void SkScalerContext_FreeType_Base::generateGlyphImage(
    FT_Face face,
    const SkGlyph& glyph,
    const SkMatrix& bitmapTransform)
{
    const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
    const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);

    switch ( face->glyph->format ) {
        case FT_GLYPH_FORMAT_OUTLINE: {
            FT_Outline* outline = &face->glyph->outline;

            int dx = 0, dy = 0;
            if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
                dx = SkFixedToFDot6(glyph.getSubXFixed());
                dy = SkFixedToFDot6(glyph.getSubYFixed());
                // negate dy since freetype-y-goes-up and skia-y-goes-down
                dy = -dy;
            }

            memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);

            if (SkMask::kLCD16_Format == glyph.fMaskFormat) {
                FT_Outline_Translate(outline, dx, dy);
                FT_Error err = FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V :
                                                                     FT_RENDER_MODE_LCD);
                if (err) {
                    SK_TRACEFTR(err, "Could not render glyph.");
                    return;
                }

                SkMask mask;
                glyph.toMask(&mask);
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
                memset(mask.fImage, 0x80, mask.fBounds.height() * mask.fRowBytes);
#endif
                FT_GlyphSlotRec& ftGlyph = *face->glyph;

                if (!SkIRect::Intersects(mask.fBounds,
                                         SkIRect::MakeXYWH( ftGlyph.bitmap_left,
                                                           -ftGlyph.bitmap_top,
                                                            ftGlyph.bitmap.width,
                                                            ftGlyph.bitmap.rows)))
                {
                    return;
                }

                // If the FT_Bitmap extent is larger, discard bits of the bitmap outside the mask.
                // If the SkMask extent is larger, shrink mask to fit bitmap (clearing discarded).
                unsigned char* origBuffer = ftGlyph.bitmap.buffer;
                // First align the top left (origin).
                if (-ftGlyph.bitmap_top < mask.fBounds.fTop) {
                    int32_t topDiff = mask.fBounds.fTop - (-ftGlyph.bitmap_top);
                    ftGlyph.bitmap.buffer += ftGlyph.bitmap.pitch * topDiff;
                    ftGlyph.bitmap.rows -= topDiff;
                    ftGlyph.bitmap_top = -mask.fBounds.fTop;
                }
                if (ftGlyph.bitmap_left < mask.fBounds.fLeft) {
                    int32_t leftDiff = mask.fBounds.fLeft - ftGlyph.bitmap_left;
                    ftGlyph.bitmap.buffer += leftDiff;
                    ftGlyph.bitmap.width -= leftDiff;
                    ftGlyph.bitmap_left = mask.fBounds.fLeft;
                }
                if (mask.fBounds.fTop < -ftGlyph.bitmap_top) {
                    mask.fImage += mask.fRowBytes * (-ftGlyph.bitmap_top - mask.fBounds.fTop);
                    mask.fBounds.fTop = -ftGlyph.bitmap_top;
                }
                if (mask.fBounds.fLeft < ftGlyph.bitmap_left) {
                    mask.fImage += sizeof(uint16_t) * (ftGlyph.bitmap_left - mask.fBounds.fLeft);
                    mask.fBounds.fLeft = ftGlyph.bitmap_left;
                }
                // Origins aligned, clean up the width and height.
                int ftVertScale = (doVert ? 3 : 1);
                int ftHoriScale = (doVert ? 1 : 3);
                if (mask.fBounds.height() * ftVertScale < SkToInt(ftGlyph.bitmap.rows)) {
                    ftGlyph.bitmap.rows = mask.fBounds.height() * ftVertScale;
                }
                if (mask.fBounds.width() * ftHoriScale < SkToInt(ftGlyph.bitmap.width)) {
                    ftGlyph.bitmap.width = mask.fBounds.width() * ftHoriScale;
                }
                if (SkToInt(ftGlyph.bitmap.rows) < mask.fBounds.height() * ftVertScale) {
                    mask.fBounds.fBottom = mask.fBounds.fTop + ftGlyph.bitmap.rows / ftVertScale;
                }
                if (SkToInt(ftGlyph.bitmap.width) < mask.fBounds.width() * ftHoriScale) {
                    mask.fBounds.fRight = mask.fBounds.fLeft + ftGlyph.bitmap.width / ftHoriScale;
                }
                if (fPreBlend.isApplicable()) {
                    copyFT2LCD16<true>(ftGlyph.bitmap, mask, doBGR,
                                       fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                } else {
                    copyFT2LCD16<false>(ftGlyph.bitmap, mask, doBGR,
                                        fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                }
                // Restore the buffer pointer so FreeType can properly free it.
                ftGlyph.bitmap.buffer = origBuffer;
            } else {
                FT_BBox     bbox;
                FT_Bitmap   target;
                FT_Outline_Get_CBox(outline, &bbox);
                /*
                    what we really want to do for subpixel is
                        offset(dx, dy)
                        compute_bounds
                        offset(bbox & !63)
                    but that is two calls to offset, so we do the following, which
                    achieves the same thing with only one offset call.
                */
                FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63),
                                              dy - ((bbox.yMin + dy) & ~63));

