// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
  Loop *L = LI->getLoopFor(BB);
  if (!L)
    return false;

  SmallPtrSet<BasicBlock *, 8> BackEdges;
  SmallPtrSet<BasicBlock *, 8> ExitingEdges;
  SmallPtrSet<BasicBlock *, 8> InEdges; // Edges from header to the loop.

  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    if (!L->contains(*I))
      ExitingEdges.insert(*I);
    else if (L->getHeader() == *I)
      BackEdges.insert(*I);
    else
      InEdges.insert(*I);
  }

  if (uint32_t numBackEdges = BackEdges.size()) {
    uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
    if (backWeight < NORMAL_WEIGHT)
      backWeight = NORMAL_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
         EE = BackEdges.end(); EI != EE; ++EI) {
      BasicBlock *Back = *EI;
      setEdgeWeight(BB, Back, backWeight);
    }
  }

  if (uint32_t numInEdges = InEdges.size()) {
    uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
    if (inWeight < NORMAL_WEIGHT)
      inWeight = NORMAL_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = InEdges.begin(),
         EE = InEdges.end(); EI != EE; ++EI) {
      BasicBlock *Back = *EI;
      setEdgeWeight(BB, Back, inWeight);
    }
  }

  if (uint32_t numExitingEdges = ExitingEdges.size()) {
    uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
    if (exitWeight < MIN_WEIGHT)
      exitWeight = MIN_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
         EE = ExitingEdges.end(); EI != EE; ++EI) {
      BasicBlock *Exiting = *EI;
      setEdgeWeight(BB, Exiting, exitWeight);
    }
  }

  return true;
}
Example #2
0
TEST(SmallPtrSetTest, GrowthTest) {
  int i;
  int buf[8];
  for(i=0; i<8; ++i) buf[i]=0;


  SmallPtrSet<int *, 4> s;
  typedef SmallPtrSet<int *, 4>::iterator iter;
  
  s.insert(&buf[0]);
  s.insert(&buf[1]);
  s.insert(&buf[2]);
  s.insert(&buf[3]);
  EXPECT_EQ(4U, s.size());

  i = 0;
  for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
      (**I)++;
  EXPECT_EQ(4, i);
  for(i=0; i<8; ++i)
      EXPECT_EQ(i<4?1:0,buf[i]);

  s.insert(&buf[4]);
  s.insert(&buf[5]);
  s.insert(&buf[6]);
  s.insert(&buf[7]);

  i = 0;
  for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
      (**I)++;
  EXPECT_EQ(8, i);
  s.erase(&buf[4]);
  s.erase(&buf[5]);
  s.erase(&buf[6]);
  s.erase(&buf[7]);
  EXPECT_EQ(4U, s.size());

  i = 0;
  for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
      (**I)++;
  EXPECT_EQ(4, i);
  for(i=0; i<8; ++i)
      EXPECT_EQ(i<4?3:1,buf[i]);

  s.clear();
  for(i=0; i<8; ++i) buf[i]=0;
  for(i=0; i<128; ++i) s.insert(&buf[i%8]); // test repeated entires
  EXPECT_EQ(8U, s.size());
  for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
      (**I)++;
  for(i=0; i<8; ++i)
      EXPECT_EQ(1,buf[i]);
}
Example #3
0
void LTOCodeGenerator::applyScopeRestrictions() {
  if (ScopeRestrictionsDone)
    return;
  Module *mergedModule = Linker.getModule();

  // Start off with a verification pass.
  PassManager passes;
  passes.add(createVerifierPass());

  // mark which symbols can not be internalized
  Mangler Mangler(TargetMach);
  std::vector<const char*> MustPreserveList;
  SmallPtrSet<GlobalValue*, 8> AsmUsed;
  std::vector<StringRef> Libcalls;
  TargetLibraryInfo TLI(Triple(TargetMach->getTargetTriple()));
  accumulateAndSortLibcalls(Libcalls, TLI, TargetMach->getTargetLowering());

  for (Module::iterator f = mergedModule->begin(),
         e = mergedModule->end(); f != e; ++f)
    applyRestriction(*f, Libcalls, MustPreserveList, AsmUsed, Mangler);
  for (Module::global_iterator v = mergedModule->global_begin(),
         e = mergedModule->global_end(); v !=  e; ++v)
    applyRestriction(*v, Libcalls, MustPreserveList, AsmUsed, Mangler);
  for (Module::alias_iterator a = mergedModule->alias_begin(),
         e = mergedModule->alias_end(); a != e; ++a)
    applyRestriction(*a, Libcalls, MustPreserveList, AsmUsed, Mangler);

  GlobalVariable *LLVMCompilerUsed =
    mergedModule->getGlobalVariable("llvm.compiler.used");
  findUsedValues(LLVMCompilerUsed, AsmUsed);
  if (LLVMCompilerUsed)
    LLVMCompilerUsed->eraseFromParent();

  if (!AsmUsed.empty()) {
    llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(Context);
    std::vector<Constant*> asmUsed2;
    for (SmallPtrSet<GlobalValue*, 16>::const_iterator i = AsmUsed.begin(),
           e = AsmUsed.end(); i !=e; ++i) {
      GlobalValue *GV = *i;
      Constant *c = ConstantExpr::getBitCast(GV, i8PTy);
      asmUsed2.push_back(c);
    }

    llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size());
    LLVMCompilerUsed =
      new llvm::GlobalVariable(*mergedModule, ATy, false,
                               llvm::GlobalValue::AppendingLinkage,
                               llvm::ConstantArray::get(ATy, asmUsed2),
                               "llvm.compiler.used");

    LLVMCompilerUsed->setSection("llvm.metadata");
  }

  passes.add(createInternalizePass(MustPreserveList));

  // apply scope restrictions
  passes.run(*mergedModule);

  ScopeRestrictionsDone = true;
}
Example #4
0
/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
/// block. When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI,
                               SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
  BasicBlock *Dest = getInnerResumeDest();
  LandingPadInst *OuterLPad = getLandingPadInst();
  BasicBlock *Src = RI->getParent();

  BranchInst::Create(Dest, Src);

  // Update the PHIs in the destination. They were inserted in an order which
  // makes this work.
  addIncomingPHIValuesForInto(Src, Dest);

  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
  RI->eraseFromParent();

  // Append the clauses from the outer landing pad instruction into the inlined
  // landing pad instructions.
  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
         E = InlinedLPads.end(); I != E; ++I) {
    LandingPadInst *InlinedLPad = *I;
    for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
         OuterIdx != OuterNum; ++OuterIdx)
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
  }
}
Example #5
0
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
  bool Changed = false;
ReprocessLoop:

  // Check to see that no blocks (other than the header) in this loop have
  // predecessors that are not in the loop.  This is not valid for natural
  // loops, but can occur if the blocks are unreachable.  Since they are
  // unreachable we can just shamelessly delete those CFG edges!
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
       BB != E; ++BB) {
    if (*BB == L->getHeader()) continue;

    SmallPtrSet<BasicBlock*, 4> BadPreds;
    for (pred_iterator PI = pred_begin(*BB),
         PE = pred_end(*BB); PI != PE; ++PI) {
      BasicBlock *P = *PI;
      if (!L->contains(P))
        BadPreds.insert(P);
    }

    // Delete each unique out-of-loop (and thus dead) predecessor.
    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
         E = BadPreds.end(); I != E; ++I) {

      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
            WriteAsOperand(dbgs(), *I, false);
            dbgs() << "\n");

      // Inform each successor of each dead pred.
      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
        (*SI)->removePredecessor(*I);
      // Zap the dead pred's terminator and replace it with unreachable.
      TerminatorInst *TI = (*I)->getTerminator();
       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
      (*I)->getTerminator()->eraseFromParent();
      new UnreachableInst((*I)->getContext(), *I);
      Changed = true;
    }
  }

