void SkScalerContext_FreeType_Base::generateGlyphImage( FT_Face face, const SkGlyph& glyph, const SkMatrix& bitmapTransform) { const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); switch ( face->glyph->format ) { case FT_GLYPH_FORMAT_OUTLINE: { FT_Outline* outline = &face->glyph->outline; int dx = 0, dy = 0; if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { dx = SkFixedToFDot6(glyph.getSubXFixed()); dy = SkFixedToFDot6(glyph.getSubYFixed()); // negate dy since freetype-y-goes-up and skia-y-goes-down dy = -dy; } memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); if (SkMask::kLCD16_Format == glyph.fMaskFormat) { FT_Outline_Translate(outline, dx, dy); FT_Error err = FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD); if (err) { SK_TRACEFTR(err, "Could not render glyph."); return; } SkMask mask; glyph.toMask(&mask); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE memset(mask.fImage, 0x80, mask.fBounds.height() * mask.fRowBytes); #endif FT_GlyphSlotRec& ftGlyph = *face->glyph; if (!SkIRect::Intersects(mask.fBounds, SkIRect::MakeXYWH( ftGlyph.bitmap_left, -ftGlyph.bitmap_top, ftGlyph.bitmap.width, ftGlyph.bitmap.rows))) { return; } // If the FT_Bitmap extent is larger, discard bits of the bitmap outside the mask. // If the SkMask extent is larger, shrink mask to fit bitmap (clearing discarded). unsigned char* origBuffer = ftGlyph.bitmap.buffer; // First align the top left (origin). if (-ftGlyph.bitmap_top < mask.fBounds.fTop) { int32_t topDiff = mask.fBounds.fTop - (-ftGlyph.bitmap_top); ftGlyph.bitmap.buffer += ftGlyph.bitmap.pitch * topDiff; ftGlyph.bitmap.rows -= topDiff; ftGlyph.bitmap_top = -mask.fBounds.fTop; } if (ftGlyph.bitmap_left < mask.fBounds.fLeft) { int32_t leftDiff = mask.fBounds.fLeft - ftGlyph.bitmap_left; ftGlyph.bitmap.buffer += leftDiff; ftGlyph.bitmap.width -= leftDiff; ftGlyph.bitmap_left = mask.fBounds.fLeft; } if (mask.fBounds.fTop < -ftGlyph.bitmap_top) { mask.fImage += mask.fRowBytes * (-ftGlyph.bitmap_top - mask.fBounds.fTop); mask.fBounds.fTop = -ftGlyph.bitmap_top; } if (mask.fBounds.fLeft < ftGlyph.bitmap_left) { mask.fImage += sizeof(uint16_t) * (ftGlyph.bitmap_left - mask.fBounds.fLeft); mask.fBounds.fLeft = ftGlyph.bitmap_left; } // Origins aligned, clean up the width and height. int ftVertScale = (doVert ? 3 : 1); int ftHoriScale = (doVert ? 1 : 3); if (mask.fBounds.height() * ftVertScale < SkToInt(ftGlyph.bitmap.rows)) { ftGlyph.bitmap.rows = mask.fBounds.height() * ftVertScale; } if (mask.fBounds.width() * ftHoriScale < SkToInt(ftGlyph.bitmap.width)) { ftGlyph.bitmap.width = mask.fBounds.width() * ftHoriScale; } if (SkToInt(ftGlyph.bitmap.rows) < mask.fBounds.height() * ftVertScale) { mask.fBounds.fBottom = mask.fBounds.fTop + ftGlyph.bitmap.rows / ftVertScale; } if (SkToInt(ftGlyph.bitmap.width) < mask.fBounds.width() * ftHoriScale) { mask.fBounds.fRight = mask.fBounds.fLeft + ftGlyph.bitmap.width / ftHoriScale; } if (fPreBlend.isApplicable()) { copyFT2LCD16<true>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { copyFT2LCD16<false>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } // Restore the buffer pointer so FreeType can properly free it. ftGlyph.bitmap.buffer = origBuffer; } else { FT_BBox bbox; FT_Bitmap target; FT_Outline_Get_CBox(outline, &bbox); /* what we really want to do for subpixel is offset(dx, dy) compute_bounds offset(bbox & !63) but that is two calls to offset, so we do the following, which achieves the same thing with only one offset call. */ FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63), dy - ((bbox.yMin + dy) & ~63)); target.width = glyph.fWidth; target.rows = glyph.fHeight; target.pitch = glyph.rowBytes(); target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage); target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat); target.num_grays = 256; FT_Outline_Get_Bitmap(face->glyph->library, outline, &target); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE for (int y = 0; y < glyph.fHeight; ++y) { for (int x = 0; x < glyph.fWidth; ++x) { uint8_t& a = ((uint8_t*)glyph.fImage)[(glyph.rowBytes() * y) + x]; a = SkTMax<uint8_t>(a, 0x20); } } #endif } } break; case FT_GLYPH_FORMAT_BITMAP: { FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode); SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); // Assume that the other formats do not exist. SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode || FT_PIXEL_MODE_GRAY == pixel_mode || FT_PIXEL_MODE_BGRA == pixel_mode); // These are the only formats this ScalerContext should