                target.width = glyph.fWidth;
                target.rows = glyph.fHeight;
                target.pitch = glyph.rowBytes();
                target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage);
                target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat);
                target.num_grays = 256;

                FT_Outline_Get_Bitmap(face->glyph->library, outline, &target);
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
                for (int y = 0; y < glyph.fHeight; ++y) {
                    for (int x = 0; x < glyph.fWidth; ++x) {
                        uint8_t& a = ((uint8_t*)glyph.fImage)[(glyph.rowBytes() * y) + x];
                        a = SkTMax<uint8_t>(a, 0x20);
                    }
                }
#endif
            }
        } break;

        case FT_GLYPH_FORMAT_BITMAP: {
            FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode);
            SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat);

            // Assume that the other formats do not exist.
            SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode ||
                     FT_PIXEL_MODE_GRAY == pixel_mode ||
                     FT_PIXEL_MODE_BGRA == pixel_mode);

            // These are the only formats this ScalerContext should request.
            SkASSERT(SkMask::kBW_Format == maskFormat ||
                     SkMask::kA8_Format == maskFormat ||
                     SkMask::kARGB32_Format == maskFormat ||
                     SkMask::kLCD16_Format == maskFormat);

            // If no scaling needed, directly copy glyph bitmap.
            if (bitmapTransform.isIdentity()) {
                SkMask dstMask;
                glyph.toMask(&dstMask);
                copyFTBitmap(face->glyph->bitmap, dstMask);
                break;
            }

            // Otherwise, scale the bitmap.

            // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB)
            SkBitmap unscaledBitmap;
            // TODO: mark this as sRGB when the blits will be sRGB.
            unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width,
                                                         face->glyph->bitmap.rows,
                                                         SkColorType_for_FTPixelMode(pixel_mode),
                                                         kPremul_SkAlphaType));

            SkMask unscaledBitmapAlias;
            unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels());
            unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height());
            unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes();
            unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType());
            copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias);

            // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD.
            // BW requires an A8 target for resizing, which can then be down sampled.
            // LCD should use a 4x A8 target, which will then be down sampled.
            // For simplicity, LCD uses A8 and is replicated.
            int bitmapRowBytes = 0;
            if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) {
                bitmapRowBytes = glyph.rowBytes();
            }
            SkBitmap dstBitmap;
            // TODO: mark this as sRGB when the blits will be sRGB.
            dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight,
                                                SkColorType_for_SkMaskFormat(maskFormat),
                                                kPremul_SkAlphaType),
                              bitmapRowBytes);
            if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) {
                dstBitmap.allocPixels();
            } else {
                dstBitmap.setPixels(glyph.fImage);
            }

            // Scale unscaledBitmap into dstBitmap.
            SkCanvas canvas(dstBitmap);
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
            canvas.clear(0x33FF0000);
#else
            canvas.clear(SK_ColorTRANSPARENT);
#endif
            canvas.translate(-glyph.fLeft, -glyph.fTop);
            canvas.concat(bitmapTransform);
            canvas.translate(face->glyph->bitmap_left, -face->glyph->bitmap_top);

