template <class P1, class P2> static void ApplyFilter_2( GenericImage<P1>& image, const GenericImage<P2>& sharp, float amount, float threshold, float deringing, float rangeLow, float rangeHigh, pcl_bool disableExtension, int c, pcl_bool highPass ) { float rangeWidth = 1 + rangeHigh + rangeLow; bool isRange = rangeWidth + 1 != 1; StandardStatus callback; StatusMonitor monitor; monitor.SetCallback( &callback ); monitor.Initialize( "<end><cbr>Larson-Sekanina filter", image.NumberOfPixels() ); for ( int x = 0; x < image.Width(); ++x ) for ( int y = 0; y < image.Height(); ++y, ++monitor ) { double f1, f2; P1::FromSample( f1, image.Pixel( x, y, c ) ); P2::FromSample( f2, sharp.Pixel( x, y ) ); Apply_PixelValues( f1, f2, threshold, deringing, amount, highPass ); if ( disableExtension ) image.Pixel( x, y, c ) = P1::ToSample( f1 ); else { if ( isRange ) f1 = (f1 + rangeLow)/rangeWidth; image.Pixel( x, y, c ) = P1::ToSample( pcl::Range( f1, 0.0, 1.0 ) ); } } if ( disableExtension ) Console().WarningLn( "<end><cbr>*** Warning: Dynamic range extension has been disabled - check pixel values!" ); }
template <class P> static void Rotate90CW( GenericImage<P>& image ) { image.SetUnique(); int w = image.Width(); int h = image.Height(); int h1 = h - 1; int n = image.NumberOfChannels(); size_type N = image.NumberOfPixels(); typename GenericImage<P>::color_space cs0 = image.ColorSpace(); StatusMonitor status = image.Status(); typename P::sample** f0 = 0; try { if ( image.Status().IsInitializationEnabled() ) status.Initialize( "Rotate 90 degrees, clockwise", n*N ); f0 = image.ReleaseData(); typename GenericImage<P>::sample_array tmp( N ); for ( int c = 0; c < n; ++c, status += N ) { typename P::sample* f = f0[c]; typename P::sample* t = tmp.Begin(); ::memcpy( t, f, N*P::BytesPerSample() ); for ( int y = 0; y < h; ++y ) for ( int x = 0, h1y = h1-y; x < w; ++x, ++t ) f[x*h + h1y] = *t; } image.ImportData( f0, h, w, n, cs0 ).Status() = status; } catch ( ... ) { if ( f0 != 0 ) { for ( int c = 0; c < n; ++c ) if ( f0[c] != 0 ) image.Allocator().Deallocate( f0[c] ); image.Allocator().Deallocate( f0 ); image.FreeData(); } throw; } }
template <class P> inline static void Apply( GenericImage<P>& image, const IntegerResample& Z ) { int width = image.Width(); int w0 = width; int height = image.Height(); int h0 = height; Z.GetNewSizes( width, height ); if ( width == w0 && height == h0 ) return; if ( width == 0 || height == 0 ) { image.FreeData(); return; } image.EnsureUnique(); typename P::sample* f = 0; typename P::sample** f0 = 0; int n = image.NumberOfChannels(); size_type N = image.NumberOfPixels(); typename GenericImage<P>::color_space cs0 = image.ColorSpace(); StatusMonitor status = image.Status(); int z = pcl::Abs( Z.ZoomFactor() ); int z2 = z*z; int n2 = z2 >> 1; try { if ( status.IsInitializationEnabled() ) { String info = (Z.ZoomFactor() > 0) ? "Upsampling" : "Downsampling"; info.AppendFormat( " %d:%d, %dx%d", (Z.ZoomFactor() > 0) ? z : 1, (Z.ZoomFactor() > 0) ? 1 : z, width, height ); if ( Z.ZoomFactor() < 0 ) { info += ", "; switch ( Z.DownsampleMode() ) { default: case IntegerDownsampleMode::Average: info += "average"; break; case IntegerDownsampleMode::Median: info += "median"; break; case IntegerDownsampleMode::Maximum: info += "maximum"; break; case IntegerDownsampleMode::Minimum: info += "minimum"; break; } } status.Initialize( info, n*N ); } GenericVector<typename P::sample> fm; if ( Z.ZoomFactor() < 0 && Z.DownsampleMode() == IntegerDownsampleMode::Median ) fm = GenericVector<typename P::sample>( z2 ); f0 = image.ReleaseData(); for ( int c = 0; c < n; ++c, status += N ) { f = image.Allocator().AllocatePixels( width, height ); if ( Z.ZoomFactor() > 0 ) { const typename P::sample* f0c = f0[c]; for ( int y = 0; y < h0; ++y ) { int yz = y*z; for ( int x = 0; x < w0; ++x ) { int xz = x*z; typename P::sample