Example #1
0
bool LinearSolverPCG<MatrixType>::solve(const SparseBlockMatrix<MatrixType>& A, double* x, double* b)
{
  const bool indexRequired = _indices.size() == 0;
  _diag.clear();
  _J.clear();

  // put the block matrix once in a linear structure, makes mult faster
  int colIdx = 0;
  for (size_t i = 0; i < A.blockCols().size(); ++i){
    const typename SparseBlockMatrix<MatrixType>::IntBlockMap& col = A.blockCols()[i];
    if (col.size() > 0) {
      typename SparseBlockMatrix<MatrixType>::IntBlockMap::const_iterator it;
      for (it = col.begin(); it != col.end(); ++it) {
        if (it->first == (int)i) { // only the upper triangular block is needed
          _diag.push_back(it->second);
          _J.push_back(it->second->inverse());
          break;
        }
        if (indexRequired) {
          _indices.push_back(std::make_pair(it->first > 0 ? A.rowBlockIndices()[it->first-1] : 0, colIdx));
          _sparseMat.push_back(it->second);
        }

      }
    }
    colIdx = A.colBlockIndices()[i];
  }

  int n = A.rows();
  assert(n > 0 && "Hessian has 0 rows/cols");
  Eigen::Map<VectorXD> xvec(x, A.cols());
  const Eigen::Map<VectorXD> bvec(b, n);
  xvec.setZero();

  VectorXD r, d, q, s;
  d.setZero(n);
  q.setZero(n);
  s.setZero(n);

  r = bvec;
  multDiag(A.colBlockIndices(), _J, r, d);
  double dn = r.dot(d);
  double d0 = _tolerance * dn;

  if (_absoluteTolerance) {
    if (_residual > 0.0 && _residual > d0)
      d0 = _residual;
  }

  int maxIter = _maxIter < 0 ? A.rows() : _maxIter;

  int iteration;
  for (iteration = 0; iteration < maxIter; ++iteration) {
    if (_verbose)
      std::cerr << "residual[" << iteration << "]: " << dn << std::endl;
    if (dn <= d0)
      break;  // done
    mult(A.colBlockIndices(), d, q);
    double a = dn / d.dot(q);
    xvec += a*d;
    // TODO: reset residual here every 50 iterations
    r -= a*q;
    multDiag(A.colBlockIndices(), _J, r, s);
    double dold = dn;
    dn = r.dot(s);
    double ba = dn / dold;
    d = s + ba*d;
  }
  //std::cerr << "residual[" << iteration << "]: " << dn << std::endl;
  _residual = 0.5 * dn;
  G2OBatchStatistics* globalStats = G2OBatchStatistics::globalStats();
  if (globalStats) {
    globalStats->iterationsLinearSolver = iteration;
  }

  return true;
}
Example #2
0
int main(int argc, char** argv)
{
  OptimizableGraph::initMultiThreading();
  int maxIterations;
  bool verbose;
  string inputFilename;
  string gnudump;
  string outputfilename;
  string solverProperties;
  string strSolver;
  string loadLookup;
  bool initialGuess;
  bool initialGuessOdometry;
  bool marginalize;
  bool listTypes;
  bool listSolvers;
  bool listRobustKernels;
  bool incremental;
  bool guiOut;
  int gaugeId;
  string robustKernel;
  bool computeMarginals;
  bool printSolverProperties;
  double huberWidth;
  double gain;
  int maxIterationsWithGain;
  //double lambdaInit;
  int updateGraphEachN = 10;
  string statsFile;
  string summaryFile;
  bool nonSequential;
  // command line parsing
  std::vector<int> gaugeList;
  CommandArgs arg;
  arg.param("i", maxIterations, 5, "perform n iterations, if negative consider the gain");
  arg.param("gain", gain, 1e-6, "the gain used to stop optimization (default = 1e-6)");
  arg.param("ig",maxIterationsWithGain, std::numeric_limits<int>::max(), "Maximum number of iterations with gain enabled (default: inf)");
  arg.param("v", verbose, false, "verbose output of the optimization process");
  arg.param("guess", initialGuess, false, "initial guess based on spanning tree");
  arg.param("guessOdometry", initialGuessOdometry, false, "initial guess based on odometry");
  arg.param("inc", incremental, false, "run incremetally");
  arg.param("update", updateGraphEachN, 10, "updates after x odometry nodes");
  arg.param("guiout", guiOut, false, "gui output while running incrementally");
  arg.param("marginalize", marginalize, false, "on or off");
  arg.param("printSolverProperties", printSolverProperties, false, "print the properties of the solver");
  arg.param("solverProperties", solverProperties, "", "set the internal properties of a solver,\n\te.g., initialLambda=0.0001,maxTrialsAfterFailure=2");
  arg.param("gnudump", gnudump, "", "dump to gnuplot data file");
  arg.param("robustKernel", robustKernel, "", "use this robust error function");
  arg.param("robustKernelWidth", huberWidth, -1., "width for the robust Kernel (only if robustKernel)");
  arg.param("computeMarginals", computeMarginals, false, "computes the marginal covariances of something. FOR TESTING ONLY");
  arg.param("gaugeId", gaugeId, -1, "force the gauge");
  arg.param("o", outputfilename, "", "output final version of the graph");
  arg.param("solver", strSolver, "gn_var", "specify which solver to use underneat\n\t {gn_var, lm_fix3_2, gn_fix6_3, lm_fix7_3}");
#ifndef G2O_DISABLE_DYNAMIC_LOADING_OF_LIBRARIES
  string dummy;
  arg.param("solverlib", dummy, "", "specify a solver library which will be loaded");
  arg.param("typeslib", dummy, "", "specify a types library which will be loaded");
#endif
  arg.param("stats", statsFile, "", "specify a file for the statistics");
  arg.param("listTypes", listTypes, false, "list the registered types");
  arg.param("listRobustKernels", listRobustKernels, false, "list the registered robust kernels");
  arg.param("listSolvers", listSolvers, false, "list the available solvers");
  arg.param("renameTypes", loadLookup, "", "create a lookup for loading types into other types,\n\t TAG_IN_FILE=INTERNAL_TAG_FOR_TYPE,TAG2=INTERNAL2\n\t e.g., VERTEX_CAM=VERTEX_SE3:EXPMAP");
  arg.param("gaugeList", gaugeList, std::vector<int>(), "set the list of gauges separated by commas without spaces \n  e.g: 1,2,3,4,5 ");
  arg.param("summary", summaryFile, "", "append a summary of this optimization run to the summary file passed as argument");
  arg.paramLeftOver("graph-input", inputFilename, "", "graph file which will be processed", true);
  arg.param("nonSequential", nonSequential, false, "apply the robust kernel only on loop closures and not odometries");
  