            SkPaint paint;
            paint.setFilterQuality(kMedium_SkFilterQuality);
            canvas.drawBitmap(unscaledBitmap, 0, 0, &paint);

            // If the destination is BW or LCD, convert from A8.
            if (SkMask::kBW_Format == maskFormat) {
                // Copy the A8 dstBitmap into the A1 glyph.fImage.
                SkMask dstMask;
                glyph.toMask(&dstMask);
                packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes());
            } else if (SkMask::kLCD16_Format == maskFormat) {
                // Copy the A8 dstBitmap into the LCD16 glyph.fImage.
                uint8_t* src = dstBitmap.getAddr8(0, 0);
                uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage);
                for (int y = dstBitmap.height(); y --> 0;) {
                    for (int x = 0; x < dstBitmap.width(); ++x) {
                        dst[x] = grayToRGB16(src[x]);
                    }
                    dst = (uint16_t*)((char*)dst + glyph.rowBytes());
                    src += dstBitmap.rowBytes();
                }
            }

        } break;

        default:
            SkDEBUGFAIL("unknown glyph format");
            memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
            return;
    }

// We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum,
// it is optional
#if defined(SK_GAMMA_APPLY_TO_A8)
    if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) {
        uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
        unsigned rowBytes = glyph.rowBytes();

        for (int y = glyph.fHeight - 1; y >= 0; --y) {
            for (int x = glyph.fWidth - 1; x >= 0; --x) {
                dst[x] = fPreBlend.fG[dst[x]];
            }
            dst += rowBytes;
        }
    }
#endif
}
Example #2
0
void SkScalerContext_FreeType_Base::generateGlyphImage(FT_Face face, const SkGlyph& glyph) {
    const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
    const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);

    switch ( face->glyph->format ) {
        case FT_GLYPH_FORMAT_OUTLINE: {
            FT_Outline* outline = &face->glyph->outline;
            FT_BBox     bbox;
            FT_Bitmap   target;

            if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
                !(face->style_flags & FT_STYLE_FLAG_BOLD)) {
                emboldenOutline(face, outline);
            }

            int dx = 0, dy = 0;
            if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
                dx = SkFixedToFDot6(glyph.getSubXFixed());
                dy = SkFixedToFDot6(glyph.getSubYFixed());
                // negate dy since freetype-y-goes-up and skia-y-goes-down
                dy = -dy;
            }
            FT_Outline_Get_CBox(outline, &bbox);
            /*
                what we really want to do for subpixel is
                    offset(dx, dy)
                    compute_bounds
                    offset(bbox & !63)
                but that is two calls to offset, so we do the following, which
                achieves the same thing with only one offset call.
            */
            FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63),
                                          dy - ((bbox.yMin + dy) & ~63));

            if (SkMask::kLCD16_Format == glyph.fMaskFormat) {
                FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD);
                SkMask mask;
                glyph.toMask(&mask);
                if (fPreBlend.isApplicable()) {
                    copyFT2LCD16<true>(face->glyph->bitmap, mask, doBGR,
                                       fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                } else {
                    copyFT2LCD16<false>(face->glyph->bitmap, mask, doBGR,
                                        fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                }
            } else {
                target.width = glyph.fWidth;
                target.rows = glyph.fHeight;
                target.pitch = glyph.rowBytes();
                target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage);
                target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat);
                target.num_grays = 256;

                memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
                FT_Outline_Get_Bitmap(face->glyph->library, outline, &target);
            }
        } break;

        case FT_GLYPH_FORMAT_BITMAP: {
            FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode);
            SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat);

            // Assume that the other formats do not exist.
            SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode ||
                     FT_PIXEL_MODE_GRAY == pixel_mode ||
                     FT_PIXEL_MODE_BGRA == pixel_mode);