  // If there are exiting blocks with branches on undef, resolve the undef in
  // the direction which will exit the loop. This will help simplify loop
  // trip count computations.
  SmallVector<BasicBlock*, 8> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
       E = ExitingBlocks.end(); I != E; ++I)
    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
      if (BI->isConditional()) {
        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {

          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
                WriteAsOperand(dbgs(), *I, false);
                dbgs() << "\n");

          BI->setCondition(ConstantInt::get(Cond->getType(),
                                            !L->contains(BI->getSuccessor(0))));
          Changed = true;
        }
      }
/// RemoveAccessedObjects - Check to see if the specified location may alias any
/// of the stack objects in the DeadStackObjects set.  If so, they become live
/// because the location is being loaded.
void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
                                SmallPtrSet<Value*, 16> &DeadStackObjects) {
  const Value *UnderlyingPointer = LoadedLoc.Ptr->getUnderlyingObject();

  // A constant can't be in the dead pointer set.
  if (isa<Constant>(UnderlyingPointer))
    return;
  
  // If the kill pointer can be easily reduced to an alloca, don't bother doing
  // extraneous AA queries.
  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
    return;
  }
  
  SmallVector<Value*, 16> NowLive;
  for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
       E = DeadStackObjects.end(); I != E; ++I) {
    // See if the loaded location could alias the stack location.
    AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
    if (!AA->isNoAlias(StackLoc, LoadedLoc))
      NowLive.push_back(*I);
  }

  for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
       I != E; ++I)
    DeadStackObjects.erase(*I);
}
Example #7
0
void LTOCodeGenerator::applyScopeRestrictions() {
  if (_scopeRestrictionsDone) return;
  Module *mergedModule = _linker.getModule();

  // Start off with a verification pass.
  PassManager passes;
  passes.add(createVerifierPass());

  // mark which symbols can not be internalized
  MCContext Context(*_target->getMCAsmInfo(), *_target->getRegisterInfo(),NULL);
  Mangler mangler(Context, *_target->getTargetData());
  std::vector<const char*> mustPreserveList;
  SmallPtrSet<GlobalValue*, 8> asmUsed;

  for (Module::iterator f = mergedModule->begin(),
         e = mergedModule->end(); f != e; ++f)
    applyRestriction(*f, mustPreserveList, asmUsed, mangler);
  for (Module::global_iterator v = mergedModule->global_begin(),
         e = mergedModule->global_end(); v !=  e; ++v)
    applyRestriction(*v, mustPreserveList, asmUsed, mangler);
  for (Module::alias_iterator a = mergedModule->alias_begin(),
         e = mergedModule->alias_end(); a != e; ++a)
    applyRestriction(*a, mustPreserveList, asmUsed, mangler);

  GlobalVariable *LLVMCompilerUsed =
    mergedModule->getGlobalVariable("llvm.compiler.used");
  findUsedValues(LLVMCompilerUsed, asmUsed);
  if (LLVMCompilerUsed)
    LLVMCompilerUsed->eraseFromParent();

  llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(_context);
  std::vector<Constant*> asmUsed2;
  for (SmallPtrSet<GlobalValue*, 16>::const_iterator i = asmUsed.begin(),
         e = asmUsed.end(); i !=e; ++i) {
    GlobalValue *GV = *i;
    Constant *c = ConstantExpr::getBitCast(GV, i8PTy);
    asmUsed2.push_back(c);
  }

  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size());
  LLVMCompilerUsed =
    new llvm::GlobalVariable(*mergedModule, ATy, false,
                             llvm::GlobalValue::AppendingLinkage,
                             llvm::ConstantArray::get(ATy, asmUsed2),
                             "llvm.compiler.used");

  LLVMCompilerUsed->setSection("llvm.metadata");

  // Add prerequisite passes needed by SAFECode
  PassManagerBuilder().populateLTOPassManager(passes, /*Internalize=*/ false,
                                              !DisableInline);

  passes.add(createInternalizePass(mustPreserveList));

  // apply scope restrictions
  passes.run(*mergedModule);

  _scopeRestrictionsDone = true;
}
Example #8
0
bool CodeGenPrepare::runOnFunction(Function &F) {
    bool EverMadeChange = false;

    ModifiedDT = false;
    TLInfo = &getAnalysis<TargetLibraryInfo>();
    DT = getAnalysisIfAvailable<DominatorTree>();
    PFI = getAnalysisIfAvailable<ProfileInfo>();
    OptSize = F.hasFnAttr(Attribute::OptimizeForSize);

    // First pass, eliminate blocks that contain only PHI nodes and an
    // unconditional branch.
    EverMadeChange |= EliminateMostlyEmptyBlocks(F);

    // llvm.dbg.value is far away from the value then iSel may not be able
    // handle it properly. iSel will drop llvm.dbg.value if it can not
    // find a node corresponding to the value.
    EverMadeChange |= PlaceDbgValues(F);

    bool MadeChange = true;
    while (MadeChange) {
        MadeChange = false;
        for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
            BasicBlock *BB = I++;
            MadeChange |= OptimizeBlock(*BB);
        }
        EverMadeChange |= MadeChange;
    }

    SunkAddrs.clear();

    if (!DisableBranchOpts) {
        MadeChange = false;
        SmallPtrSet<BasicBlock*, 8> WorkList;
        for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
            SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
            MadeChange |= ConstantFoldTerminator(BB, true);
            if (!MadeChange) continue;

            for (SmallVectorImpl<BasicBlock*>::iterator
                    II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
                if (pred_begin(*II) == pred_end(*II))
                    WorkList.insert(*II);
        }

        if (!DisableDeleteDeadBlocks)
            for (SmallPtrSet<BasicBlock*, 8>::iterator
                    I = WorkList.begin(), E = WorkList.end(); I != E; ++I)
                DeleteDeadBlock(*I);

        if (MadeChange)
            ModifiedDT = true;
        EverMadeChange |= MadeChange;
    }

    if (ModifiedDT && DT)
        DT->DT->recalculate(F);

    return EverMadeChange;
}
/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
  TerminatorInst *TI = BB->getTerminator();
  if (TI->getNumSuccessors() == 0) {
    if (isa<UnreachableInst>(TI))
      PostDominatedByUnreachable.insert(BB);
    return false;
  }

  SmallPtrSet<BasicBlock *, 4> UnreachableEdges;
  SmallPtrSet<BasicBlock *, 4> ReachableEdges;

  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    if (PostDominatedByUnreachable.count(*I))
      UnreachableEdges.insert(*I);
    else
      ReachableEdges.insert(*I);
  }

  // If all successors are in the set of blocks post-dominated by unreachable,
  // this block is too.
  if (UnreachableEdges.size() == TI->getNumSuccessors())
    PostDominatedByUnreachable.insert(BB);

  // Skip probabilities if this block has a single successor or if all were
  // reachable.
  if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
    return false;

  uint32_t UnreachableWeight =
    std::max(UR_TAKEN_WEIGHT / UnreachableEdges.size(), MIN_WEIGHT);
  for (SmallPtrSet<BasicBlock *, 4>::iterator I = UnreachableEdges.begin(),
                                              E = UnreachableEdges.end();
       I != E; ++I)
    setEdgeWeight(BB, *I, UnreachableWeight);

  if (ReachableEdges.empty())
    return true;
  uint32_t ReachableWeight =
    std::max(UR_NONTAKEN_WEIGHT / ReachableEdges.size(), NORMAL_WEIGHT);
  for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReachableEdges.begin(),
                                              E = ReachableEdges.end();
       I != E; ++I)
    setEdgeWeight(BB, *I, ReachableWeight);

  return true;
}
Example #10
0
File: Inliner.cpp Project: CPFL/guc
/// removeDeadFunctions - Remove dead functions that are not included in
/// DNR (Do Not Remove) list.
bool Inliner::removeDeadFunctions(CallGraph &CG, 
                                  SmallPtrSet<const Function *, 16> *DNR) {
  SmallPtrSet<CallGraphNode*, 16> FunctionsToRemove;