  arg.parseArgs(argc, argv);

  if (verbose) {
    cout << "# Used Compiler: " << G2O_CXX_COMPILER << endl;
  }

#ifndef G2O_DISABLE_DYNAMIC_LOADING_OF_LIBRARIES
  // registering all the types from the libraries
  DlWrapper dlTypesWrapper;
  loadStandardTypes(dlTypesWrapper, argc, argv);
  // register all the solvers
  DlWrapper dlSolverWrapper;
  loadStandardSolver(dlSolverWrapper, argc, argv);
#else
  if (verbose)
    cout << "# linked version of g2o" << endl;
#endif

  OptimizationAlgorithmFactory* solverFactory = OptimizationAlgorithmFactory::instance();
  if (listSolvers) {
    solverFactory->listSolvers(cout);
  }

  if (listTypes) {
    Factory::instance()->printRegisteredTypes(cout, true);
  }

  if (listRobustKernels) {
    std::vector<std::string> kernels;
    RobustKernelFactory::instance()->fillKnownKernels(kernels);
    cout << "Robust Kernels:" << endl;
    for (size_t i = 0; i < kernels.size(); ++i) {
      cout << kernels[i] << endl;
    }
  }

  SparseOptimizer optimizer;
  optimizer.setVerbose(verbose);
  optimizer.setForceStopFlag(&hasToStop);

  SparseOptimizerTerminateAction* terminateAction = 0;
  if (maxIterations < 0) {
    cerr << "# setup termination criterion based on the gain of the iteration" << endl;
    maxIterations = maxIterationsWithGain;
    terminateAction = new SparseOptimizerTerminateAction;
    terminateAction->setGainThreshold(gain);
    terminateAction->setMaxIterations(maxIterationsWithGain);
    optimizer.addPostIterationAction(terminateAction);
  }

  // allocating the desired solver + testing whether the solver is okay
  OptimizationAlgorithmProperty solverProperty;
  optimizer.setAlgorithm(solverFactory->construct(strSolver, solverProperty));
  if (! optimizer.solver()) {
    cerr << "Error allocating solver. Allocating \"" << strSolver << "\" failed!" << endl;
    return 0;
  }
  
  if (solverProperties.size() > 0) {
    bool updateStatus = optimizer.solver()->updatePropertiesFromString(solverProperties);
    if (! updateStatus) {
      cerr << "Failure while updating the solver properties from the given string" << endl;
    }
  }
  if (solverProperties.size() > 0 || printSolverProperties) {
    optimizer.solver()->printProperties(cerr);
  }

  // Loading the input data
  if (loadLookup.size() > 0) {
    optimizer.setRenamedTypesFromString(loadLookup);
  }
  if (inputFilename.size() == 0) {
    cerr << "No input data specified" << endl;
    return 0;
  } else if (inputFilename == "-") {
    cerr << "Read input from stdin" << endl;
    if (!optimizer.load(cin)) {
      cerr << "Error loading graph" << endl;
      return 2;
    }
  } else {
    cerr << "Read input from " << inputFilename << endl;
    ifstream ifs(inputFilename.c_str());
    if (!ifs) {
      cerr << "Failed to open file" << endl;
      return 1;
    }
    if (!optimizer.load(ifs)) {
      cerr << "Error loading graph" << endl;
      return 2;
    }
  }
  cerr << "Loaded " << optimizer.vertices().size() << " vertices" << endl;
  cerr << "Loaded " << optimizer.edges().size() << " edges" << endl;

  if (optimizer.vertices().size() == 0) {
    cerr << "Graph contains no vertices" << endl;
    return 1;
  }

  set<int> vertexDimensions = optimizer.dimensions();
  if (! optimizer.isSolverSuitable(solverProperty, vertexDimensions)) {
    cerr << "The selected solver is not suitable for optimizing the given graph" << endl;
    return 3;
  }
  assert (optimizer.solver());
  //optimizer.setMethod(str2method(strMethod));
  //optimizer.setUserLambdaInit(lambdaInit);

