bool findCallsWithFuncArgs2(SgNode *node, string &str) { SgExprStatement *statement; if (statement = isSgExprStatement(node)) { SgFunctionCallExp *call_exp; if (call_exp = isSgFunctionCallExp(statement->get_the_expr())) { m_nodes.clear(); m_nodes.insert(call_exp); m_domain.expand(&m_nodes, QRQueryDomain::all_children); m_domain.getNodes()->erase(call_exp); NodeQuery::VariantVector vector (V_SgFunctionCallExp); QRQueryOpVariant op(vector); op.performQuery(&m_domain, &m_range); unsigned hits = m_range.countRange(); if (hits) { set<SgNode *> *rnodes = m_range.getNodes(); for (set<SgNode *>::iterator iter = rnodes->begin(); iter != rnodes->end(); ) { SgFunctionCallExp *exp = (SgFunctionCallExp *) *iter; iter++; SgExpression *funcexpr = exp->get_function(); str += funcexpr->unparseToString(); if (iter != rnodes->end()) { str += ", "; } } return true; } } } return false; }
// Do partial redundancy elimination, looking for copies of one expression expr // within the basic block root. A control flow graph for root must be provided // in cfg, with a map from nodes to their statements in node_statements, a map // from edges to their CFG edge types in edge_type, and a map from edges to // their insertion points in edge_insertion_point. The algorithm used is that // of Paleri, Srikant, and Shankar ("Partial redundancy elimination: a simple, // pragmatic, and provably correct algorithm", Science of Computer Programming // 48 (2003) 1--20). void PRE::partialRedundancyEliminationOne( SgExpression* expr, SgBasicBlock* root, const myControlFlowGraph& cfg) { // SgBasicBlock* myFunctionBody = getFunctionDefinition(expr)->get_body(); // DQ (3/16/2006): Added assertions ROSE_ASSERT(expr != NULL); ROSE_ASSERT(root != NULL); vector<SgVariableSymbol*> symbols_in_expression = SageInterface::getSymbolsUsedInExpression(expr); if (anyOfListPotentiallyModifiedIn(symbols_in_expression, expr)) { // This expression updates its own arguments, and so is not idempotent // Return immediately return; } // Simple or not user-definable expressions if (isSgVarRefExp(expr)) return; if (isSgValueExp(expr)) return; if (isSgFunctionRefExp(expr)) return; if (isSgExprListExp(expr)) return; if (isSgInitializer(expr)) return; #if 0 if ( (isSgAddOp(expr) || isSgSubtractOp(expr)) && (isSgVarRefExp(isSgBinaryOp(expr)->get_lhs_operand()) || isSgValueExp(isSgBinaryOp(expr)->get_lhs_operand())) && (isSgVarRefExp(isSgBinaryOp(expr)->get_rhs_operand()) || isSgValueExp(isSgBinaryOp(expr)->get_rhs_operand()))) return; #endif // Expressions which do not keep a consistent value each time they are used if (!expressionTreeEqual(expr, expr)) return; // cerr << "Trying to do PRE using expression " << expr->unparseToString() << " whose type is " << expr->sage_class_name() << endl; VertexIter i = cfg.graph.vertices().begin(), end = cfg.graph.vertices().end(); // cerr << "CFG has " << distance(i, end) << " nodes" << endl; bool needToMakeCachevar = false; set<SgNode*> replacements; vector<pair<SgNode*, bool /* before */> > insertions; vector<bool> transp(cfg.graph.vertices().size()), comp(cfg.graph.vertices().size()), antloc(cfg.graph.vertices().size()); vector<SgNode*> first_computation(cfg.graph.vertices().size()), last_computation(cfg.graph.vertices().size()); // Set values of local node properties for (i = cfg.graph.vertices().begin(); i != end; ++i) { const vector<SgNode*>& stmts = cfg.node_statements[*i]; // Precompute test values for each statement vector<bool> argumentsModifiedInStatement(stmts.size()); vector<int> expressionComputedInStatement(stmts.size()); for (unsigned int j = 0; j < stmts.size(); ++j) { if (anyOfListPotentiallyModifiedIn(symbols_in_expression, stmts[j])) argumentsModifiedInStatement[j] = true; expressionComputedInStatement[j] = countComputationsOfExpressionIn(expr, stmts[j]); } // Compute transp transp[*i] = true; for (unsigned int j = 0; j < stmts.size(); ++j) if (argumentsModifiedInStatement[j]) transp[*i] = false; // Compute comp and do local redundancy elimination comp[*i] = false; SgNode* firstComputationInChain = 0; bool needToInsertComputation = false; bool computationInsertedOrUsed = false; // cout << "In node " << *i << endl; for (unsigned int j = 0; j < stmts.size(); ++j) { // cout << "In stmt " << j << ", expressionComputedInStatement = " << expressionComputedInStatement[j] // << ", argumentsModifiedInStatement = " << argumentsModifiedInStatement[j] << endl; if (expressionComputedInStatement[j] && !argumentsModifiedInStatement[j] && comp[*i] /* from last iter */) { // Do local redundancy elimination if (firstComputationInChain && needToInsertComputation) { insertions.push_back(make_pair(firstComputationInChain, true)); replacements.insert(firstComputationInChain); needToInsertComputation = false; } replacements.insert(stmts[j]); computationInsertedOrUsed = true; needToMakeCachevar = true; } if (expressionComputedInStatement[j]) { comp[*i] = true; if (!firstComputationInChain) { firstComputationInChain = stmts[j]; needToInsertComputation = true; if (expressionComputedInStatement[j] >= 2) { insertions.push_back(make_pair(stmts[j], true)); needToMakeCachevar = true; needToInsertComputation = false; computationInsertedOrUsed = true; replacements.insert(stmts[j]); } } last_computation[*i] = stmts[j]; } if (argumentsModifiedInStatement[j]) { comp[*i] = false; // Must come after expressionComputedInStatement check firstComputationInChain = 0; needToInsertComputation = false; } } assert (!computationInsertedOrUsed || needToMakeCachevar); // Compute antloc antloc[*i] = false; for (unsigned int j = 0; j < stmts.size(); ++j) { if (expressionComputedInStatement[j] && !argumentsModifiedInStatement[j]) { antloc[*i] = true; first_computation[*i] = stmts[j]; break; } if (argumentsModifiedInStatement[j]) { antloc[*i] = false; break; } } } // #define PRINT_PROPERTY(p) // for (i = cfg.graph.vertices().begin(); i != end; ++i) if (p[*i]) cerr << #p ": " << *i << endl; #define PRINT_PROPERTY(p) // for (i = cfg.graph.vertices().begin(); i != end; ++i) if (p[*i]) cerr << #p ": " << *i << endl; PRINT_PROPERTY(transp); PRINT_PROPERTY(comp); PRINT_PROPERTY(antloc); int (simpleGraph::*source_ptr)(int) const = &simpleGraph::source; int (simpleGraph::*target_ptr)(int) const = &simpleGraph::target; vector<bool> avin(cfg.graph.vertices().size(), true); vector<bool> avout(cfg.graph.vertices().size(), true); FIXPOINT_BEGIN(cfg) FIXPOINT_OUTPUT_BEGIN(avin, cfg); FIXPOINT_OUTPUT_BEGIN(avout, cfg); avin[v] = accumulate_neighbors(cfg, v, avout,cfg.graph.in_edges(v),&simpleGraph::source, logical_and<bool>(), true, false); avout[v] = comp[v] || (avin[v] && transp[v]); FIXPOINT_OUTPUT_END(avout, <=, cfg); FIXPOINT_OUTPUT_END(avin, <=, cfg); FIXPOINT_END(cfg, out_edges, OutEdgeIter) PRINT_PROPERTY(avin); PRINT_PROPERTY(avout); vector<bool> antin(cfg.graph.vertices().size(), true); vector<bool> antout(cfg.graph.vertices().size(), true); FIXPOINT_BEGIN(cfg) FIXPOINT_OUTPUT_BEGIN(antin, cfg); FIXPOINT_OUTPUT_BEGIN(antout, cfg); antout[v] = accumulate_neighbors(cfg, v, antin, cfg.graph.out_edges(v), target_ptr, logical_and<bool>(), true, false); antin[v] = antloc[v] || (antout[v] && transp[v]); FIXPOINT_OUTPUT_END(antout, <=, cfg); FIXPOINT_OUTPUT_END(antin, <=, cfg); FIXPOINT_END(cfg, in_edges, InEdgeIter) PRINT_PROPERTY(antin); PRINT_PROPERTY(antout); vector<bool> safein(cfg.graph.vertices().size()), safeout(cfg.graph.vertices().size()); for (i = cfg.graph.vertices().begin(); i != end; ++i) { safein[*i] = avin[*i] || antin[*i]; safeout[*i] = avout[*i] || antout[*i]; } PRINT_PROPERTY(safein); PRINT_PROPERTY(safeout); vector<bool> spavin(cfg.graph.vertices().size(), false); vector<bool> spavout(cfg.graph.vertices().size(), false); FIXPOINT_BEGIN(cfg) FIXPOINT_OUTPUT_BEGIN(spavin, cfg); FIXPOINT_OUTPUT_BEGIN(spavout, cfg); spavin[v] = safein[v] && accumulate_neighbors(cfg, v, spavout, cfg.graph.in_edges(v), source_ptr, logical_or<bool>(), false, false); spavout[v] = safeout[v] && (comp[v] || (spavin[v] && transp[v])); FIXPOINT_OUTPUT_END(spavout, >=, cfg); FIXPOINT_OUTPUT_END(spavin, >=, cfg); FIXPOINT_END(cfg, out_edges, OutEdgeIter) PRINT_PROPERTY(spavin); PRINT_PROPERTY(spavout); vector<bool> spantin(cfg.graph.vertices().size(), false); vector<bool> spantout(cfg.graph.vertices().size(), false); FIXPOINT_BEGIN(cfg) FIXPOINT_OUTPUT_BEGIN(spantin, cfg); FIXPOINT_OUTPUT_BEGIN(spantout, cfg); spantout[v] = safeout[v] && accumulate_neighbors(cfg, v, spantin, cfg.graph.out_edges(v), target_ptr, logical_or<bool>(), false, false); spantin[v] = safein[v] && (antloc[v] || (spantout[v] && transp[v])); FIXPOINT_OUTPUT_END(spantout, >=, cfg); FIXPOINT_OUTPUT_END(spantin, >=, cfg); FIXPOINT_END(cfg, in_edges, InEdgeIter) PRINT_PROPERTY(spantin); PRINT_PROPERTY(spantout); #undef