  // Scan for all of the functions, looking for ones that should now be removed
  // from the program.  Insert the dead ones in the FunctionsToRemove set.
  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
    CallGraphNode *CGN = I->second;
    if (CGN->getFunction() == 0)
      continue;
    
    Function *F = CGN->getFunction();
    
    // If the only remaining users of the function are dead constants, remove
    // them.
    F->removeDeadConstantUsers();

    if (DNR && DNR->count(F))
      continue;
    if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
        !F->hasAvailableExternallyLinkage())
      continue;
    if (!F->use_empty())
      continue;
    
    // Remove any call graph edges from the function to its callees.
    CGN->removeAllCalledFunctions();

    // Remove any edges from the external node to the function's call graph
    // node.  These edges might have been made irrelegant due to
    // optimization of the program.
    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);

    // Removing the node for callee from the call graph and delete it.
    FunctionsToRemove.insert(CGN);
  }

  // Now that we know which functions to delete, do so.  We didn't want to do
  // this inline, because that would invalidate our CallGraph::iterator
  // objects. :(
  //
  // Note that it doesn't matter that we are iterating over a non-stable set
  // here to do this, it doesn't matter which order the functions are deleted
  // in.
  bool Changed = false;
  for (SmallPtrSet<CallGraphNode*, 16>::iterator I = FunctionsToRemove.begin(),
       E = FunctionsToRemove.end(); I != E; ++I) {
    resetCachedCostInfo((*I)->getFunction());
    delete CG.removeFunctionFromModule(*I);
    ++NumDeleted;
    Changed = true;
  }

  return Changed;
}
Example #11
0
File: ABCD.cpp Project: aaasz/SHP
/// Test if there is any edge from V in the upper direction
bool ABCD::InequalityGraph::hasEdge(Value *V, bool upper) const {
  SmallPtrSet<Edge *, 16> it = graph.lookup(V);

  SmallPtrSet<Edge *, 16>::iterator begin = it.begin();
  SmallPtrSet<Edge *, 16>::iterator end = it.end();
  for (; begin != end; ++begin) {
    if ((*begin)->isUpperBound() == upper) {
      return true;
    }
  }
  return false;
}
Example #12
0
void LowerEmAsyncify::FindContextVariables(AsyncCallEntry & Entry) {
  BasicBlock *AfterCallBlock = Entry.AfterCallBlock;

  Function & F = *AfterCallBlock->getParent();

  // Create a new entry block as if in the callback function
  // theck check variables that no longer properly dominate their uses
  BasicBlock *EntryBlock = BasicBlock::Create(TheModule->getContext(), "", &F, &F.getEntryBlock());
  BranchInst::Create(AfterCallBlock, EntryBlock);

  DominatorTreeWrapperPass DTW;
  DTW.runOnFunction(F);
  DominatorTree& DT = DTW.getDomTree();

  // These blocks may be using some values defined at or before AsyncCallBlock
  BasicBlockSet Ramifications = FindReachableBlocksFrom(AfterCallBlock); 

  SmallPtrSet<Value*, 256> ContextVariables;
  Values Pending;

  // Examine the instructions, find all variables that we need to store in the context
  for (BasicBlockSet::iterator RI = Ramifications.begin(), RE = Ramifications.end(); RI != RE; ++RI) {
    for (BasicBlock::iterator I = (*RI)->begin(), E = (*RI)->end(); I != E; ++I) {
      for (unsigned i = 0, NumOperands = I->getNumOperands(); i < NumOperands; ++i) {
        Value *O = I->getOperand(i);
        if (Instruction *Inst = dyn_cast<Instruction>(O)) {
          if (Inst == Entry.AsyncCallInst) continue; // for the original async call, we will load directly from async return value
          if (ContextVariables.count(Inst) != 0)  continue; // already examined 

          if (!DT.dominates(Inst, I->getOperandUse(i))) {
            // `I` is using `Inst`, yet `Inst` does not dominate `I` if we arrive directly at AfterCallBlock
            // so we need to save `Inst` in the context
            ContextVariables.insert(Inst);
            Pending.push_back(Inst);
          }
        } else if (Argument *Arg = dyn_cast<Argument>(O)) {
          // count() should be as fast/slow as insert, so just insert here 
          ContextVariables.insert(Arg);
        }
      }
    }
  }

  // restore F
  EntryBlock->eraseFromParent();  

  Entry.ContextVariables.clear();
  Entry.ContextVariables.reserve(ContextVariables.size());
  for (SmallPtrSet<Value*, 256>::iterator I = ContextVariables.begin(), E = ContextVariables.end(); I != E; ++I) {
    Entry.ContextVariables.push_back(*I);
  }
}
Example #13
0
bool ReduceCrashingInstructions::TestInsts(std::vector<const Instruction*>
                                           &Insts) {
  // Clone the program to try hacking it apart...
  ValueToValueMapTy VMap;
  Module *M = CloneModule(BD.getProgram(), VMap);

  // Convert list to set for fast lookup...
  SmallPtrSet<Instruction*, 64> Instructions;
  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    assert(!isa<TerminatorInst>(Insts[i]));
    Instructions.insert(cast<Instruction>(VMap[Insts[i]]));
  }

  outs() << "Checking for crash with only " << Instructions.size();
  if (Instructions.size() == 1)
    outs() << " instruction: ";
  else
    outs() << " instructions: ";

  for (Module::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
    for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI)
      for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E;) {
        Instruction *Inst = I++;
        if (!Instructions.count(Inst) && !isa<TerminatorInst>(Inst) &&
            !isa<LandingPadInst>(Inst)) {
          if (!Inst->getType()->isVoidTy())
            Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
          Inst->eraseFromParent();
        }
      }

  // Verify that this is still valid.
  PassManager Passes;
  Passes.add(createVerifierPass());
  Passes.add(createDebugInfoVerifierPass());
  Passes.run(*M);

  // Try running on the hacked up program...
  if (TestFn(BD, M)) {
    BD.setNewProgram(M);      // It crashed, keep the trimmed version...

    // Make sure to use instruction pointers that point into the now-current
    // module, and that they don't include any deleted blocks.
    Insts.clear();
    for (SmallPtrSet<Instruction*, 64>::const_iterator I = Instructions.begin(),
             E = Instructions.end(); I != E; ++I)
      Insts.push_back(*I);
    return true;
  }
  delete M;  // It didn't crash, try something else.
  return false;
}
// Calculate Edge Weights using "Return Heuristics". Predict a successor which
// leads directly to Return Instruction will not be taken.
bool BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
  if (BB->getTerminator()->getNumSuccessors() == 1)
    return false;

  SmallPtrSet<BasicBlock *, 4> ReturningEdges;
  SmallPtrSet<BasicBlock *, 4> StayEdges;

  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    BasicBlock *Succ = *I;
    if (isReturningBlock(Succ))
      ReturningEdges.insert(Succ);
    else
      StayEdges.insert(Succ);
  }

  if (uint32_t numStayEdges = StayEdges.size()) {
    uint32_t stayWeight = RH_TAKEN_WEIGHT / numStayEdges;
    if (stayWeight < NORMAL_WEIGHT)
      stayWeight = NORMAL_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 4>::iterator I = StayEdges.begin(),
         E = StayEdges.end(); I != E; ++I)
      BP->setEdgeWeight(BB, *I, stayWeight);
  }

  if (uint32_t numRetEdges = ReturningEdges.size()) {
    uint32_t retWeight = RH_NONTAKEN_WEIGHT / numRetEdges;
    if (retWeight < MIN_WEIGHT)
      retWeight = MIN_WEIGHT;
    for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReturningEdges.begin(),
         E = ReturningEdges.end(); I != E; ++I) {
      BP->setEdgeWeight(BB, *I, retWeight);
    }
  }

  return ReturningEdges.size() > 0;
}
Example #15
0
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
                                ClonedCodeInfo &InlinedCodeInfo) {
    BasicBlock *InvokeDest = II->getUnwindDest();