            // These are the only formats this ScalerContext should request.
            SkASSERT(SkMask::kBW_Format == maskFormat ||
                     SkMask::kA8_Format == maskFormat ||
                     SkMask::kARGB32_Format == maskFormat ||
                     SkMask::kLCD16_Format == maskFormat);

            if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
                !(face->style_flags & FT_STYLE_FLAG_BOLD))
            {
                FT_GlyphSlot_Own_Bitmap(face->glyph);
                FT_Bitmap_Embolden(face->glyph->library, &face->glyph->bitmap,
                                   kBitmapEmboldenStrength, 0);
            }

            // If no scaling needed, directly copy glyph bitmap.
            if (glyph.fWidth == face->glyph->bitmap.width &&
                glyph.fHeight == face->glyph->bitmap.rows &&
                glyph.fTop == -face->glyph->bitmap_top &&
                glyph.fLeft == face->glyph->bitmap_left)
            {
                SkMask dstMask;
                glyph.toMask(&dstMask);
                copyFTBitmap(face->glyph->bitmap, dstMask);
                break;
            }

            // Otherwise, scale the bitmap.

            // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB)
            SkBitmap unscaledBitmap;
            unscaledBitmap.setConfig(SkBitmapConfig_for_FTPixelMode(pixel_mode),
                                     face->glyph->bitmap.width, face->glyph->bitmap.rows);
            unscaledBitmap.allocPixels();

            SkMask unscaledBitmapAlias;
            unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels());
            unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height());
            unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes();
            unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkBitmapConfig(unscaledBitmap.config());
            copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias);

            // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD.
            // BW requires an A8 target for resizing, which can then be down sampled.
            // LCD should use a 4x A8 target, which will then be down sampled.
            // For simplicity, LCD uses A8 and is replicated.
            int bitmapRowBytes = 0;
            if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) {
                bitmapRowBytes = glyph.rowBytes();
            }
            SkBitmap dstBitmap;
            dstBitmap.setConfig(SkBitmapConfig_for_SkMaskFormat(maskFormat),
                                glyph.fWidth, glyph.fHeight, bitmapRowBytes);
            if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) {
                dstBitmap.allocPixels();
            } else {
                dstBitmap.setPixels(glyph.fImage);
            }

            // Scale unscaledBitmap into dstBitmap.
            SkCanvas canvas(dstBitmap);
            canvas.clear(SK_ColorTRANSPARENT);
            canvas.scale(SkIntToScalar(glyph.fWidth) / SkIntToScalar(face->glyph->bitmap.width),
                         SkIntToScalar(glyph.fHeight) / SkIntToScalar(face->glyph->bitmap.rows));
            SkPaint paint;
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);
            canvas.drawBitmap(unscaledBitmap, 0, 0, &paint);

            // If the destination is BW or LCD, convert from A8.
            if (SkMask::kBW_Format == maskFormat) {
                // Copy the A8 dstBitmap into the A1 glyph.fImage.
                SkMask dstMask;
                glyph.toMask(&dstMask);
                packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes());
            } else if (SkMask::kLCD16_Format == maskFormat) {
                // Copy the A8 dstBitmap into the LCD16 glyph.fImage.
                uint8_t* src = dstBitmap.getAddr8(0, 0);
                uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage);
                for (int y = dstBitmap.height(); y --> 0;) {
                    for (int x = 0; x < dstBitmap.width(); ++x) {
                        dst[x] = grayToRGB16(src[x]);
                    }
                    dst = (uint16_t*)((char*)dst + glyph.rowBytes());
                    src += dstBitmap.rowBytes();
                }
            }

        } break;

        default:
            SkDEBUGFAIL("unknown glyph format");
            memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
            return;
    }

// We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum,
// it is optional
#if defined(SK_GAMMA_APPLY_TO_A8)
    if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) {
        uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
        unsigned rowBytes = glyph.rowBytes();

        for (int y = glyph.fHeight - 1; y >= 0; --y) {
            for (int x = glyph.fWidth - 1; x >= 0; --x) {
                dst[x] = fPreBlend.fG[dst[x]];
            }
            dst += rowBytes;
        }
    }
#endif
}