PRINT_PROPERTY vector<bool> node_insert(cfg.graph.vertices().size()); vector<bool> replacef(cfg.graph.vertices().size()); vector<bool> replacel(cfg.graph.vertices().size()); // printf ("Intermediate test 1: needToMakeCachevar = %s \n",needToMakeCachevar ? "true" : "false"); for (i = cfg.graph.vertices().begin(); i != end; ++i) { node_insert[*i] = comp[*i] && spantout[*i] && (!transp[*i] || !spavin[*i]); replacef[*i] = antloc[*i] && (spavin[*i] || (transp[*i] && spantout[*i])); replacel[*i] = comp[*i] && (spantout[*i] || (transp[*i] && spavin[*i])); if (node_insert[*i]) { needToMakeCachevar = true; insertions.push_back(make_pair(last_computation[*i], true)); // cerr << "Insert computation of " << expr->unparseToString() << " just before last computation in " << *i << endl; } if (replacef[*i]) { needToMakeCachevar = true; replacements.insert(first_computation[*i]); // cerr << "Replace first computation of " << *i << endl; } if (replacel[*i]) { needToMakeCachevar = true; replacements.insert(last_computation[*i]); // cerr << "Replace last computation of " << *i << endl; } } vector<bool> edge_insert(cfg.graph.edges().size()); // printf ("Intermediate test 2: needToMakeCachevar = %s \n",needToMakeCachevar ? "true" : "false"); EdgeIter j = cfg.graph.edges().begin(), jend = cfg.graph.edges().end(); for (; j != jend; ++j) { edge_insert[*j] = !spavout[cfg.graph.source(*j)] && spavin[cfg.graph.target(*j)] && spantin[cfg.graph.target(*j)]; // printf ("edge_insert[*j] = %s \n",edge_insert[*j] ? "true" : "false"); if (edge_insert[*j]) { needToMakeCachevar = true; // cerr << "Insert computation of " << expr->unparseToString() << " on edge from " // << cfg.graph.source(*j) << " to " << cfg.graph.target(*j) << endl; } } // printf ("Before final test: needToMakeCachevar = %s \n",needToMakeCachevar ? "true" : "false"); // Add cache variable if necessary SgVarRefExp* cachevar = 0; if (needToMakeCachevar) { SgName cachevarname = "cachevar__"; cachevarname << ++SageInterface::gensym_counter; // printf ("Building variable name = %s \n",cachevarname.str()); SgType* type = expr->get_type(); if (isSgArrayType(type)) type = new SgPointerType(isSgArrayType(type)->get_base_type()); assert (SageInterface::isDefaultConstructible(type)); // FIXME: assert (isAssignable(type)); SgVariableDeclaration* decl = new SgVariableDeclaration(SgNULL_FILE, cachevarname, type, NULL); decl->set_definingDeclaration(decl); SgInitializedName* initname = decl->get_variables().back(); // DQ (10/5/2007): Added an assertion. ROSE_ASSERT(initname != NULL); decl->addToAttachedPreprocessingInfo( new PreprocessingInfo(PreprocessingInfo::CplusplusStyleComment, (string("// Partial redundancy elimination: ") + cachevarname.str() + " is a cache of " + expr->unparseToString()).c_str(), "Compiler-Generated in PRE", 0, 0, 0, PreprocessingInfo::before)); SgVariableSymbol* cachevarsym = new SgVariableSymbol(initname); decl->set_parent(root); // DQ (10/5/2007): Added scope (suggested by Jeremiah). initname->set_scope(root); root->get_statements().insert(root->get_statements().begin(),decl); root->insert_symbol(cachevarname, cachevarsym); cachevar = new SgVarRefExp(SgNULL_FILE, cachevarsym); cachevar->set_endOfConstruct(SgNULL_FILE); } // Do expression computation replacements for (set<SgNode*>::iterator i = replacements.begin(); i != replacements.end(); ++i) { ReplaceExpressionWithVarrefVisitor(expr, cachevar).traverse(*i, postorder); } // Do edge insertions // int count = 0; bool failAtEndOfFunction = false; for (j = cfg.graph.edges().begin(); j != jend; ++j) { // printf ("Build the insertion list! count = %d \n",count++); if (edge_insert[*j]) { #if 0 // DQ (3/13/2006): Compiler warns that "src" is unused, so I have commented it out! Vertex src = cfg.graph.source(*j), tgt = cfg.graph.target(*j); cerr << "Doing insertion between " << src << " and " << tgt << endl; #endif pair<SgNode*, bool> insert_point = cfg.edge_insertion_point[*j]; if (insert_point.first) { insertions.push_back(insert_point); } else { // DQ (3/16/2006): This is a visited when we fixup the NULL pointer to the initializer in a SgForStatment. cerr << "Warning: no insertion point found" << endl; //FIXME was assert printf ("Need to figure out what to do here! cfg.edge_insertion_point[*j] = %p \n",&(cfg.edge_insertion_point[*j])); failAtEndOfFunction = true; ROSE_ASSERT(false); } } } // Do within-node insertions // printf ("At start of loop: insertions.size() = %zu \n",insertions.size()); for (vector<pair<SgNode*, bool> >::iterator i = insertions.begin(); i != insertions.end(); ++i) { SgTreeCopy tc1, tc2; SgVarRefExp* cachevarCopy = isSgVarRefExp(cachevar->copy(tc1)); ROSE_ASSERT (cachevarCopy); cachevarCopy->set_lvalue(true); SgExpression* operation = new SgAssignOp(SgNULL_FILE, cachevarCopy, isSgExpression(expr->copy(tc2))); #if 0 printf ("Inside of loop: insertions.size() = %zu \n",insertions.size()); printf ("\n\ni->first = %p = %s = %s \n",i->first,i->first->class_name().c_str(),i->first->unparseToString().c_str()); printf ("operation = %p = %s = %s \n",operation,operation->class_name().c_str(),operation->unparseToString().c_str()); #endif if (isSgExpression(i->first) && !i->second) { SgNode* ifp = i->first->get_parent(); SgCommaOpExp* comma = new SgCommaOpExp(SgNULL_FILE, isSgExpression(i->first), operation); operation->set_parent(comma); comma->set_parent(ifp); i->first->set_parent(comma); if (isSgForStatement(ifp)) { isSgForStatement(ifp)->set_increment(comma); } else if (isSgBinaryOp(ifp) && isSgBinaryOp(ifp)->get_lhs_operand() == i->first) { isSgBinaryOp(ifp)->set_lhs_operand(comma); } else if (isSgBinaryOp(ifp) && isSgBinaryOp(ifp)->get_rhs_operand() == i->first) { isSgBinaryOp(ifp)->set_rhs_operand(comma); } else if (isSgUnaryOp(ifp) && isSgUnaryOp(ifp)->get_operand() == i->first) { isSgUnaryOp(ifp)->set_operand(comma); } else { cerr << ifp->sage_class_name() << endl; assert (!"Bad parent type for inserting comma expression"); } } else { SgStatement* the_computation = new SgExprStatement(SgNULL_FILE, operation); operation->set_parent(the_computation); // printf ("In pre.C: the_computation = %p = %s \n",the_computation,the_computation->class_name().c_str()); if (isSgBasicBlock(i->first) && i->second) { isSgBasicBlock(i->first)->get_statements().insert(isSgBasicBlock(i->first)->get_statements().begin(),the_computation); the_computation->set_parent(i->first); } else { #if 0 // DQ (3/14/2006): Bug here when SgExprStatement from SgForStatement test is used here! printf ("Bug here when SgExprStatement from SgForStatement test is used: i->first = %s \n",i->first->class_name().c_str()); i->first->get_file_info()->display("Location i->first"); printf ("Bug here when SgExprStatement from SgForStatement test is used: TransformationSupport::getStatement(i->first) = %s \n", TransformationSupport::getStatement(i->first)->class_name().c_str()); printf ("Bug here when SgExprStatement from SgForStatement test is used: the_computation = %s \n",the_computation->class_name().c_str()); the_computation->get_file_info()->display("Location the_computation: debug"); ROSE_ASSERT(i->first != NULL); ROSE_ASSERT(i->first->get_parent() != NULL); printf ("i->first->get_parent() = %s \n",i->first->get_parent()->class_name().c_str()); i->first->get_file_info()->display("Location i->first: debug"); #endif SgForStatement* forStatement = isSgForStatement(i->first->get_parent()); if (forStatement != NULL) { // Make sure that both pointers are not equal because they are both NULL! ROSE_ASSERT(forStatement->get_test() != NULL); SgExprStatement* possibleTest = isSgExprStatement(i->first); if ( forStatement->get_test() == possibleTest ) { // This is a special case of a SgExpressionStatement as a target in a SgForStatement // printf ("Found special case of target being the test of a SgForStatement \n"); forStatement->set_test(the_computation); the_computation->set_parent(forStatement); } } else { SgForInitStatement* forInitStatement = isSgForInitStatement(i->first->get_parent()); if (forInitStatement != NULL) { // printf ("Found the SgForInitStatement \n"); SgVariableDeclaration* possibleVariable = isSgVariableDeclaration(i->first); SgExprStatement* possibleExpression = isSgExprStatement(i->first); SgStatementPtrList & statementList = forInitStatement->get_init_stmt(); SgStatementPtrList::iterator i = statementList.begin(); bool addToForInitList = false; while ( (addToForInitList == false) && (i != statementList.end()) ) { // if ( *i == possibleVariable ) if ( *i == possibleVariable || *i == possibleExpression ) { // This is a special case of a SgExpressionStatement as a target in a SgForStatement // printf ("Found special case of SgForInitStatement transformation \n"); addToForInitList = true; } i++; } // Only modify the STL list outside of the loop over the list to avoid interator invalidation if (addToForInitList == true) { // Add the the_computation statment to the list in the SgForInitStatement. // Later if we abandon the SgForInitStatement then we would have to add it to // the list of SgInitializedName objects in the SgVariableDeclaration OR modify // the expression list to handle the extra expression (but I think this case in // handled above). // printf ("Adding the_computation to the list in the SgForInitStatement \n"); statementList.push_back(the_computation); the_computation->set_parent(forInitStatement); } } else { myStatementInsert(TransformationSupport::getStatement(i->first),the_computation,i->second,true); the_computation->set_parent(TransformationSupport::getStatement(i->first)); } } } } } // DQ (3/16/2006): debugging code to force failure at inspection point if (failAtEndOfFunction == true) { printf ("Error: internal error detected \n"); ROSE_ASSERT(false); } }
bool canWeSimplfyIndexExpression(vector<SgExpression*> subscripts) { //valid means that we can use common subexpression elimination. //simplfy means that we can simplfy the index expression (subexpression elimination) //by rewriting it in terms of index_arrname + offset (some offset) //false: we cannot figure out the offset,then we leave it as it is. bool valid = false ; int indexNo = 0 ; vector<SgExpression*>::iterator it; for(it = subscripts.begin(); it != subscripts.end(); it++) { //looking for minus, plus a small constant: i-c, j+c SgExpression* index = isSgExpression(*it); ROSE_ASSERT(index); indexNo++; Rose_STL_Container<SgNode*> expListInIndex = NodeQuery::querySubTree(index, V_SgExpression); for(Rose_STL_Container<SgNode*>::iterator one_exp = expListInIndex.begin(); one_exp != expListInIndex.end(); one_exp++) { SgExpression* tmp_exp = isSgExpression(*one_exp); //these are only allowable expressions that appear in the index expression //we are interested in [i +|- c ] if( isSgAddOp(tmp_exp) || isSgSubtractOp(tmp_exp) || isSgIntVal(tmp_exp) || isSgVarRefExp(tmp_exp)){ valid = true; } else { return false; } } //looking for minus, plus 1s: i-1, j+1 Rose_STL_Container<SgNode*> constExp = NodeQuery::querySubTree(index, V_SgIntVal); Rose_STL_Container<SgNode*> indexVarExp = NodeQuery::querySubTree(index, V_SgVarRefExp); Rose_STL_Container<SgNode*> binaryOp = NodeQuery::querySubTree(index, V_SgBinaryOp); //we allow only one constant in the index expression //because we already apply constant folding if(constExp.size() > 1) return false; else if(binaryOp.size() > 1) return false; else if(indexVarExp.size() < 1 || indexVarExp.size() > 2) return false; else if(indexVarExp.size() == 2) {//one of them should idx, y, z other can be anything Rose_STL_Container<SgNode*>::iterator it = indexVarExp.begin(); SgExpression* first = isSgExpression(*(it)); SgExpression* second = isSgExpression(*(++it)); string first_str = first->unparseToString(); string second_str = second->unparseToString(); if(indexNo == 1) //gidx { if(first_str.find(GIDX) == string::npos && second_str.find(GIDX) == string::npos) return false; } else if (indexNo == 2) { if(first_str.find(GIDY) == string::npos && second_str.find(GIDY) == string::npos) return false; } else if (indexNo == 3) { if(first_str.find(GIDZ) == string::npos && second_str.find(GIDZ) == string::npos) return false; } else return false; } else // there is a least one variable { SgExpression* varExp = isSgExpression(*(indexVarExp.begin())); string varExp_str = varExp->unparseToString(); if(indexNo == 1) //gidx { if(varExp_str.find(GIDX) == string::npos) return false; } else if (indexNo == 2) { if(varExp_str.find(GIDY) == string::npos) return false; } else if (indexNo == 3) { if(varExp_str.find(GIDZ) == string::npos) return false; } else return false; } }//end of indices of a single array reference return valid; }