 
  // check for vertices to fix to remove DoF
  bool gaugeFreedom = optimizer.gaugeFreedom();
  OptimizableGraph::Vertex* gauge=0;
  if (gaugeList.size()){
    cerr << "Fixing gauges: ";
    for (size_t i=0; i<gaugeList.size(); i++){
      int id=gaugeList[i];
      OptimizableGraph::Vertex* v=optimizer.vertex(id);
      if (!v){
        cerr << "fatal, not found the vertex of id " << id << " in the gaugeList. Aborting";
        return -1;
      } else {
        if (i==0)
          gauge = v;
        cerr << v->id() << " ";
        v->setFixed(1);
      }
    }
    cerr << endl;
    gaugeFreedom = false;
  } else {
      gauge=optimizer.findGauge();
  }
  if (gaugeFreedom) {
    if (! gauge) {
      cerr <<  "# cannot find a vertex to fix in this thing" << endl;
      return 2;
    } else {
      cerr << "# graph is fixed by node " << gauge->id() << endl;
      gauge->setFixed(true);
    }
  } else {
    cerr << "# graph is fixed by priors or already fixed vertex" << endl;
  }

  // if schur, we wanna marginalize the landmarks...
  if (marginalize || solverProperty.requiresMarginalize) {
    int maxDim = *vertexDimensions.rbegin();
    int minDim = *vertexDimensions.begin();
    if (maxDim != minDim) {
      cerr << "# Preparing Marginalization of the Landmarks ... ";
      for (HyperGraph::VertexIDMap::iterator it=optimizer.vertices().begin(); it!=optimizer.vertices().end(); it++){
        OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(it->second);
        if (v->dimension() != maxDim) {
          v->setMarginalized(true);
        }
      }
      cerr << "done." << endl;
    }
  }

  if (robustKernel.size() > 0) {
    AbstractRobustKernelCreator* creator = RobustKernelFactory::instance()->creator(robustKernel);
    cerr << "# Preparing robust error function ... ";
    if (creator) {
      if (nonSequential) {
        for (SparseOptimizer::EdgeSet::iterator it = optimizer.edges().begin(); it != optimizer.edges().end(); ++it) {
          SparseOptimizer::Edge* e = dynamic_cast<SparseOptimizer::Edge*>(*it);
          if (e->vertices().size() >= 2 && std::abs(e->vertex(0)->id() - e->vertex(1)->id()) != 1) {
            e->setRobustKernel(creator->construct());
            if (huberWidth > 0)
              e->robustKernel()->setDelta(huberWidth);
          }
        }
      } else {
        for (SparseOptimizer::EdgeSet::iterator it = optimizer.edges().begin(); it != optimizer.edges().end(); ++it) {
          SparseOptimizer::Edge* e = dynamic_cast<SparseOptimizer::Edge*>(*it);
          e->setRobustKernel(creator->construct());
          if (huberWidth > 0)
            e->robustKernel()->setDelta(huberWidth);
        }
      }
      cerr << "done." << endl;
    } else {
      cerr << "Unknown Robust Kernel: " << robustKernel << endl;
    }
  }

  // sanity check
  HyperDijkstra d(&optimizer);
  UniformCostFunction f;
  d.shortestPaths(gauge,&f);
  //cerr << PVAR(d.visited().size()) << endl;

  if (d.visited().size()!=optimizer.vertices().size()) {
    cerr << CL_RED("Warning: d.visited().size() != optimizer.vertices().size()") << endl;
    cerr << "visited: " << d.visited().size() << endl;
    cerr << "vertices: " << optimizer.vertices().size() << endl;
  }

  if (incremental) {
    cerr << CL_RED("# Note: this variant performs batch steps in each time step") << endl;
    cerr << CL_RED("#       For a variant which updates the Cholesky factor use the binary g2o_incremental") << endl;
    int incIterations = maxIterations;
    if (! arg.parsedParam("i")) {
      cerr << "# Setting default number of iterations" << endl;
      incIterations = 1;
    }
    int updateDisplayEveryN = updateGraphEachN;
    int maxDim = 0;

    cerr << "# incremental settings" << endl;
    cerr << "#\t solve every " << updateGraphEachN << endl;
    cerr << "#\t iterations  " << incIterations << endl;

    SparseOptimizer::VertexIDMap vertices = optimizer.vertices();
    for (SparseOptimizer::VertexIDMap::const_iterator it = vertices.begin(); it != vertices.end(); ++it) {
      const SparseOptimizer::Vertex* v = static_cast<const SparseOptimizer::Vertex*>(it->second);
      maxDim = max(maxDim, v->dimension());
    }

    vector<SparseOptimizer::Edge*> edges;
    for (SparseOptimizer::EdgeSet::iterator it = optimizer.edges().begin(); it != optimizer.edges().end(); ++it) {
      SparseOptimizer::Edge* e = dynamic_cast<SparseOptimizer::Edge*>(*it);
      edges.push_back(e);
    }
    optimizer.edges().clear();
    optimizer.vertices().clear();
    optimizer.setVerbose(false);