request. SkASSERT(SkMask::kBW_Format == maskFormat || SkMask::kA8_Format == maskFormat || SkMask::kARGB32_Format == maskFormat || SkMask::kLCD16_Format == maskFormat); // If no scaling needed, directly copy glyph bitmap. if (bitmapTransform.isIdentity()) { SkMask dstMask; glyph.toMask(&dstMask); copyFTBitmap(face->glyph->bitmap, dstMask); break; } // Otherwise, scale the bitmap. // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB) SkBitmap unscaledBitmap; // TODO: mark this as sRGB when the blits will be sRGB. unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width, face->glyph->bitmap.rows, SkColorType_for_FTPixelMode(pixel_mode), kPremul_SkAlphaType)); SkMask unscaledBitmapAlias; unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels()); unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height()); unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes(); unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType()); copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias); // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD. // BW requires an A8 target for resizing, which can then be down sampled. // LCD should use a 4x A8 target, which will then be down sampled. // For simplicity, LCD uses A8 and is replicated. int bitmapRowBytes = 0; if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) { bitmapRowBytes = glyph.rowBytes(); } SkBitmap dstBitmap; // TODO: mark this as sRGB when the blits will be sRGB. dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight, SkColorType_for_SkMaskFormat(maskFormat), kPremul_SkAlphaType), bitmapRowBytes); if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) { dstBitmap.allocPixels(); } else { dstBitmap.setPixels(glyph.fImage); } // Scale unscaledBitmap into dstBitmap. SkCanvas canvas(dstBitmap); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE canvas.clear(0x33FF0000); #else canvas.clear(SK_ColorTRANSPARENT); #endif canvas.translate(-glyph.fLeft, -glyph.fTop); canvas.concat(bitmapTransform); canvas.translate(face->glyph->bitmap_left, -face->glyph->bitmap_top); SkPaint paint; paint.setFilterQuality(kMedium_SkFilterQuality); canvas.drawBitmap(unscaledBitmap, 0, 0, &paint); // If the destination is BW or LCD, convert from A8. if (SkMask::kBW_Format == maskFormat) { // Copy the A8 dstBitmap into the A1 glyph.fImage. SkMask dstMask; glyph.toMask(&dstMask); packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes()); } else if (SkMask::kLCD16_Format == maskFormat) { // Copy the A8 dstBitmap into the LCD16 glyph.fImage. uint8_t* src = dstBitmap.getAddr8(0, 0); uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage); for (int y = dstBitmap.height(); y --> 0;) { for (int x = 0; x < dstBitmap.width(); ++x) { dst[x] = grayToRGB16(src[x]); } dst = (uint16_t*)((char*)dst + glyph.rowBytes()); src += dstBitmap.rowBytes(); } } } break; default: SkDEBUGFAIL("unknown glyph format"); memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); return; } // We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum, // it is optional #if defined(SK_GAMMA_APPLY_TO_A8) if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) { uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; unsigned rowBytes = glyph.rowBytes(); for (int y = glyph.fHeight - 1; y >= 0; --y) { for (int x = glyph.fWidth - 1; x >= 0; --x) { dst[x] = fPreBlend.fG[dst[x]]; } dst += rowBytes; } } #endif }
void SkScalerContext_FreeType_Base::generateGlyphImage(FT_Face face, const SkGlyph& glyph) { const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); switch ( face->glyph->format ) { case FT_GLYPH_FORMAT_OUTLINE: { FT_Outline* outline = &face->glyph->outline; FT_BBox bbox; FT_Bitmap target; if (fRec.fFlags & SkScalerContext::kEmbolden_Flag && !(face->style_flags & FT_STYLE_FLAG_BOLD)) { emboldenOutline(face, outline); } int dx = 0, dy = 0; if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { dx = SkFixedToFDot6(glyph.getSubXFixed()); dy = SkFixedToFDot6(glyph.getSubYFixed()); // negate dy since freetype-y-goes-up and skia-y-goes-down dy = -dy; } FT_Outline_Get_CBox(outline, &bbox); /* what we really want to do for subpixel is offset(dx, dy) compute_bounds offset(bbox & !63) but that is two calls to offset, so we do the following, which achieves the same thing with only one offset call. */ FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63), dy - ((bbox.yMin + dy) & ~63)); if (SkMask::kLCD16_Format == glyph.fMaskFormat) { FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD); SkMask mask; glyph.toMask(&mask); if (fPreBlend.isApplicable()) { copyFT2LCD16<true>(face->glyph->bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { copyFT2LCD16<false>(face->glyph->bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } } else { target.width = glyph.fWidth; target.rows = glyph.fHeight; target.pitch = glyph.rowBytes(); target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage); target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat); target.num_grays = 256; memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); FT_Outline_Get_Bitmap(face->glyph->library, outline, &target); } } break; case FT_GLYPH_FORMAT_BITMAP: { FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode); SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); // Assume that the other formats do not exist. SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode || FT_PIXEL_MODE_GRAY == pixel_mode || FT_PIXEL_MODE_BGRA == pixel_mode); // These are the only formats this ScalerContext should request. SkASSERT(SkMask::kBW_Format == maskFormat || SkMask::kA8_Format == maskFormat || SkMask::kARGB32_Format == maskFormat || SkMask::kLCD16_Format == maskFormat); if (fRec.fFlags & SkScalerContext::kEmbolden_Flag && !(face->style_flags & FT_STYLE_FLAG_BOLD)) { FT_GlyphSlot_Own_Bitmap(face->glyph); FT_Bitmap_Embolden(face->glyph->library, &face->glyph->bitmap, kBitmapEmboldenStrength, 0); } // If no scaling needed, directly copy glyph bitmap. if (glyph.fWidth == face->glyph->bitmap.width && glyph.fHeight == face->glyph->bitmap.rows && glyph.fTop == -face->glyph->bitmap_top && glyph.fLeft == face->glyph->bitmap_left) { SkMask dstMask; glyph.toMask(&dstMask); copyFTBitmap(face->glyph->bitmap, dstMask); break; } // Otherwise, scale the bitmap. // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB) SkBitmap unscaledBitmap; unscaledBitmap.setConfig(SkBitmapConfig_for_FTPixelMode(pixel_mode), face->glyph->bitmap.width, face->glyph->bitmap.rows); unscaledBitmap.allocPixels(); SkMask unscaledBitmapAlias; unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels()); unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height()); unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes(); unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkBitmapConfig(unscaledBitmap.config()); copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias); // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD. // BW requires an A8 target for resizing, which can then be down sampled. // LCD should use a 4x A8 target, which will then be down sampled. // For simplicity, LCD uses A8 and is replicated. int bitmapRowBytes = 0; if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) { bitmapRowBytes = glyph.rowBytes(); } SkBitmap dstBitmap; dstBitmap.setConfig(SkBitmapConfig_for_SkMaskFormat(maskFormat), glyph.fWidth, glyph.fHeight, bitmapRowBytes); if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) { dstBitmap.allocPixels(); } else { dstBitmap.setPixels(glyph.fImage); } // Scale unscaledBitmap into dstBitmap. SkCanvas canvas(dstBitmap); canvas.clear(SK_ColorTRANSPARENT); canvas.scale(SkIntToScalar(glyph.fWidth) / SkIntToScalar(face->glyph->bitmap.width), SkIntToScalar(glyph.fHeight) / SkIntToScalar(face->glyph->bitmap.rows)); SkPaint paint; paint.setFilterLevel(SkPaint::kLow_FilterLevel); canvas.drawBitmap(unscaledBitmap, 0, 0, &paint); // If the destination is BW or LCD, convert from A8. if (SkMask::kBW_Format == maskFormat) { // Copy the A8 dstBitmap into the A1 glyph.fImage. SkMask dstMask; glyph.toMask(&dstMask); packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes()); } else if (SkMask::kLCD16_Format == maskFormat) { // Copy the A8 dstBitmap into the LCD16 glyph.fImage. uint8_t* src = dstBitmap.getAddr8(0, 0); uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage); for (int y = dstBitmap.height(); y --> 0;) { for (int x = 0; x < dstBitmap.width(); ++x) { dst[x] = grayToRGB16(src[x]); } dst = (uint16_t*)((char*)dst + glyph.rowBytes()); src += dstBitmap.rowBytes(); } } } break; default: SkDEBUGFAIL("unknown glyph format"); memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); return; } // We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum, // it is optional #if defined(SK_GAMMA_APPLY_TO_A8) if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) { uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; unsigned rowBytes = glyph.rowBytes(); for (int y = glyph.fHeight - 1; y >= 0; --y) { for (int x = glyph.fWidth - 1; x >= 0; --x) { dst[x] = fPreBlend.fG[dst[x]]; } dst += rowBytes; } } #endif }