FdFindCopiesVisitor(SgExpression* target, vector<SgExpression*>& copies): target(target), copies(copies) { #ifdef FD_DEBUG cout << "Looking for copies of " << target->unparseToString() << endl; #endif }
// Do finite differencing on one expression within one context. The expression // must be defined and valid within the entire body of root. The rewrite rules // are used to simplify expressions. When a variable var is updated from // old_value to new_value, an expression of the form (var, (old_value, // new_value)) is created and rewritten. The rewrite rules may either produce // an arbitrary expression (which will be used as-is) or one of the form (var, // (something, value)) (which will be changed to (var = value)). void doFiniteDifferencingOne(SgExpression* e, SgBasicBlock* root, RewriteRule* rules) { SgStatementPtrList& root_stmts = root->get_statements(); SgStatementPtrList::iterator i; for (i = root_stmts.begin(); i != root_stmts.end(); ++i) { if (expressionComputedIn(e, *i)) break; } if (i == root_stmts.end()) return; // Expression is not used within root, so quit vector<SgVariableSymbol*> used_symbols = SageInterface::getSymbolsUsedInExpression(e); SgName cachename = "cache_fd__"; cachename << ++SageInterface::gensym_counter; SgVariableDeclaration* cachedecl = new SgVariableDeclaration(SgNULL_FILE, cachename, e->get_type(),0 /* new SgAssignInitializer(SgNULL_FILE, e) */); SgInitializedName* cachevar = cachedecl->get_variables().back(); ROSE_ASSERT (cachevar); root->get_statements().insert(i, cachedecl); cachedecl->set_parent(root); cachedecl->set_definingDeclaration(cachedecl); cachevar->set_scope(root); SgVariableSymbol* sym = new SgVariableSymbol(cachevar); root->insert_symbol(cachename, sym); SgVarRefExp* vr = new SgVarRefExp(SgNULL_FILE, sym); vr->set_endOfConstruct(SgNULL_FILE); replaceCopiesOfExpression(e, vr, root); vector<SgExpression*> modifications_to_used_symbols; FdFindModifyingStatementsVisitor(used_symbols, modifications_to_used_symbols).go(root); cachedecl->addToAttachedPreprocessingInfo( new PreprocessingInfo(PreprocessingInfo::CplusplusStyleComment,(string("// Finite differencing: ") + cachename.str() + " is a cache of " + e->unparseToString()).c_str(),"Compiler-Generated in Finite Differencing",0, 0, 0, PreprocessingInfo::before)); if (modifications_to_used_symbols.size() == 0) { SgInitializer* cacheinit = new SgAssignInitializer(SgNULL_FILE, e); e->set_parent(cacheinit); cachevar->set_initializer(cacheinit); cacheinit->set_parent(cachevar); } else { for (unsigned int i = 0; i < modifications_to_used_symbols.size(); ++i) { SgExpression* modstmt = modifications_to_used_symbols[i]; #ifdef FD_DEBUG cout << "Updating cache after " << modstmt->unparseToString() << endl; #endif SgExpression* updateCache = 0; SgVarRefExp* varref = new SgVarRefExp(SgNULL_FILE, sym); varref->set_endOfConstruct(SgNULL_FILE); SgTreeCopy tc; SgExpression* eCopy = isSgExpression(e->copy(tc)); switch (modstmt->variantT()) { case V_SgAssignOp: { SgAssignOp* assignment = isSgAssignOp(modstmt); assert (assignment); SgExpression* lhs = assignment->get_lhs_operand(); SgExpression* rhs = assignment->get_rhs_operand(); replaceCopiesOfExpression(lhs, rhs, eCopy); } break; case V_SgPlusAssignOp: case V_SgMinusAssignOp: case V_SgAndAssignOp: case V_SgIorAssignOp: case V_SgMultAssignOp: case V_SgDivAssignOp: case V_SgModAssignOp: case V_SgXorAssignOp: case V_SgLshiftAssignOp: case V_SgRshiftAssignOp: { SgBinaryOp* assignment = isSgBinaryOp(modstmt); assert (assignment); SgExpression* lhs = assignment->get_lhs_operand(); SgExpression* rhs = assignment->get_rhs_operand(); SgTreeCopy tc; SgExpression* rhsCopy = isSgExpression(rhs->copy(tc)); SgExpression* newval = 0; switch (modstmt->variantT()) { #define DO_OP(op, nonassignment) \ case V_##op: { \ newval = new nonassignment(SgNULL_FILE, lhs, rhsCopy); \ newval->set_endOfConstruct(SgNULL_FILE); \ } \ break DO_OP(SgPlusAssignOp, SgAddOp); DO_OP(SgMinusAssignOp, SgSubtractOp); DO_OP(SgAndAssignOp, SgBitAndOp); DO_OP(SgIorAssignOp, SgBitOrOp); DO_OP(SgMultAssignOp, SgMultiplyOp); DO_OP(SgDivAssignOp, SgDivideOp); DO_OP(SgModAssignOp, SgModOp); DO_OP(SgXorAssignOp, SgBitXorOp); DO_OP(SgLshiftAssignOp, SgLshiftOp); DO_OP(SgRshiftAssignOp, SgRshiftOp); #undef DO_OP default: break; } assert (newval); replaceCopiesOfExpression(lhs, newval, eCopy); } break; case V_SgPlusPlusOp: { SgExpression* lhs = isSgPlusPlusOp(modstmt)->get_operand(); SgIntVal* one = new SgIntVal(SgNULL_FILE, 1); one->set_endOfConstruct(SgNULL_FILE); SgAddOp* add = new SgAddOp(SgNULL_FILE, lhs, one); add->set_endOfConstruct(SgNULL_FILE); lhs->set_parent(add); one->set_parent(add); replaceCopiesOfExpression(lhs,add,eCopy); } break; case V_SgMinusMinusOp: { SgExpression* lhs = isSgMinusMinusOp(modstmt)->get_operand(); SgIntVal* one = new SgIntVal(SgNULL_FILE, 1); one->set_endOfConstruct(SgNULL_FILE); SgSubtractOp* sub = new SgSubtractOp(SgNULL_FILE, lhs, one); sub->set_endOfConstruct(SgNULL_FILE); lhs->set_parent(sub); one->set_parent(sub); replaceCopiesOfExpression(lhs,sub,eCopy); } break; default: cerr << modstmt->sage_class_name() << endl; assert (false); break; } #ifdef FD_DEBUG cout << "e is " << e->unparseToString() << endl; cout << "eCopy is " << eCopy->unparseToString() << endl; #endif updateCache = doFdVariableUpdate(rules, varref, e, eCopy); #ifdef FD_DEBUG cout << "updateCache is " << updateCache->unparseToString() << endl; #endif if (updateCache) { ROSE_ASSERT(modstmt != NULL); SgNode* ifp = modstmt->get_parent(); SgCommaOpExp* comma = new SgCommaOpExp(SgNULL_FILE, updateCache, modstmt); modstmt->set_parent(comma); updateCache->set_parent(comma); if (ifp == NULL) { printf ("modstmt->get_parent() == NULL modstmt = %p = %s \n",modstmt,modstmt->class_name().c_str()); modstmt->get_startOfConstruct()->display("modstmt->get_parent() == NULL: debug"); } ROSE_ASSERT(ifp != NULL); #ifdef FD_DEBUG cout << "New expression is " << comma->unparseToString() << endl; cout << "IFP is " << ifp->sage_class_name() << ": " << ifp->unparseToString() << endl; #endif if (isSgExpression(ifp)) { isSgExpression(ifp)->replace_expression(modstmt, comma); comma->set_parent(ifp); } else { // DQ (12/16/2006): Need to handle cases that are not SgExpression (now that SgExpressionRoot is not used!) // cerr << ifp->sage_class_name() << endl; // assert (!"Bad parent type for inserting comma expression"); SgStatement* statement = isSgStatement(ifp); if (statement != NULL) { #ifdef FD_DEBUG printf ("Before statement->replace_expression(): statement = %p = %s modstmt = %p = %s \n",statement,statement->class_name().c_str(),modstmt,modstmt->class_name().c_str()); SgExprStatement* expresionStatement = isSgExprStatement(statement); if (expresionStatement != NULL) { SgExpression* expression = expresionStatement->get_expression(); printf ("expressionStatement expression = %p = %s \n",expression,expression->class_name().c_str()); } #endif statement->replace_expression(modstmt, comma); comma->set_parent(statement); } else { ROSE_ASSERT(ifp != NULL); printf ("Error: parent is neither a SgExpression nor a SgStatement ifp = %p = %s \n",ifp,ifp->class_name().c_str()); ROSE_ASSERT(false); } } #ifdef FD_DEBUG cout << "IFP is now " << ifp->unparseToString() << endl; #endif } } } }