    // sort the edges in a way that inserting them makes sense
    sort(edges.begin(), edges.end(), IncrementalEdgesCompare());
    
    double cumTime = 0.;
    int vertexCount=0;
    int lastOptimizedVertexCount = 0;
    int lastVisUpdateVertexCount = 0;
    bool freshlyOptimized=false;
    bool firstRound = true;
    HyperGraph::VertexSet verticesAdded;
    HyperGraph::EdgeSet edgesAdded;
    for (vector<SparseOptimizer::Edge*>::iterator it = edges.begin(); it != edges.end(); ++it) {
      SparseOptimizer::Edge* e = *it;

      int doInit = 0;
      SparseOptimizer::Vertex* v1 = optimizer.vertex(e->vertices()[0]->id());
      SparseOptimizer::Vertex* v2 = optimizer.vertex(e->vertices()[1]->id());

      if (! v1) {
        SparseOptimizer::Vertex* v = v1 = dynamic_cast<SparseOptimizer::Vertex*>(e->vertices()[0]);
        bool v1Added = optimizer.addVertex(v);
        //cerr << "adding" << v->id() << "(" << v->dimension() << ")" << endl;
        assert(v1Added);
        if (! v1Added)
          cerr << "Error adding vertex " << v->id() << endl;
        else
          verticesAdded.insert(v);
        doInit = 1;
        if (v->dimension() == maxDim)
          vertexCount++;
      }

      if (! v2) {
        SparseOptimizer::Vertex* v = v2 = dynamic_cast<SparseOptimizer::Vertex*>(e->vertices()[1]);
        bool v2Added = optimizer.addVertex(v);
        //cerr << "adding" << v->id() << "(" << v->dimension() << ")" << endl;
        assert(v2Added);
        if (! v2Added)
          cerr << "Error adding vertex " << v->id() << endl;
        else
          verticesAdded.insert(v);
        doInit = 2;
        if (v->dimension() == maxDim)
          vertexCount++;
      }

      // adding the edge and initialization of the vertices
      {
        //cerr << " adding edge " << e->vertices()[0]->id() <<  " " << e->vertices()[1]->id() << endl;
        if (! optimizer.addEdge(e)) {
          cerr << "Unable to add edge " << e->vertices()[0]->id() << " -> " << e->vertices()[1]->id() << endl;
        } else {
          edgesAdded.insert(e);
        }

        if (doInit) {
          OptimizableGraph::Vertex* from = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
          OptimizableGraph::Vertex* to   = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);
          switch (doInit){
            case 1: // initialize v1 from v2
              {
                HyperGraph::VertexSet toSet;
                toSet.insert(to);
                if (e->initialEstimatePossible(toSet, from) > 0.) {
                  //cerr << "init: " 
                    //<< to->id() << "(" << to->dimension() << ") -> " 
                    //<< from->id() << "(" << from->dimension() << ") " << endl;
                   e->initialEstimate(toSet, from);
                } else {
                  assert(0 && "Added unitialized variable to the graph");
                }
                break;
              }
            case 2: 
              {
                HyperGraph::VertexSet fromSet;
                fromSet.insert(from);
                if (e->initialEstimatePossible(fromSet, to) > 0.) {
                  //cerr << "init: " 
                    //<< from->id() << "(" << from->dimension() << ") -> " 
                    //<< to->id() << "(" << to->dimension() << ") " << endl;
                  e->initialEstimate(fromSet, to);  
                } else {
                  assert(0 && "Added unitialized variable to the graph");
                }
                break;
              }
            default: cerr << "doInit wrong value\n"; 
          }

        }

      }

      freshlyOptimized=false;
      {
        //cerr << "Optimize" << endl;
        if (vertexCount - lastOptimizedVertexCount >= updateGraphEachN) {
          if (firstRound) {
            if (!optimizer.initializeOptimization()){
              cerr << "initialization failed" << endl;
              return 0;
            }
          } else {
            if (! optimizer.updateInitialization(verticesAdded, edgesAdded)) {
              cerr << "updating initialization failed" << endl;
              return 0;
            }
          }
          verticesAdded.clear();
          edgesAdded.clear();
          double ts = get_monotonic_time();
          int currentIt=optimizer.optimize(incIterations, !firstRound);
          double dts = get_monotonic_time() - ts;
          cumTime += dts;
          firstRound = false;
          //optimizer->setOptimizationTime(cumTime);
          if (verbose) {
            double chi2 = optimizer.chi2();
            cerr << "nodes= " << optimizer.vertices().size() << "\t edges= " << optimizer.edges().size() << "\t chi2= " << chi2
              << "\t time= " << dts << "\t iterations= " << currentIt <<  "\t cumTime= " << cumTime << endl;
          }
          lastOptimizedVertexCount = vertexCount;
          freshlyOptimized = true;

          if (guiOut) {
            if (vertexCount - lastVisUpdateVertexCount >= updateDisplayEveryN) {
              dumpEdges(cout, optimizer);
              lastVisUpdateVertexCount = vertexCount;
            }
          }