v = *f0c++; for ( int i = 0; i < z; ++i ) { typename P::sample* fi = f + (size_type( yz + i )*width + xz); for ( int j = 0; j < z; ++j ) *fi++ = v; } } } } else { typename P::sample* fz = f; for ( int y = 0; y < height; ++y ) { const typename P::sample* fy = f0[c] + size_type( y )*z*w0; for ( int x = 0; x < width; ++x ) { const typename P::sample* fyx = fy + x*z; switch ( Z.DownsampleMode() ) { default: case IntegerDownsampleMode::Average: { double s = 0; for ( int i = 0; i < z; ++i, fyx += w0 ) for ( int j = 0; j < z; ++j ) s += fyx[j]; *fz++ = typename P::sample( P::IsFloatSample() ? s/z2 : Round( s/z2 ) ); } break; case IntegerDownsampleMode::Median: { typename P::sample* fmi = *fm; for ( int i = 0; i < z; ++i, fyx += w0 ) for ( int j = 0; j < z; ++j ) *fmi++ = fyx[j]; *fz++ = (z & 1) ? *Select( *fm, fm.At( z2 ), n2 ) : P::FloatToSample( 0.5*(double( *Select( *fm, fm.At( z2 ), n2 ) ) + double( *Select( *fm, fm.At( z2 ), n2-1 ) )) ); } break; case IntegerDownsampleMode::Maximum: { *fz = P::MinSampleValue(); for ( int i = 0; i < z; ++i, fyx += w0 ) for ( int j = 0; j < z; ++j ) if ( fyx[j] > *fz ) *fz = fyx[j]; ++fz; } break; case IntegerDownsampleMode::Minimum: { *fz = P::MaxSampleValue(); for ( int i = 0; i < z; ++i, fyx += w0 ) for ( int j = 0; j < z; ++j ) if ( fyx[j] < *fz ) *fz = fyx[j]; ++fz; } break; } } } } image.Allocator().Deallocate( f0[c] ); f0[c] = f; f = 0; } image.ImportData( f0, width, height, n, cs0 ).Status() = status; } catch ( ... ) { if ( f != 0 ) image.Allocator().Deallocate( f ); if ( f0 != 0 ) { for ( int c = 0; c < n; ++c ) if ( f0[c] != 0 ) image.Allocator().Deallocate( f0[c] ); image.Allocator().Deallocate( f0 ); } image.FreeData(); throw; } }
template <class P> static void Apply( GenericImage<P>& image, const Translation& translation ) { if ( translation.Delta() == 0.0 ) return; int width = image.Width(); int height = image.Height(); if ( width == 0 || height == 0 ) return; image.EnsureUnique(); typename P::sample* f = nullptr; typename P::sample** f0 = nullptr; int n = image.NumberOfChannels(); typename GenericImage<P>::color_space cs0 = image.ColorSpace(); StatusMonitor status = image.Status(); int numberOfThreads = translation.IsParallelProcessingEnabled() ? Min( translation.MaxProcessors(), pcl::Thread::NumberOfThreads( height, 1 ) ) : 1; int rowsPerThread = height/numberOfThreads; try { size_type N = size_type( width )*size_type( height ); if ( status.IsInitializationEnabled() ) status.Initialize( String().Format( "Translate dx=%.3lf, dy=%.3lf, ", translation.Delta().x, translation.Delta().y ) + translation.Interpolation().Description(), size_type( n )*N ); f0 = image.ReleaseData(); for ( int c = 0; c < n; ++c ) { ThreadData<P> data( translation.Delta(), width, height, status, N ); data.f = f = image.Allocator().AllocatePixels( size_type( width )*size_type( height ) ); data.fillValue = (c < translation.FillValues().Length()) ? P::ToSample( translation.FillValues()[c] ) : P::MinSampleValue(); ReferenceArray<Thread<P> > threads; for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j ) threads.Add( new Thread<P>( data, translation.Interpolation().NewInterpolator<P>( f0[c], width, height ), i*rowsPerThread, (j < numberOfThreads) ? j*rowsPerThread : height ) ); AbstractImage::RunThreads( threads, data ); threads.Destroy(); image.Allocator().Deallocate( f0[c] ); f0[c] = f; f = nullptr; status = data.status; } image.ImportData( f0, width, height, n, cs0 ).Status() = status; } catch ( ... ) { if ( f != nullptr ) image.Allocator().Deallocate( f ); if ( f0 != nullptr ) { for ( int c = 0; c < n; ++c ) if ( f0[c] != nullptr ) image.Allocator().Deallocate( f0[c] ); image.Allocator().Deallocate( f0 ); } image.FreeData(); throw; } }