//! Convert individual directives and clauses to string // This is called by FailSafe::Attribute::toFailSafeString() // Note that the input parameter may be totally different from the directive type of the current attribute! std::string FailSafe::Attribute::toFailSafeString( FailSafe::fail_safe_enum in_type) { string result; //Directives ------------------ if (isDirective(in_type)) { //common string for all directives // region, status, data, tolerance, double/triple_redundancy, save, result += FailSafe::toString(in_type); // extra stuff associated with a directive, but not clauses if (in_type == e_region) //TODO prepare for named region later { if (isNamed()) result+=" ("+ getName()+")"; } else if (in_type == e_save) { if(hasVariableList(in_type)) { string varListString = toFailSafeString(getVariableList(in_type)); result+=" (" + varListString + ")"; } } } // end if directive else if (in_type == e_assert) // handle clauses one by one { result += FailSafe::toString(in_type); SgExpression* exp = getExpression(FailSafe::e_assert).second; ROSE_ASSERT (exp != NULL); result += " ("; result += exp->unparseToString(); result += ") "; } else if (in_type == e_specifier) { result += FailSafe::toString (specifier); } else if (in_type == e_error) { result += " error("; result += FailSafe::toString (getErrorType() ); result += ") "; } else if (in_type == e_recover) { result += " recover("; result += isSgFunctionRefExp(getRecoveryFunc())->unparseToString(); result += ","; result += isSgExprListExp(getRecoveryArgList())->unparseToString(); result += ") "; } else { cerr<<"Error. Unhandled enum type in FailSafe::Attribute::toFailSafeString (intype):"<<in_type<<endl; ROSE_ASSERT (false); } return result; }
int StencilAnalysis::performHigherOrderAnalysis(SgBasicBlock* basicBlock, const SgInitializedName* array, int num_planes) { //Didem: rewrote in March 01, 2011 to make it more robust //we are interested in only expressions i,j,k + c where c is a constant //and consider only these kinds of expressions because others cannot //benefit from the on-chip memory optimizations //this affects the shared memory offsets [BLOCKDIM + order] //assumes symmetric //x dim : -/+ order //y dim : -/+ order //z dim : -/+ order int maxOrderX = 0; int maxOrderY = 0; int maxOrderZ = 0; size_t dim = MintArrayInterface::getDimension(array); string candidateVarName = array->get_name().str(); Rose_STL_Container<SgNode*> nodeList = NodeQuery::querySubTree(basicBlock, V_SgPntrArrRefExp); Rose_STL_Container<SgNode*>::reverse_iterator arrayNode = nodeList.rbegin(); for(; arrayNode != nodeList.rend(); arrayNode++) { ROSE_ASSERT(*arrayNode); SgExpression* arrayExp; vector<SgExpression*> subscripts; //first index is i if E[j][i] SgExpression* arrRefWithIndices = isSgExpression(*arrayNode); if(MintArrayInterface::isArrayReference(arrRefWithIndices, &arrayExp, &subscripts)) { SgInitializedName *arrayName = SageInterface::convertRefToInitializedName(isSgVarRefExp (arrayExp)); ROSE_ASSERT(arrayName); string var_name= arrayName->get_name().str(); //check if array name matches if(var_name == candidateVarName && subscripts.size() == dim){ int indexNo = 0; //check if subsrcipts are _gidx and _gidy std::vector<SgExpression*>::iterator it; for(it= subscripts.begin(); it != subscripts.end(); it++) { indexNo++; SgExpression* index = *it; Rose_STL_Container<SgNode*> binOpList = NodeQuery::querySubTree(index, V_SgBinaryOp); if(binOpList.size() == 1) { SgBinaryOp* binOp = isSgBinaryOp(*(binOpList.begin())); ROSE_ASSERT(binOp); if(isSgAddOp(binOp) || isSgSubtractOp(binOp)) { SgExpression* lhs = binOp->get_lhs_operand(); SgExpression* rhs = binOp->get_rhs_operand(); ROSE_ASSERT(lhs); ROSE_ASSERT(rhs); SgExpression* varExp = NULL; string varExp_str = ""; int newVal =0; if(isSgIntVal(lhs) && isSgVarRefExp(rhs)) { varExp = isSgVarRefExp(rhs); varExp_str = varExp->unparseToString(); newVal = isSgIntVal(lhs)-> get_value(); } else if (isSgIntVal(rhs) && isSgVarRefExp(lhs)) { varExp = isSgVarRefExp(lhs); varExp_str = varExp->unparseToString(); newVal = isSgIntVal(rhs)-> get_value(); } if(indexNo == 1 && varExp_str == GIDX) maxOrderX = newVal > maxOrderX ? newVal : maxOrderX; if(indexNo == 2 && varExp_str == GIDY) maxOrderY = newVal > maxOrderY ? newVal : maxOrderY; if(indexNo == 3 && varExp_str == GIDZ) maxOrderZ = newVal > maxOrderZ ? newVal : maxOrderZ; }//end of addop subtract op } // end of binary op } //end of for subscripts }//if end of var_name = candidatename }//end of is arrayRef }// end of ptr arr ref loop if(num_planes == 1) return (maxOrderX > maxOrderY) ? maxOrderX : maxOrderY; if(maxOrderX > maxOrderY ) return (maxOrderX > maxOrderZ) ? maxOrderX : maxOrderZ; return (maxOrderY > maxOrderZ) ? maxOrderY : maxOrderZ; } //end of function