        }

        if (! verbose)
          cerr << ".";
      }
      
    } // for all edges

    if (! freshlyOptimized) {
      double ts = get_monotonic_time();
      int currentIt=optimizer.optimize(incIterations, !firstRound);
      double dts = get_monotonic_time() - ts;
      cumTime += dts;
      //optimizer->setOptimizationTime(cumTime);
      if (verbose) {
        double chi2 = optimizer.chi2();
        cerr << "nodes= " << optimizer.vertices().size() << "\t edges= " << optimizer.edges().size() << "\t chi2= " << chi2
          << "\t time= " << dts << "\t iterations= " << currentIt <<  "\t cumTime= " << cumTime << endl;
      }

    }

  } else {

    // BATCH optimization

    if (statsFile!=""){
      // allocate buffer for statistics;
      optimizer.setComputeBatchStatistics(true);
    }
    optimizer.initializeOptimization();
    optimizer.computeActiveErrors();
    double loadChi = optimizer.chi2();
    cerr << "Initial chi2 = " << FIXED(loadChi) << endl;

    if (initialGuess) {
      optimizer.computeInitialGuess();
    } else if (initialGuessOdometry) {
      EstimatePropagatorCostOdometry costFunction(&optimizer);
      optimizer.computeInitialGuess(costFunction);
    }
    double initChi = optimizer.chi2();

    signal(SIGINT, sigquit_handler);
    int result=optimizer.optimize(maxIterations);
    if (maxIterations > 0 && result==OptimizationAlgorithm::Fail){
      cerr << "Cholesky failed, result might be invalid" << endl;
    } else if (computeMarginals){
      std::vector<std::pair<int, int> > blockIndices;
      for (size_t i=0; i<optimizer.activeVertices().size(); i++){
        OptimizableGraph::Vertex* v=optimizer.activeVertices()[i];
        if (v->hessianIndex()>=0){
          blockIndices.push_back(make_pair(v->hessianIndex(), v->hessianIndex()));
        }
        if (v->hessianIndex()>0){
          blockIndices.push_back(make_pair(v->hessianIndex()-1, v->hessianIndex()));
        }
      }
      SparseBlockMatrix<MatrixXd> spinv;
      if (optimizer.computeMarginals(spinv, blockIndices)) {
        for (size_t i=0; i<optimizer.activeVertices().size(); i++){
          OptimizableGraph::Vertex* v=optimizer.activeVertices()[i];
          cerr << "Vertex id:" << v->id() << endl;
          if (v->hessianIndex()>=0){
            cerr << "inv block :" << v->hessianIndex() << ", " << v->hessianIndex()<< endl;
            cerr << *(spinv.block(v->hessianIndex(), v->hessianIndex()));
            cerr << endl;
          }
          if (v->hessianIndex()>0){
            cerr << "inv block :" << v->hessianIndex()-1 << ", " << v->hessianIndex()<< endl;
            cerr << *(spinv.block(v->hessianIndex()-1, v->hessianIndex()));
            cerr << endl;
          }
        }
      }
    }
    
    optimizer.computeActiveErrors();
    double finalChi=optimizer.chi2();

    if  (summaryFile!="") {
      PropertyMap summary;
      summary.makeProperty<StringProperty>("filename", inputFilename);
      summary.makeProperty<IntProperty>("n_vertices", optimizer.vertices().size());
      summary.makeProperty<IntProperty>("n_edges", optimizer.edges().size());
      
      int nLandmarks=0;
      int nPoses=0;
      int maxDim = *vertexDimensions.rbegin();
      for (HyperGraph::VertexIDMap::iterator it=optimizer.vertices().begin(); it!=optimizer.vertices().end(); it++){
	OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(it->second);
	if (v->dimension() != maxDim) {
	  nLandmarks++;
	} else
	  nPoses++;
      }
      set<string> edgeTypes;
      for (HyperGraph::EdgeSet::iterator it=optimizer.edges().begin(); it!=optimizer.edges().end(); it++){
	edgeTypes.insert(Factory::instance()->tag(*it));
      }
      stringstream edgeTypesString;
      for (std::set<string>::iterator it=edgeTypes.begin(); it!=edgeTypes.end(); it++){
	edgeTypesString << *it << " ";
      }

      summary.makeProperty<IntProperty>("n_poses", nPoses);
      summary.makeProperty<IntProperty>("n_landmarks", nLandmarks);
      summary.makeProperty<StringProperty>("edge_types", edgeTypesString.str());
      summary.makeProperty<DoubleProperty>("load_chi", loadChi);
      summary.makeProperty<StringProperty>("solver", strSolver);
      summary.makeProperty<BoolProperty>("robustKernel", robustKernel.size() > 0);
      summary.makeProperty<DoubleProperty>("init_chi", initChi);
      summary.makeProperty<DoubleProperty>("final_chi", finalChi);
      summary.makeProperty<IntProperty>("maxIterations", maxIterations);
      summary.makeProperty<IntProperty>("realIterations", result);
      ofstream os;
      os.open(summaryFile.c_str(), ios::app);
      summary.writeToCSV(os);
    }
    

    if (statsFile!=""){
      cerr << "writing stats to file \"" << statsFile << "\" ... ";
      ofstream os(statsFile.c_str());
      const BatchStatisticsContainer& bsc = optimizer.batchStatistics();
      
      for (int i=0; i<maxIterations; i++) {
        os << bsc[i] << endl;
      }
      cerr << "done." << endl;
    }