    Function *Caller = FirstNewBlock->getParent();

    // The inlined code is currently at the end of the function, scan from the
    // start of the inlined code to its end, checking for stuff we need to
    // rewrite.
    InvokeInliningInfo Invoke(II);

    // Get all of the inlined landing pad instructions.
    SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
    for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
        if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
            InlinedLPads.insert(II->getLandingPadInst());

    // Append the clauses from the outer landing pad instruction into the inlined
    // landing pad instructions.
    LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
    for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
            E = InlinedLPads.end(); I != E; ++I) {
        LandingPadInst *InlinedLPad = *I;
        unsigned OuterNum = OuterLPad->getNumClauses();
        InlinedLPad->reserveClauses(OuterNum);
        for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
            InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
        if (OuterLPad->isCleanup())
            InlinedLPad->setCleanup(true);
    }

    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) {
        if (InlinedCodeInfo.ContainsCalls)
            HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);

        // Forward any resumes that are remaining here.
        if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
            Invoke.forwardResume(RI, InlinedLPads);
    }

    // Now that everything is happy, we have one final detail.  The PHI nodes in
    // the exception destination block still have entries due to the original
    // invoke instruction. Eliminate these entries (which might even delete the
    // PHI node) now.
    InvokeDest->removePredecessor(II->getParent());
}
Example #16
0
/// Insert phi functions when necessary
///
void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) {
  DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
  for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
       E = value.end(); I != E; ++I) {
    // Test if there were any sigmas for this variable
    SmallPtrSet<BasicBlock *, 16> BB_visited;

    // Insert phi functions if there is any sigma function
    while (!defsites[*I].empty()) {

      BasicBlock *BB = defsites[*I].back();

      defsites[*I].pop_back();
      DominanceFrontier::iterator DF_BB = DF->find(BB);

      // The BB is unreachable. Skip it.
      if (DF_BB == DF->end())
        continue; 

      // Iterates through all the dominance frontier of BB
      for (std::set<BasicBlock *>::iterator DF_BB_begin =
           DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
           DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
        BasicBlock *BB_dominated = *DF_BB_begin;

        // Test if has not yet visited this node and if the
        // original definition dominates this node
        if (BB_visited.insert(BB_dominated) &&
            DT_->properlyDominates(value_original[*I], BB_dominated) &&
            dominateAny(BB_dominated, *I)) {
          PHINode *PN = PHINode::Create(
              (*I)->getType(), SSI_PHI, BB_dominated->begin());
          phis.insert(std::make_pair(PN, *I));
          created.insert(PN);

          defsites[*I].push_back(BB_dominated);
          ++NumPhiInserted;
        }
      }
    }
    BB_visited.clear();
  }
}
Example #17
0
static void RemoveDeadConstant(Constant *C) {
  assert(C->use_empty() && "Constant is not dead!");
  SmallPtrSet<Constant*, 4> Operands;
  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    if (OnlyUsedBy(C->getOperand(i), C)) 
      Operands.insert(cast<Constant>(C->getOperand(i)));
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
    if (!GV->hasLocalLinkage()) return;   // Don't delete non static globals.
    GV->eraseFromParent();
  }
  else if (!isa<Function>(C))
    if (isa<CompositeType>(C->getType()))
      C->destroyConstant();

  // If the constant referenced anything, see if we can delete it as well.
  for (SmallPtrSet<Constant*, 4>::iterator OI = Operands.begin(),
         OE = Operands.end(); OI != OE; ++OI)
    RemoveDeadConstant(*OI);
}
Example #18
0
/// Insert sigma functions (a sigma function is a phi function with one
/// operator)
///
void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) {
  for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
       E = value.end(); I != E; ++I) {
    for (Value::use_iterator begin = (*I)->use_begin(),
         end = (*I)->use_end(); begin != end; ++begin) {
      // Test if the Use of the Value is in a comparator
      if (CmpInst *CI = dyn_cast<CmpInst>(begin)) {
        // Iterates through all uses of CmpInst
        for (Value::use_iterator begin_ci = CI->use_begin(),
             end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) {
          // Test if any use of CmpInst is in a Terminator
          if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) {
            insertSigma(TI, *I);
          }
        }
      }
    }
  }
}
Example #19
0
static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
                         SmallPtrSet<Instruction *, 8> &Stores) {
  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
    if (L->isVolatile()) return false;

    Value *Ptr = L->getPointerOperand();
    unsigned Size = AA->getTypeStoreSize(L->getType());
    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
         E = Stores.end(); I != E; ++I)
      if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
        return false;
  }

  if (Inst->mayWriteToMemory()) {
    Stores.insert(Inst);
    return false;
  }

  return Inst->isSafeToSpeculativelyExecute();
}
Example #20
0
static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
                         SmallPtrSet<Instruction *, 8> &Stores) {

  if (Inst->mayWriteToMemory()) {
    Stores.insert(Inst);
    return false;
  }

  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
    AliasAnalysis::Location Loc = AA->getLocation(L);
    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
         E = Stores.end(); I != E; ++I)
      if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
        return false;
  }

  if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
    return false;

  return true;
}
Example #21
0
File: ABCD.cpp Project: aaasz/SHP
/// Updates the distance value for a and b
void ABCD::updateMemDistance(Value *a, Value *b, Bound *bound, unsigned level,
                             meet_function meet) {
  ABCD::ProveResult res = (meet == max) ? False : True;

  SmallPtrSet<Edge *, 16> Edges = inequality_graph.getEdges(b);
  SmallPtrSet<Edge *, 16>::iterator begin = Edges.begin(), end = Edges.end();

  for (; begin != end ; ++begin) {
    if (((res >= Reduced) && (meet == max)) ||
       ((res == False) && (meet == min))) {
      break;
    }
    Edge *in = *begin;
    if (in->isUpperBound() == bound->isUpperBound()) {
      Value *succ = in->getVertex();
      res = meet(res, prove(a, succ, new Bound(bound, in->getValue()),
                 level+1));
    }
  }

  mem_result.updateBound(b, bound, res);
}
Example #22
0
/// CleanupSelectors - Any remaining eh.selector intrinsic calls which still use
/// the "llvm.eh.catch.all.value" call need to convert to using its
/// initializer instead.
bool DwarfEHPrepare::CleanupSelectors(SmallPtrSet<IntrinsicInst*, 32> &Sels) {
  if (!EHCatchAllValue) return false;

  if (!SelectorIntrinsic) {
    SelectorIntrinsic =
      Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector);
    if (!SelectorIntrinsic) return false;
  }

  bool Changed = false;
  for (SmallPtrSet<IntrinsicInst*, 32>::iterator
         I = Sels.begin(), E = Sels.end(); I != E; ++I) {
    IntrinsicInst *Sel = *I;

    // Index of the "llvm.eh.catch.all.value" variable.
    unsigned OpIdx = Sel->getNumArgOperands() - 1;
    GlobalVariable *GV = dyn_cast<GlobalVariable>(Sel->getArgOperand(OpIdx));
    if (GV != EHCatchAllValue) continue;
    Sel->setArgOperand(OpIdx, EHCatchAllValue->getInitializer());
    Changed = true;
  }

  return Changed;
}
Example #23
0
bool ClassTemplateToClass::hasUsedNameDecl(
       ClassTemplatePartialSpecializationDecl *PartialD)
{
  if (!PartialD->isCompleteDefinition())
    return false;

