << "\n");
    DEBUG(errs() << "Available regs:");
    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
      if (KillIndices[Reg] == ~0u)
        DEBUG(errs() << " " << TRI->getName(Reg));
    }
    DEBUG(errs() << '\n');
  }
#endif

  // Track progress along the critical path through the SUnit graph as we walk
  // the instructions.
  SUnit *CriticalPathSU = Max;
  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();

  // Consider this pattern:
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  // There are three anti-dependencies here, and without special care,
  // we'd break all of them using the same register:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  // because at each anti-dependence, B is the first register that
  // isn't A which is free.  This re-introduces anti-dependencies
  // at all but one of the original anti-dependencies that we were
  // trying to break.  To avoid this, keep track of the most recent
  // register that each register was replaced with, avoid
  // using it to repair an anti-dependence on the same register.
  // This lets us produce this:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   C = ...
  //   ... = C
  //   B = ...
  //   ... = B
  // This still has an anti-dependence on B, but at least it isn't on the
  // original critical path.
  //
  // TODO: If we tracked more than one register here, we could potentially
  // fix that remaining critical edge too. This is a little more involved,
  // because unlike the most recent register, less recent registers should
  // still be considered, though only if no other registers are available.
  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};

  // Attempt to break anti-dependence edges on the critical path. Walk the
  // instructions from the bottom up, tracking information about liveness
  // as we go to help determine which registers are available.
  unsigned Broken = 0;
  unsigned Count = InsertPosIndex - 1;
  for (MachineBasicBlock::iterator I = End, E = Begin;
       I != E; --Count) {
    MachineInstr *MI = --I;

    // Check if this instruction has a dependence on the critical path that
    // is an anti-dependence that we may be able to break. If it is, set
    // AntiDepReg to the non-zero register associated with the anti-dependence.
    //
    // We limit our attention to the critical path as a heuristic to avoid
    // breaking anti-dependence edges that aren't going to significantly
    // impact the overall schedule. There are a limited number of registers
    // and we want to save them for the important edges.
    // 
    // TODO: Instructions with multiple defs could have multiple
    // anti-dependencies. The current code here only knows how to break one
    // edge per instruction. Note that we'd have to be able to break all of
    // the anti-dependencies in an instruction in order to be effective.
    unsigned AntiDepReg = 0;
    if (MI == CriticalPathMI) {
      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
        SUnit *NextSU = Edge->getSUnit();

        // Only consider anti-dependence edges.
        if (Edge->getKind() == SDep::Anti) {
          AntiDepReg = Edge->getReg();
          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
          if (!AllocatableSet.test(AntiDepReg))
            // Don't break anti-dependencies on non-allocatable registers.
            AntiDepReg = 0;
          else if (KeepRegs.count(AntiDepReg))
            // Don't break anti-dependencies if an use down below requires
            // this exact register.
            AntiDepReg = 0;
          else {
            // If the SUnit has other dependencies on the SUnit that it
            // anti-depends on, don't bother breaking the anti-dependency
            // since those edges would prevent such units from being
            // scheduled past each other regardless.
            //
            // Also, if there are dependencies on other SUnits with the
            // same register as the anti-dependency, don't attempt to
            // break it.
            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
              if (P->getSUnit() == NextSU ?
                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
                AntiDepReg = 0;
                break;
              }
          }
        }
        CriticalPathSU = NextSU;
        CriticalPathMI = CriticalPathSU->getInstr();
      } else {
        // We've reached the end of the critical path.
        CriticalPathSU = 0;
        CriticalPathMI = 0;
      }
    }

    PrescanInstruction(MI);

    if (MI->getDesc().hasExtraDefRegAllocReq())
      // If this instruction's defs have special allocation requirement, don't
      // break this anti-dependency.
      AntiDepReg = 0;
    else if (AntiDepReg) {
      // If this instruction has a use of AntiDepReg, breaking it
      // is invalid.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg()) continue;
        unsigned Reg = MO.getReg();
        if (Reg == 0) continue;
        if (MO.isUse() && AntiDepReg == Reg) {
          AntiDepReg = 0;
          break;
        }
      }
    }

    // Determine AntiDepReg's register class, if it is live and is
    // consistently used within a single class.
    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
    assert((AntiDepReg == 0 || RC != NULL) &&
           "Register should be live if it's causing an anti-dependence!");
    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
      AntiDepReg = 0;

    // Look for a suitable register to use to break the anti-depenence.
    //
    // TODO: Instead of picking the first free register, consider which might
    // be the best.
    if (AntiDepReg != 0) {
      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
                                                     LastNewReg[AntiDepReg],
                                                     RC)) {
        DEBUG(errs() << "Breaking anti-dependence edge on "
              << TRI->getName(AntiDepReg)
              << " with " << RegRefs.count(AntiDepReg) << " references"
              << " using " << TRI->getName(NewReg) << "!\n");

        // Update the references to the old register to refer to the new
        // register.
        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
                  std::multimap<unsigned, MachineOperand *>::iterator>
           Range = RegRefs.equal_range(AntiDepReg);
        for (std::multimap<unsigned, MachineOperand *>::iterator
             Q = Range.first, QE = Range.second; Q != QE; ++Q)
          Q->second->setReg(NewReg);

        // We just went back in time and modified history; the
        // liveness information for the anti-depenence reg is now
        // inconsistent. Set the state as if it were dead.
        Classes[NewReg] = Classes[AntiDepReg];
        DefIndices[NewReg] = DefIndices[AntiDepReg];
        KillIndices[NewReg] = KillIndices[AntiDepReg];
        assert(((KillIndices[NewReg] == ~0u) !=
                (DefIndices[NewReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for NewReg!");

        Classes[AntiDepReg] = 0;
        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
        KillIndices[AntiDepReg] = ~0u;
        assert(((KillIndices[AntiDepReg] == ~0u) !=
                (DefIndices[AntiDepReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for AntiDepReg!");

        RegRefs.erase(AntiDepReg);
        LastNewReg[AntiDepReg] = NewReg;
        ++Broken;
      }
    }

    ScanInstruction(MI, Count);
  }

  return Broken;
}