  }

  // saving again
  if (gnudump.size() > 0) {
    bool gnuPlotStatus = saveGnuplot(gnudump, optimizer);
    if (! gnuPlotStatus) {
      cerr << "Error while writing gnuplot files" << endl;
    }
  }

  if (outputfilename.size() > 0) {
    if (outputfilename == "-") {
      cerr << "saving to stdout";
      optimizer.save(cout);
    } else {
      cerr << "saving " << outputfilename << " ... ";
      optimizer.save(outputfilename.c_str());
    }
    cerr << "done." << endl;
  }

  // destroy all the singletons
  //Factory::destroy();
  //OptimizationAlgorithmFactory::destroy();
  //HyperGraphActionLibrary::destroy();

  return 0;
}
Example #3
0
int main (int argc  , char ** argv){
  int maxIterations;
  bool verbose;
  bool robustKernel;
  double lambdaInit;
  CommandArgs arg;
  bool fixSensor;
  bool fixPlanes;
  bool fixFirstPose;
  bool fixTrajectory;
  bool planarMotion;
  bool listSolvers;
  string strSolver;
  cerr << "graph" << endl;
  arg.param("i", maxIterations, 5, "perform n iterations");
  arg.param("v", verbose, false, "verbose output of the optimization process");
  arg.param("solver", strSolver, "lm_var", "select one specific solver");
  arg.param("lambdaInit", lambdaInit, 0, "user specified lambda init for levenberg");
  arg.param("robustKernel", robustKernel, false, "use robust error functions");
  arg.param("fixSensor", fixSensor, false, "fix the sensor position on the robot");
  arg.param("fixTrajectory", fixTrajectory, false, "fix the trajectory");
  arg.param("fixFirstPose", fixFirstPose, false, "fix the first robot pose");
  arg.param("fixPlanes", fixPlanes, false, "fix the planes (do localization only)");
  arg.param("planarMotion", planarMotion, false, "robot moves on a plane");
  arg.param("listSolvers", listSolvers, false, "list the solvers");
  arg.parseArgs(argc, argv);



  SparseOptimizer* g=new SparseOptimizer();
  ParameterSE3Offset* odomOffset=new ParameterSE3Offset();
  odomOffset->setId(0);
  g->addParameter(odomOffset);

  OptimizationAlgorithmFactory* solverFactory = OptimizationAlgorithmFactory::instance();
  OptimizationAlgorithmProperty solverProperty;
  OptimizationAlgorithm* solver = solverFactory->construct(strSolver, solverProperty);
  g->setAlgorithm(solver);
  if (listSolvers){
    solverFactory->listSolvers(cerr);
    return 0;
  }

  if (! g->solver()){
    cerr << "Error allocating solver. Allocating \"" << strSolver << "\" failed!" << endl;
    cerr << "available solvers: " << endl;
    solverFactory->listSolvers(cerr);
    cerr << "--------------" << endl;
    return 0;
  }

  cerr << "sim" << endl;
  Simulator* sim = new Simulator(g);

  cerr << "robot" << endl;
  Robot* r=new Robot(g);


  cerr << "planeSensor" << endl;
  Matrix3d R=Matrix3d::Identity();
  R <<
    0,  0,   1,
    -1,  0,  0,
    0, -1,   0;

  Isometry3d sensorPose=Isometry3d::Identity();
  sensorPose.matrix().block<3,3>(0,0) = R;
  sensorPose.translation()= Vector3d(.3 , 0.5 , 1.2);
  PlaneSensor* ps = new PlaneSensor(r, 0, sensorPose);
  ps->_nplane << 0.03, 0.03, 0.005;
  r->_sensors.push_back(ps);
  sim->_robots.push_back(r);

  cerr  << "p1" << endl;
  Plane3D plane;
  PlaneItem* pi =new PlaneItem(g,1);
  plane.fromVector(Eigen::Vector4d(0.,0.,1.,5.));
  static_cast<VertexPlane*>(pi->vertex())->setEstimate(plane);
  pi->vertex()->setFixed(fixPlanes);
  sim->_world.insert(pi);

  plane.fromVector(Eigen::Vector4d(1.,0.,0.,5.));
  pi =new PlaneItem(g,2);
  static_cast<VertexPlane*>(pi->vertex())->setEstimate(plane);
  pi->vertex()->setFixed(fixPlanes);
  sim->_world.insert(pi);

  cerr  << "p2" << endl;
  pi =new PlaneItem(g,3);
  plane.fromVector(Eigen::Vector4d(0.,1.,0.,5.));
  static_cast<VertexPlane*>(pi->vertex())->setEstimate(plane);
  pi->vertex()->setFixed(fixPlanes);
  sim->_world.insert(pi);


  Quaterniond q, iq;
  if (planarMotion) {
    r->_planarMotion = true;
    r->_nmovecov << 0.01, 0.0025, 1e-9, 0.001, 0.001, 0.025;
    q = Quaterniond(AngleAxisd(0.2, Vector3d::UnitZ()).toRotationMatrix());
    iq = Quaterniond(AngleAxisd(-0.2, Vector3d::UnitZ()).toRotationMatrix());
  } else {
    r->_planarMotion = false;
    //r->_nmovecov << 0.1, 0.005, 1e-9, 0.05, 0.001, 0.001;
    r->_nmovecov << 0.1, 0.005, 1e-9, 0.001, 0.001, 0.05;
    q = Quaterniond((AngleAxisd(M_PI/10, Vector3d::UnitZ()) * AngleAxisd(0.1, Vector3d::UnitY())).toRotationMatrix());
    iq = Quaterniond((AngleAxisd(-M_PI/10, Vector3d::UnitZ()) * AngleAxisd(0.1, Vector3d::UnitY())).toRotationMatrix());
  }