  SmallPtrSet<NamedDecl *, 8> Params;
  TemplateParameterList *PartialTPList = PartialD->getTemplateParameters();
  for (unsigned PI = 0; PI < PartialTPList->size(); ++PI) {
    NamedDecl *ND = PartialTPList->getParam(PI);
    if (dyn_cast<NonTypeTemplateParmDecl>(ND))
      continue;
    Params.insert(ND);  
  }

  TemplateParameterTypeVisitor ParamVisitor(Context);

  // Skip visiting parameters and arguments
  for (CXXRecordDecl::base_class_iterator I = PartialD->bases_begin(),
       E = PartialD->bases_end(); I != E; ++I) {
    ParamVisitor.TraverseType(I->getType());
  }

  DeclContext *Ctx = dyn_cast<DeclContext>(PartialD);
  for (DeclContext::decl_iterator DI = Ctx->decls_begin(), 
       DE = Ctx->decls_end(); DI != DE; ++DI) {
    ParamVisitor.TraverseDecl(*DI);
  }

  for (SmallPtrSet<NamedDecl *, 8>::iterator I = Params.begin(), 
       E = Params.end(); I != E; ++I) {
    if (ParamVisitor.isAUsedParameter(*I))
      return true;
  }
  return false;
}
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityAnalysis::calcLoopBranchHeuristics(BasicBlock *BB) {
  uint32_t numSuccs = BB->getTerminator()->getNumSuccessors();

  Loop *L = LI->getLoopFor(BB);
  if (!L)
    return false;

  SmallPtrSet<BasicBlock *, 8> BackEdges;
  SmallPtrSet<BasicBlock *, 8> ExitingEdges;
  SmallPtrSet<BasicBlock *, 8> InEdges; // Edges from header to the loop.

  bool isHeader = BB == L->getHeader();

  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    BasicBlock *Succ = *I;
    Loop *SuccL = LI->getLoopFor(Succ);
    if (SuccL != L)
      ExitingEdges.insert(Succ);
    else if (Succ == L->getHeader())
      BackEdges.insert(Succ);
    else if (isHeader)
      InEdges.insert(Succ);
  }

  if (uint32_t numBackEdges = BackEdges.size()) {
    uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
    if (backWeight < NORMAL_WEIGHT)
      backWeight = NORMAL_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
         EE = BackEdges.end(); EI != EE; ++EI) {
      BasicBlock *Back = *EI;
      BP->setEdgeWeight(BB, Back, backWeight);
    }
  }

  if (uint32_t numInEdges = InEdges.size()) {
    uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
    if (inWeight < NORMAL_WEIGHT)
      inWeight = NORMAL_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = InEdges.begin(),
         EE = InEdges.end(); EI != EE; ++EI) {
      BasicBlock *Back = *EI;
      BP->setEdgeWeight(BB, Back, inWeight);
    }
  }

  uint32_t numExitingEdges = ExitingEdges.size();
  if (uint32_t numNonExitingEdges = numSuccs - numExitingEdges) {
    uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numNonExitingEdges;
    if (exitWeight < MIN_WEIGHT)
      exitWeight = MIN_WEIGHT;

    for (SmallPtrSet<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
         EE = ExitingEdges.end(); EI != EE; ++EI) {
      BasicBlock *Exiting = *EI;
      BP->setEdgeWeight(BB, Exiting, exitWeight);
    }
  }

  return true;
}
Example #25
0
/// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
/// edge and spill them.
void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
                                           ArrayRef<InvokeInst *> Invokes) {
  // Finally, scan the code looking for instructions with bad live ranges.
  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
    for (BasicBlock::iterator II = BB->begin(), IIE = BB->end(); II != IIE;
         ++II) {
      // Ignore obvious cases we don't have to handle. In particular, most
      // instructions either have no uses or only have a single use inside the
      // current block. Ignore them quickly.
      Instruction *Inst = II;
      if (Inst->use_empty())
        continue;
      if (Inst->hasOneUse() &&
          cast<Instruction>(Inst->user_back())->getParent() == BB &&
          !isa<PHINode>(Inst->user_back()))
        continue;

      // If this is an alloca in the entry block, it's not a real register
      // value.
      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
        if (isa<ConstantInt>(AI->getArraySize()) && BB == F.begin())
          continue;

      // Avoid iterator invalidation by copying users to a temporary vector.
      SmallVector<Instruction *, 16> Users;
      for (User *U : Inst->users()) {
        Instruction *UI = cast<Instruction>(U);
        if (UI->getParent() != BB || isa<PHINode>(UI))
          Users.push_back(UI);
      }

      // Find all of the blocks that this value is live in.
      SmallPtrSet<BasicBlock *, 64> LiveBBs;
      LiveBBs.insert(Inst->getParent());
      while (!Users.empty()) {
        Instruction *U = Users.back();
        Users.pop_back();

        if (!isa<PHINode>(U)) {
          MarkBlocksLiveIn(U->getParent(), LiveBBs);
        } else {
          // Uses for a PHI node occur in their predecessor block.
          PHINode *PN = cast<PHINode>(U);
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
            if (PN->getIncomingValue(i) == Inst)
              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
        }
      }

      // Now that we know all of the blocks that this thing is live in, see if
      // it includes any of the unwind locations.
      bool NeedsSpill = false;
      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
          DEBUG(dbgs() << "SJLJ Spill: " << *Inst << " around "
                       << UnwindBlock->getName() << "\n");
          NeedsSpill = true;
          break;
        }
      }

      // If we decided we need a spill, do it.
      // FIXME: Spilling this way is overkill, as it forces all uses of
      // the value to be reloaded from the stack slot, even those that aren't
      // in the unwind blocks. We should be more selective.
      if (NeedsSpill) {
        DemoteRegToStack(*Inst, true);
        ++NumSpilled;
      }
    }
  }

  // Go through the landing pads and remove any PHIs there.
  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
    LandingPadInst *LPI = UnwindBlock->getLandingPadInst();

    // Place PHIs into a set to avoid invalidating the iterator.
    SmallPtrSet<PHINode *, 8> PHIsToDemote;
    for (BasicBlock::iterator PN = UnwindBlock->begin(); isa<PHINode>(PN); ++PN)
      PHIsToDemote.insert(cast<PHINode>(PN));
    if (PHIsToDemote.empty())
      continue;

    // Demote the PHIs to the stack.
    for (SmallPtrSet<PHINode *, 8>::iterator I = PHIsToDemote.begin(),
                                             E = PHIsToDemote.end();
         I != E; ++I)
      DemotePHIToStack(*I);

    // Move the landingpad instruction back to the top of the landing pad block.
    LPI->moveBefore(UnwindBlock->begin());
  }
}
Example #26
0
bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
  // Clone the program to try hacking it apart...
  ValueMap<const Value*, Value*> VMap;
  Module *M = CloneModule(BD.getProgram(), VMap);

  // Convert list to set for fast lookup...
  SmallPtrSet<BasicBlock*, 8> Blocks;
  for (unsigned i = 0, e = BBs.size(); i != e; ++i)
    Blocks.insert(cast<BasicBlock>(VMap[BBs[i]]));

  outs() << "Checking for crash with only these blocks:";
  unsigned NumPrint = Blocks.size();
  if (NumPrint > 10) NumPrint = 10;
  for (unsigned i = 0, e = NumPrint; i != e; ++i)
    outs() << " " << BBs[i]->getName();
  if (NumPrint < Blocks.size())
    outs() << "... <" << Blocks.size() << " total>";
  outs() << ": ";

  // Loop over and delete any hack up any blocks that are not listed...
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
      if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
        // Loop over all of the successors of this block, deleting any PHI nodes
        // that might include it.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          (*SI)->removePredecessor(BB);

        TerminatorInst *BBTerm = BB->getTerminator();
        
        if (!BB->getTerminator()->getType()->isVoidTy())
          BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType()));