template <class P1, class P2> static void Convolve_2( const GenericImage<P1>& image, GenericImage<P2>& sharp, pcl_enum interpolation, float dR, float angleD, DPoint center, int c ) { PixelInterpolation* P = 0; PixelInterpolation::Interpolator<P1>* interpolator = 0; try { switch ( interpolation ) { case LSInterpolation::Bilinear: P = new BilinearPixelInterpolation(); break; default: case LSInterpolation::Bicubic: P = new BicubicPixelInterpolation(); break; case LSInterpolation::BicubicSpline: P = new BicubicSplinePixelInterpolation(); break; case LSInterpolation::BicubicBSpline: P = new BicubicBSplinePixelInterpolation(); break; } interpolator = P->NewInterpolator<P1>( image[c], image.Width(), image.Height() ); int w = image.Width() - 1; int h = image.Height() - 1; double fimg, fsharp; StatusMonitor monitor; monitor.Initialize( "<end><cbr>High-pass Larson-Sekanina filter", image.NumberOfPixels() ); sharp.Zero(); float dAlpha = Rad( angleD ); for ( int x = 0; x < image.Width(); ++x ) for ( int y = 0; y < image.Height(); ++y, ++monitor ) { // Get the central value P1::FromSample( fimg, image.Pixel( x, y, c ) ); fsharp = fimg+fimg; double r, theta; ToPolar( x, y, center, r, theta); DPoint delta; // Positive differential ToCartesian( r-dR, theta+dAlpha, center, delta ); if ( delta.x < 0 ) delta.x = Abs( delta.x ); else if ( delta.x > w ) delta.x = 2*w - delta.x; if ( delta.y < 0 ) delta.y = Abs( delta.y ); else if ( delta.y > h ) delta.y = 2*h - delta.y; P1::FromSample( fimg, (*interpolator)( delta ) ); fsharp -= fimg; //Negative differential ToCartesian( r-dR, theta-dAlpha, center, delta ); if ( delta.x < 0 ) delta.x = Abs( delta.x ); else if ( delta.x > w ) delta.x = 2*w - delta.x; if ( delta.y < 0 ) delta.y = Abs( delta.y ); else if ( delta.y > h ) delta.y = 2*h - delta.y; P1::FromSample( fimg, (*interpolator)( delta ) ); fsharp -= fimg; sharp.Pixel( x, y ) = P2::ToSample( fsharp ); } delete interpolator; delete P; } catch ( ... ) { if ( interpolator != 0 ) delete interpolator; if ( P != 0 ) delete P; throw; } }
template <class P> static void Apply( GenericImage<P>& image, const Resample& resample ) { int width = image.Width(); int w0 = width; int height = image.Height(); int h0 = height; resample.GetNewSizes( width, height ); if ( width == w0 && height == h0 ) return; if ( width <= 0 || height <= 0 ) { image.FreeData(); return; } image.EnsureUnique(); typename P::sample* f = nullptr; typename P::sample** f0 = nullptr; int n = image.NumberOfChannels(); typename GenericImage<P>::color_space cs0 = image.ColorSpace(); double rx = double( w0 )/width; double ry = double( h0 )/height; StatusMonitor status = image.Status(); int numberOfThreads = resample.IsParallelProcessingEnabled() ? Min( resample.MaxProcessors(), pcl::Thread::NumberOfThreads( height, 1 ) ) : 1; int rowsPerThread = height/numberOfThreads; try { size_type N = size_type( width )*size_type( height ); if ( status.IsInitializationEnabled() ) status.Initialize( String().Format( "Resampling to %dx%d px, ", width, height ) + resample.Interpolation().Description(), size_type( n )*N ); f0 = image.ReleaseData(); for ( int c = 0; c < n; ++c ) { ThreadData<P> data( rx, ry, width, status, N ); data.f = f = image.Allocator().AllocatePixels( width, height ); ReferenceArray<Thread<P> > threads; for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j ) threads.Add( new Thread<P>( data, resample.Interpolation().NewInterpolator<P>( f0[c], w0, h0 ), i*rowsPerThread, (j < numberOfThreads) ? j*rowsPerThread : height ) ); AbstractImage::RunThreads( threads, data ); threads.Destroy(); image.Allocator().Deallocate( f0[c] ); f0[c] = f; f = nullptr; status = data.status; } image.ImportData( f0, width, height, n, cs0 ).Status() = status; } catch ( ... ) { if ( f != nullptr ) image.Allocator().Deallocate( f ); if ( f0 != nullptr ) { for ( int c = 0; c < n; ++c ) if ( f0[c] != nullptr ) image.Allocator().Deallocate( f0[c] ); image.Allocator().Deallocate( f0 ); } image.FreeData(); throw; } }