  Isometry3d delta=Isometry3d::Identity();
  sim->_lastVertexId=4;

  Isometry3d startPose=Isometry3d::Identity();
  startPose.matrix().block<3,3>(0,0) = AngleAxisd(-0.75*M_PI, Vector3d::UnitZ()).toRotationMatrix();
  sim->move(0,startPose);

  int k =20;
  int l = 2;
  double delta_t = 0.2;
  for (int j=0; j<l; j++) {
    Vector3d tr(1.,0.,0.);
    delta.matrix().block<3,3>(0,0) = q.toRotationMatrix();
    if (j==(l-1)){
      delta.matrix().block<3,3>(0,0) = Matrix3d::Identity();
    }
    delta.translation()=tr*(delta_t*j);
    Isometry3d iDelta = delta.inverse();
    for (int a=0; a<2; a++){
      for (int i=0; i<k; i++){
        cerr << "m";
        if (a==0)
          sim->relativeMove(0,delta);
        else
          sim->relativeMove(0,iDelta);
        cerr << "s";
        sim->sense(0);
      }
    }
  }

  for (int j=0; j<l; j++) {
    Vector3d tr(1.,0.,0.);
    delta.matrix().block<3,3>(0,0) = iq.toRotationMatrix();
    if (j==l-1){
      delta.matrix().block<3,3>(0,0) = Matrix3d::Identity();
    }
    delta.translation()=tr*(delta_t*j);
    Isometry3d iDelta = delta.inverse();
    for (int a=0; a<2; a++){
      for (int i=0; i<k; i++){
        cerr << "m";
        if (a==0)
          sim->relativeMove(0,delta);
        else
          sim->relativeMove(0,iDelta);
        cerr << "s";
        sim->sense(0);
      }
    }
  }

  ofstream os("test_gt.g2o");
  g->save(os);

  if (fixSensor) {
    ps->_offsetVertex->setFixed(true);
  } else {
    Vector6d noffcov;
    noffcov << 0.1,0.1,0.1,0.5, 0.5, 0.5;
    ps->_offsetVertex->setEstimate(ps->_offsetVertex->estimate() * sample_noise_from_se3(noffcov));
    ps->_offsetVertex->setFixed(false);
  }

  if (fixFirstPose){
    OptimizableGraph::Vertex* gauge = g->vertex(4);
    if (gauge)
      gauge->setFixed(true);
  } // else {
  //   // multiply all vertices of the robot by this standard quantity
  //   Quaterniond q(AngleAxisd(1, Vector3d::UnitZ()).toRotationMatrix());
  //   Vector3d tr(1,0,0);
  //   Isometry3d delta;
  //   delta.matrix().block<3,3>(0,0)=q.toRotationMatrix();
  //   delta.translation()=tr;
  //   for (size_t i=0; i< g->vertices().size(); i++){
  //     VertexSE3 *v = dynamic_cast<VertexSE3 *>(g->vertex(i));
  //     if (v && v->id()>0){
  //   v->setEstimate (v->estimate()*delta);
  //     }
  //   }
  // }

  ofstream osp("test_preopt.g2o");
  g->save(osp);
  //g->setMethod(SparseOptimizer::LevenbergMarquardt);
  g->initializeOptimization();
  g->setVerbose(verbose);
  g->optimize(maxIterations);
  if (! fixSensor ){
    SparseBlockMatrix<MatrixXd> spinv;
    std::pair<int, int> indexParams;
    indexParams.first = ps->_offsetVertex->hessianIndex();
    indexParams.second = ps->_offsetVertex->hessianIndex();
    std::vector<std::pair <int, int> > blockIndices;
    blockIndices.push_back(indexParams);
    if (!g->computeMarginals(spinv,  blockIndices)){
      cerr << "error in computing the covariance" << endl;
    } else {

      MatrixXd m = *spinv.block(ps->_offsetVertex->hessianIndex(), ps->_offsetVertex->hessianIndex());

      cerr << "Param covariance" << endl;
      cerr << m << endl;
      cerr << "OffsetVertex: " << endl;
      ps->_offsetVertex->write(cerr);
      cerr <<  endl;
      cerr << "rotationDeterminant: " << m.block<3,3>(0,0).determinant() << endl;
      cerr << "translationDeterminant: " << m.block<3,3>(3,3).determinant()  << endl;
      cerr << endl;
    }
  }
  ofstream os1("test_postOpt.g2o");
  g->save(os1);