        // Replace the old terminator instruction.
        BB->getInstList().pop_back();
        new UnreachableInst(BB->getContext(), BB);
      }

  // The CFG Simplifier pass may delete one of the basic blocks we are
  // interested in.  If it does we need to take the block out of the list.  Make
  // a "persistent mapping" by turning basic blocks into <function, name> pairs.
  // This won't work well if blocks are unnamed, but that is just the risk we
  // have to take.
  std::vector<std::pair<std::string, std::string> > BlockInfo;

  for (SmallPtrSet<BasicBlock*, 8>::iterator I = Blocks.begin(),
         E = Blocks.end(); I != E; ++I)
    BlockInfo.push_back(std::make_pair((*I)->getParent()->getName(),
                                       (*I)->getName()));

  // Now run the CFG simplify pass on the function...
  std::vector<std::string> Passes;
  Passes.push_back("simplifycfg");
  Passes.push_back("verify");
  Module *New = BD.runPassesOn(M, Passes);
  delete M;
  if (!New) {
    errs() << "simplifycfg failed!\n";
    exit(1);
  }
  M = New;

  // Try running on the hacked up program...
  if (TestFn(BD, M)) {
    BD.setNewProgram(M);      // It crashed, keep the trimmed version...

    // Make sure to use basic block pointers that point into the now-current
    // module, and that they don't include any deleted blocks.
    BBs.clear();
    const ValueSymbolTable &GST = M->getValueSymbolTable();
    for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
      Function *F = cast<Function>(GST.lookup(BlockInfo[i].first));
      ValueSymbolTable &ST = F->getValueSymbolTable();
      Value* V = ST.lookup(BlockInfo[i].second);
      if (V && V->getType() == Type::getLabelTy(V->getContext()))
        BBs.push_back(cast<BasicBlock>(V));
    }
    return true;
  }
  delete M;  // It didn't crash, try something else.
  return false;
}
Example #27
0
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
    bool Changed = false;
ReprocessLoop:

    // Check to see that no blocks (other than the header) in this loop have
    // predecessors that are not in the loop.  This is not valid for natural
    // loops, but can occur if the blocks are unreachable.  Since they are
    // unreachable we can just shamelessly delete those CFG edges!
    for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
            BB != E; ++BB) {
        if (*BB == L->getHeader()) continue;

        SmallPtrSet<BasicBlock*, 4> BadPreds;
        for (pred_iterator PI = pred_begin(*BB),
                PE = pred_end(*BB); PI != PE; ++PI) {
            BasicBlock *P = *PI;
            if (!L->contains(P))
                BadPreds.insert(P);
        }

        // Delete each unique out-of-loop (and thus dead) predecessor.
        for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
                E = BadPreds.end(); I != E; ++I) {

            DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
                  << (*I)->getName() << "\n");

            // Inform each successor of each dead pred.
            for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
                (*SI)->removePredecessor(*I);
            // Zap the dead pred's terminator and replace it with unreachable.
            TerminatorInst *TI = (*I)->getTerminator();
            TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
            (*I)->getTerminator()->eraseFromParent();
            new UnreachableInst((*I)->getContext(), *I);
            Changed = true;
        }
    }

    // If there are exiting blocks with branches on undef, resolve the undef in
    // the direction which will exit the loop. This will help simplify loop
    // trip count computations.
    SmallVector<BasicBlock*, 8> ExitingBlocks;
    L->getExitingBlocks(ExitingBlocks);
    for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
            E = ExitingBlocks.end(); I != E; ++I)
        if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
            if (BI->isConditional()) {
                if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {

                    DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
                          << (*I)->getName() << "\n");

                    BI->setCondition(ConstantInt::get(Cond->getType(),
                                                      !L->contains(BI->getSuccessor(0))));
                    Changed = true;
                }
            }

    // Does the loop already have a preheader?  If so, don't insert one.
    BasicBlock *Preheader = L->getLoopPreheader();
    if (!Preheader) {
        Preheader = InsertPreheaderForLoop(L);
        if (Preheader) {
            ++NumInserted;
            Changed = true;
        }
    }

    // Next, check to make sure that all exit nodes of the loop only have
    // predecessors that are inside of the loop.  This check guarantees that the
    // loop preheader/header will dominate the exit blocks.  If the exit block has
    // predecessors from outside of the loop, split the edge now.
    SmallVector<BasicBlock*, 8> ExitBlocks;
    L->getExitBlocks(ExitBlocks);

    SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
            ExitBlocks.end());
    for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
            E = ExitBlockSet.end(); I != E; ++I) {
        BasicBlock *ExitBlock = *I;
        for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
                PI != PE; ++PI)
            // Must be exactly this loop: no subloops, parent loops, or non-loop preds
            // allowed.
            if (!L->contains(*PI)) {
                if (RewriteLoopExitBlock(L, ExitBlock)) {
                    ++NumInserted;
                    Changed = true;
                }
                break;
            }
    }

    // If the header has more than two predecessors at this point (from the
    // preheader and from multiple backedges), we must adjust the loop.
    BasicBlock *LoopLatch = L->getLoopLatch();
    if (!LoopLatch) {
        // If this is really a nested loop, rip it out into a child loop.  Don't do
        // this for loops with a giant number of backedges, just factor them into a
        // common backedge instead.
        if (L->getNumBackEdges() < 8) {
            if (SeparateNestedLoop(L, LPM)) {
                ++NumNested;
                // This is a big restructuring change, reprocess the whole loop.
                Changed = true;
                // GCC doesn't tail recursion eliminate this.
                goto ReprocessLoop;
            }
        }

        // If we either couldn't, or didn't want to, identify nesting of the loops,
        // insert a new block that all backedges target, then make it jump to the
        // loop header.
        LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
        if (LoopLatch) {
            ++NumInserted;
            Changed = true;
        }
    }

    // Scan over the PHI nodes in the loop header.  Since they now have only two
    // incoming values (the loop is canonicalized), we may have simplified the PHI
    // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    PHINode *PN;
    for (BasicBlock::iterator I = L->getHeader()->begin();
            (PN = dyn_cast<PHINode>(I++)); )
        if (Value *V = SimplifyInstruction(PN, 0, DT)) {
            if (AA) AA->deleteValue(PN);
            if (SE) SE->forgetValue(PN);
            PN->replaceAllUsesWith(V);
            PN->eraseFromParent();
        }

    // If this loop has multiple exits and the exits all go to the same
    // block, attempt to merge the exits. This helps several passes, such
    // as LoopRotation, which do not support loops with multiple exits.
    // SimplifyCFG also does this (and this code uses the same utility
    // function), however this code is loop-aware, where SimplifyCFG is
    // not. That gives it the advantage of being able to hoist
    // loop-invariant instructions out of the way to open up more
    // opportunities, and the disadvantage of having the responsibility
    // to preserve dominator information.
    bool UniqueExit = true;
    if (!ExitBlocks.empty())
        for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
            if (ExitBlocks[i] != ExitBlocks[0]) {
                UniqueExit = false;
                break;
            }
    if (UniqueExit) {
        for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
            BasicBlock *ExitingBlock = ExitingBlocks[i];
            if (!ExitingBlock->getSinglePredecessor()) continue;
            BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
            if (!BI || !BI->isConditional()) continue;
            CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
            if (!CI || CI->getParent() != ExitingBlock) continue;

            // Attempt to hoist out all instructions except for the
            // comparison and the branch.
            bool AllInvariant = true;
            for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
                Instruction *Inst = I++;
                // Skip debug info intrinsics.
                if (isa<DbgInfoIntrinsic>(Inst))
                    continue;
                if (Inst == CI)
                    continue;
                if (!L->makeLoopInvariant(Inst, Changed,
                                          Preheader ? Preheader->getTerminator() : 0)) {
                    AllInvariant = false;
                    break;
                }
            }
            if (!AllInvariant) continue;