}
void MarginalCovarianceCholesky::computeCovariance(SparseBlockMatrix<MatrixXD>& spinv, const std::vector<int>& rowBlockIndices, const std::vector< std::pair<int, int> >& blockIndices)
{
  // allocate the sparse
  spinv = SparseBlockMatrix<MatrixXD>(&rowBlockIndices[0], 
              &rowBlockIndices[0], 
              rowBlockIndices.size(),
              rowBlockIndices.size(), true);
  _map.clear();
  vector<MatrixElem> elemsToCompute;
  for (size_t i = 0; i < blockIndices.size(); ++i) {
    int blockRow=blockIndices[i].first;    
    int blockCol=blockIndices[i].second;
    assert(blockRow>=0);
    assert(blockRow < (int)rowBlockIndices.size());
    assert(blockCol>=0);
    assert(blockCol < (int)rowBlockIndices.size());

    int rowBase=spinv.rowBaseOfBlock(blockRow);
    int colBase=spinv.colBaseOfBlock(blockCol);
    
    MatrixXD *block=spinv.block(blockRow, blockCol, true);
    assert(block);
    for (int iRow=0; iRow<block->rows(); ++iRow)
      for (int iCol=0; iCol<block->cols(); ++iCol){
        int rr=rowBase+iRow;
        int cc=colBase+iCol;
        int r = _perm ? _perm[rr] : rr; // apply permutation
        int c = _perm ? _perm[cc] : cc;
        if (r > c)
          swap(r, c);
        elemsToCompute.push_back(MatrixElem(r, c));
      }
  }

  // sort the elems to reduce the number of recursive calls
  sort(elemsToCompute.begin(), elemsToCompute.end());

  // compute the inverse elements we need
  for (size_t i = 0; i < elemsToCompute.size(); ++i) {
    const MatrixElem& me = elemsToCompute[i];
    computeEntry(me.r, me.c);
  }

  // set the marginal covariance 
  for (size_t i = 0; i < blockIndices.size(); ++i) {
    int blockRow=blockIndices[i].first;    
    int blockCol=blockIndices[i].second;
    int rowBase=spinv.rowBaseOfBlock(blockRow);
    int colBase=spinv.colBaseOfBlock(blockCol);
    
    MatrixXD *block=spinv.block(blockRow, blockCol);
    assert(block);
    for (int iRow=0; iRow<block->rows(); ++iRow)
      for (int iCol=0; iCol<block->cols(); ++iCol){
        int rr=rowBase+iRow;
        int cc=colBase+iCol;
        int r = _perm ? _perm[rr] : rr; // apply permutation
        int c = _perm ? _perm[cc] : cc;
        if (r > c)
          swap(r, c);
        int idx = computeIndex(r, c);
        LookupMap::const_iterator foundIt = _map.find(idx);
        assert(foundIt != _map.end());
        (*block)(iRow, iCol) = foundIt->second;
      }
  }
}
Example #5
0
        void BSplineMotionError<SPLINE_T>::buildHessianImplementation(SparseBlockMatrix & outHessian, Eigen::VectorXd & outRhs, bool /* useMEstimator */) {
            
            
            // get the coefficients:
            Eigen::MatrixXd coeff = _splineDV->spline().coefficients();
            // create a column vector of spline coefficients
            int dim = coeff.rows(); 
            int seg = coeff.cols();
            // build a vector of coefficients:
            Eigen::VectorXd c(dim*seg);
            // rows are spline dimension
            for(int i = 0; i < seg; i++) {
                c.block(i*dim,0,dim,1) = coeff.block(0, i, dim,1);
            }
            
            // right hand side:
            Eigen::VectorXd b_u(_Q.rows());  // number of rows of Q:
            
            b_u.setZero();
      /*      std::cout <<"b" << std::endl;
            for(int i = 0 ; i < b_u->rows(); i++)
                std::cout << (*b_u)(i) << std::endl;
                        std::cout <<"/b" << std::endl;  */ 
            
            _Q.multiply(&b_u, c);

            // place the hessian elements in the correct place:        
        
            // build hessian:
            for(size_t i = 0; i < numDesignVariables(); i++)
            {

            	if( designVariable(i)->isActive()) {

            		// get the block index
            		int colBlockIndex = designVariable(i)->blockIndex();
            		int rows = designVariable(i)->minimalDimensions();
            		int rowBase = outHessian.colBaseOfBlock(colBlockIndex);

            		// <- this is our column index
            		//_numberOfSplineDesignVariables
            		for(size_t j = 0; j <= i; j++) // upper triangle should be sufficient
            		{

            			if (designVariable(j)->isActive()) {

            				int rowBlockIndex = designVariable(j)->blockIndex();

            				// select the corresponding block in _Q:
            				Eigen::MatrixXd* Qblock = _Q.block(i,j, false);  // get block and do NOT allocate.

            				if (Qblock) { // check if block exists
            					// get the Hessian Block
            					const bool allocateIfMissing = true;
            					Eigen::MatrixXd *Hblock = outHessian.block(rowBlockIndex, colBlockIndex, allocateIfMissing);
            					*Hblock += *Qblock;  // insert!
            				}
            			}

            		}

            		outRhs.segment(rowBase, rows) -= b_u.segment(i*rows, rows);
            	}
            }
            
            
            //std::cout << "OutHessian" << outHessian.toDense() << std::endl;
            
            // show outRhs:
          //  for (int i = 0;  i < outRhs.rows(); i++)
           //     std::cout << outRhs(i) <<  " : " << (*b_u)(i) << std::endl;
  
            
        }