            // The block has now been cleared of all instructions except for
            // a comparison and a conditional branch. SimplifyCFG may be able
            // to fold it now.
            if (!FoldBranchToCommonDest(BI)) continue;

            // Success. The block is now dead, so remove it from the loop,
            // update the dominator tree and delete it.
            DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
                  << ExitingBlock->getName() << "\n");

            // If any reachable control flow within this loop has changed, notify
            // ScalarEvolution. Currently assume the parent loop doesn't change
            // (spliting edges doesn't count). If blocks, CFG edges, or other values
            // in the parent loop change, then we need call to forgetLoop() for the
            // parent instead.
            if (SE)
                SE->forgetLoop(L);

            assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
            Changed = true;
            LI->removeBlock(ExitingBlock);

            DomTreeNode *Node = DT->getNode(ExitingBlock);
            const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
                Node->getChildren();
            while (!Children.empty()) {
                DomTreeNode *Child = Children.front();
                DT->changeImmediateDominator(Child, Node->getIDom());
            }
            DT->eraseNode(ExitingBlock);

            BI->getSuccessor(0)->removePredecessor(ExitingBlock);
            BI->getSuccessor(1)->removePredecessor(ExitingBlock);
            ExitingBlock->eraseFromParent();
        }
    }

    return Changed;
}
Example #28
0
/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
/// observable behavior of the program other than finite running time.  Note
/// we do ensure that this never remove a loop that might be infinite, as doing
/// so could change the halting/non-halting nature of a program.
/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
/// in order to make various safety checks work.
bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
  // We can only remove the loop if there is a preheader that we can
  // branch from after removing it.
  BasicBlock *preheader = L->getLoopPreheader();
  if (!preheader)
    return false;

  // If LoopSimplify form is not available, stay out of trouble.
  if (!L->hasDedicatedExits())
    return false;

  // We can't remove loops that contain subloops.  If the subloops were dead,
  // they would already have been removed in earlier executions of this pass.
  if (L->begin() != L->end())
    return false;

  SmallVector<BasicBlock*, 4> exitingBlocks;
  L->getExitingBlocks(exitingBlocks);

  SmallVector<BasicBlock*, 4> exitBlocks;
  L->getUniqueExitBlocks(exitBlocks);

  // We require that the loop only have a single exit block.  Otherwise, we'd
  // be in the situation of needing to be able to solve statically which exit
  // block will be branched to, or trying to preserve the branching logic in
  // a loop invariant manner.
  if (exitBlocks.size() != 1)
    return false;

  // Finally, we have to check that the loop really is dead.
  bool Changed = false;
  if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
    return Changed;

  // Don't remove loops for which we can't solve the trip count.
  // They could be infinite, in which case we'd be changing program behavior.
  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(S))
    return Changed;

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  BasicBlock *exitBlock = exitBlocks[0];

  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.  Don't
  // mess with this unless you have good reason and know what you're doing.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  SE.forgetLoop(L);

  // Connect the preheader directly to the exit block.
  TerminatorInst *TI = preheader->getTerminator();
  TI->replaceUsesOfWith(L->getHeader(), exitBlock);

  // Rewrite phis in the exit block to get their inputs from
  // the preheader instead of the exiting block.
  BasicBlock *exitingBlock = exitingBlocks[0];
  BasicBlock::iterator BI = exitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    int j = P->getBasicBlockIndex(exitingBlock);
    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
    P->setIncomingBlock(j, preheader);
    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
      P->removeIncomingValue(exitingBlocks[i]);
    ++BI;
  }

  // Update the dominator tree and remove the instructions and blocks that will
  // be deleted from the reference counting scheme.
  DominatorTree &DT = getAnalysis<DominatorTree>();
  SmallVector<DomTreeNode*, 8> ChildNodes;
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI) {
    // Move all of the block's children to be children of the preheader, which
    // allows us to remove the domtree entry for the block.
    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
    for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
         DE = ChildNodes.end(); DI != DE; ++DI) {
      DT.changeImmediateDominator(*DI, DT[preheader]);
    }

    ChildNodes.clear();
    DT.eraseNode(*LI);

    // Remove the block from the reference counting scheme, so that we can
    // delete it freely later.
    (*LI)->dropAllReferences();
  }

  // Erase the instructions and the blocks without having to worry
  // about ordering because we already dropped the references.
  // NOTE: This iteration is safe because erasing the block does not remove its
  // entry from the loop's block list.  We do that in the next section.
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI)
    (*LI)->eraseFromParent();

  // Finally, the blocks from loopinfo.  This has to happen late because
  // otherwise our loop iterators won't work.
  LoopInfo &loopInfo = getAnalysis<LoopInfo>();
  SmallPtrSet<BasicBlock*, 8> blocks;
  blocks.insert(L->block_begin(), L->block_end());
  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
       E = blocks.end(); I != E; ++I)
    loopInfo.removeBlock(*I);

  // The last step is to inform the loop pass manager that we've
  // eliminated this loop.
  LPM.deleteLoopFromQueue(L);
  Changed = true;

  ++NumDeleted;

  return Changed;
}
Example #29
0
/// At this point, we're committed to promoting the alloca using IDF's, and the
/// standard SSA construction algorithm.  Determine which blocks need phi nodes
/// and see if we can optimize out some work by avoiding insertion of dead phi
/// nodes.
void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
                                             AllocaInfo &Info) {
  // Unique the set of defining blocks for efficient lookup.
  SmallPtrSet<BasicBlock *, 32> DefBlocks;
  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());

  // Determine which blocks the value is live in.  These are blocks which lead
  // to uses.
  SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);

  // Use a priority queue keyed on dominator tree level so that inserted nodes
  // are handled from the bottom of the dominator tree upwards.
  typedef std::priority_queue<DomTreeNodePair,
                              SmallVector<DomTreeNodePair, 32>,
                              DomTreeNodeCompare> IDFPriorityQueue;
  IDFPriorityQueue PQ;

  for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
                                                     E = DefBlocks.end();
       I != E; ++I) {
    if (DomTreeNode *Node = DT.getNode(*I))
      PQ.push(std::make_pair(Node, DomLevels[Node]));
  }

  SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
  SmallPtrSet<DomTreeNode *, 32> Visited;
  SmallVector<DomTreeNode *, 32> Worklist;
  while (!PQ.empty()) {
    DomTreeNodePair RootPair = PQ.top();
    PQ.pop();
    DomTreeNode *Root = RootPair.first;
    unsigned RootLevel = RootPair.second;

    // Walk all dominator tree children of Root, inspecting their CFG edges with
    // targets elsewhere on the dominator tree. Only targets whose level is at
    // most Root's level are added to the iterated dominance frontier of the
    // definition set.

    Worklist.clear();
    Worklist.push_back(Root);

    while (!Worklist.empty()) {
      DomTreeNode *Node = Worklist.pop_back_val();
      BasicBlock *BB = Node->getBlock();

      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
           ++SI) {
        DomTreeNode *SuccNode = DT.getNode(*SI);

        // Quickly skip all CFG edges that are also dominator tree edges instead
        // of catching them below.
        if (SuccNode->getIDom() == Node)
          continue;

        unsigned SuccLevel = DomLevels[SuccNode];
        if (SuccLevel > RootLevel)
          continue;

        if (!Visited.insert(SuccNode))
          continue;

        BasicBlock *SuccBB = SuccNode->getBlock();
        if (!LiveInBlocks.count(SuccBB))
          continue;

        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
        if (!DefBlocks.count(SuccBB))
          PQ.push(std::make_pair(SuccNode, SuccLevel));
      }

      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
           ++CI) {
        if (!Visited.count(*CI))
          Worklist.push_back(*CI);
      }
    }
  }

  if (DFBlocks.size() > 1)
    std::sort(DFBlocks.begin(), DFBlocks.end());

  unsigned CurrentVersion = 0;
  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
}
Example #30
0
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
/// removed from the LoopPassManager as well. LPM can also be NULL.
bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
  assert(L->isLCSSAForm());

  BasicBlock *Header = L->getHeader();
  BasicBlock *LatchBlock = L->getLoopLatch();
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
  
  if (!BI || BI->isUnconditional()) {
    // The loop-rotate pass can be helpful to avoid this in many cases.
    DOUT << "  Can't unroll; loop not terminated by a conditional branch.\n";
    return false;
  }

  // Find trip count
  unsigned TripCount = L->getSmallConstantTripCount();
  // Find trip multiple if count is not available
  unsigned TripMultiple = 1;
  if (TripCount == 0)
    TripMultiple = L->getSmallConstantTripMultiple();

  if (TripCount != 0)
    DOUT << "  Trip Count = " << TripCount << "\n";
  if (TripMultiple != 1)
    DOUT << "  Trip Multiple = " << TripMultiple << "\n";

  // Effectively "DCE" unrolled iterations that are beyond the tripcount
  // and will never be executed.
  if (TripCount != 0 && Count > TripCount)
    Count = TripCount;

  assert(Count > 0);
  assert(TripMultiple > 0);
  assert(TripCount == 0 || TripCount % TripMultiple == 0);

  // Are we eliminating the loop control altogether?
  bool CompletelyUnroll = Count == TripCount;

  // If we know the trip count, we know the multiple...
  unsigned BreakoutTrip = 0;
  if (TripCount != 0) {
    BreakoutTrip = TripCount % Count;
    TripMultiple = 0;
  } else {
    // Figure out what multiple to use.
    BreakoutTrip = TripMultiple =
      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
  }

  if (CompletelyUnroll) {
    DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
          << " with trip count " << TripCount << "!\n");
  } else {
    DEBUG(errs() << "UNROLLING loop %" << Header->getName()
          << " by " << Count);
    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
      DOUT << " with a breakout at trip " << BreakoutTrip;
    } else if (TripMultiple != 1) {
      DOUT << " with " << TripMultiple << " trips per branch";
    }
    DOUT << "!\n";
  }

  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();

  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);

  // For the first iteration of the loop, we should use the precloned values for
  // PHI nodes.  Insert associations now.
  typedef DenseMap<const Value*, Value*> ValueMapTy;
  ValueMapTy LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    OrigPHINode.push_back(PN);
    if (Instruction *I = 
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
      if (L->contains(I->getParent()))
        LastValueMap[I] = I;
  }

  std::vector<BasicBlock*> Headers;
  std::vector<BasicBlock*> Latches;
  Headers.push_back(Header);
  Latches.push_back(LatchBlock);

  for (unsigned It = 1; It != Count; ++It) {
    char SuffixBuffer[100];
    sprintf(SuffixBuffer, ".%d", It);
    
    std::vector<BasicBlock*> NewBlocks;
    
    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
         E = LoopBlocks.end(); BB != E; ++BB) {
      ValueMapTy ValueMap;
      BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
      Header->getParent()->getBasicBlockList().push_back(New);

      // Loop over all of the PHI nodes in the block, changing them to use the
      // incoming values from the previous block.
      if (*BB == Header)
        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
          PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
            if (It > 1 && L->contains(InValI->getParent()))
              InVal = LastValueMap[InValI];
          ValueMap[OrigPHINode[i]] = InVal;
          New->getInstList().erase(NewPHI);
        }

      // Update our running map of newest clones
      LastValueMap[*BB] = New;
      for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
           VI != VE; ++VI)
        LastValueMap[VI->first] = VI->second;

      L->addBasicBlockToLoop(New, LI->getBase());

      // Add phi entries for newly created values to all exit blocks except
      // the successor of the latch block.  The successor of the exit block will
      // be updated specially after unrolling all the way.
      if (*BB != LatchBlock)
        for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
             UI != UE;) {
          Instruction *UseInst = cast<Instruction>(*UI);
          ++UI;
          if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
            PHINode *phi = cast<PHINode>(UseInst);
            Value *Incoming = phi->getIncomingValueForBlock(*BB);
            phi->addIncoming(Incoming, New);
          }
        }

      // Keep track of new headers and latches as we create them, so that
      // we can insert the proper branches later.
      if (*BB == Header)
        Headers.push_back(New);
      if (*BB == LatchBlock) {
        Latches.push_back(New);

        // Also, clear out the new latch's back edge so that it doesn't look
        // like a new loop, so that it's amenable to being merged with adjacent
        // blocks later on.
        TerminatorInst *Term = New->getTerminator();
        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
        Term->setSuccessor(!ContinueOnTrue, NULL);
      }

      NewBlocks.push_back(New);
    }
    
    // Remap all instructions in the most recent iteration
    for (unsigned i = 0; i < NewBlocks.size(); ++i)
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
           E = NewBlocks[i]->end(); I != E; ++I)
        RemapInstruction(I, LastValueMap);
  }
  
  // The latch block exits the loop.  If there are any PHI nodes in the
  // successor blocks, update them to use the appropriate values computed as the
  // last iteration of the loop.
  if (Count != 1) {
    SmallPtrSet<PHINode*, 8> Users;
    for (Value::use_iterator UI = LatchBlock->use_begin(),
         UE = LatchBlock->use_end(); UI != UE; ++UI)
      if (PHINode *phi = dyn_cast<PHINode>(*UI))
        Users.insert(phi);
    
    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
    for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
         SI != SE; ++SI) {
      PHINode *PN = *SI;
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
      // If this value was defined in the loop, take the value defined by the
      // last iteration of the loop.
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
        if (L->contains(InValI->getParent()))
          InVal = LastValueMap[InVal];
      }
      PN->addIncoming(InVal, LastIterationBB);
    }
  }

  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
  // original block, setting them to their incoming values.
  if (CompletelyUnroll) {
    BasicBlock *Preheader = L->getLoopPreheader();
    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
      PHINode *PN = OrigPHINode[i];
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
      Header->getInstList().erase(PN);
    }
  }

  // Now that all the basic blocks for the unrolled iterations are in place,
  // set up the branches to connect them.
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    // The original branch was replicated in each unrolled iteration.
    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());

    // The branch destination.
    unsigned j = (i + 1) % e;
    BasicBlock *Dest = Headers[j];
    bool NeedConditional = true;

    // For a complete unroll, make the last iteration end with a branch
    // to the exit block.
    if (CompletelyUnroll && j == 0) {
      Dest = LoopExit;
      NeedConditional = false;
    }

    // If we know the trip count or a multiple of it, we can safely use an
    // unconditional branch for some iterations.
    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
      NeedConditional = false;
    }

    if (NeedConditional) {
      // Update the conditional branch's successor for the following
      // iteration.
      Term->setSuccessor(!ContinueOnTrue, Dest);
    } else {
      Term->setUnconditionalDest(Dest);
      // Merge adjacent basic blocks, if possible.
      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
        std::replace(Headers.begin(), Headers.end(), Dest, Fold);
      }
    }
  }
  
  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
      Instruction *Inst = I++;

      if (isInstructionTriviallyDead(Inst))
        (*BB)->getInstList().erase(Inst);
      else if (Constant *C = ConstantFoldInstruction(Inst, 
                                                     Header->getContext())) {
        Inst->replaceAllUsesWith(C);
        (*BB)->getInstList().erase(Inst);
      }
    }

  NumCompletelyUnrolled += CompletelyUnroll;
  ++NumUnrolled;
  // Remove the loop from the LoopPassManager if it's completely removed.
  if (CompletelyUnroll && LPM != NULL)
    LPM->deleteLoopFromQueue(L);

  // If we didn't completely unroll the loop, it should still be in LCSSA form.
  if (!CompletelyUnroll)
    assert(L->isLCSSAForm());

  return true;
}