Example #1
0
File: sweep.C Project: matk86/Block
void SweepTwopdm::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int state)
{
  //mcheck("at the start of block and decimate");
  // figure out if we are going forward or backwards
  dmrginp.guessgenT -> start();
  bool forward = (system.get_sites() [0] == 0);
  SpinBlock systemDot;
  SpinBlock envDot;
  int systemDotStart, systemDotEnd;
  int systemDotSize = sweepParams.get_sys_add() - 1;
  if (forward)
  {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
  }
  else
  {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
  }
  vector<int> spindotsites(2); 
  spindotsites[0] = systemDotStart;
  spindotsites[1] = systemDotEnd;
  //if (useSlater) {
  systemDot = SpinBlock(systemDotStart, systemDotEnd, system.get_integralIndex(), true);
    //SpinBlock::store(true, systemDot.get_sites(), systemDot);
    //}
    //else
    //SpinBlock::restore(true, spindotsites, systemDot);
  SpinBlock environment, environmentDot, newEnvironment;

  int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;

  const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();

  system.addAdditionalCompOps();
  InitBlocks::InitNewSystemBlock(system, systemDot, newSystem, sweepParams.current_root(), sweepParams.current_root(), sweepParams.get_sys_add(), dmrginp.direct(), system.get_integralIndex(), DISTRIBUTED_STORAGE, true, true);
  
  InitBlocks::InitNewEnvironmentBlock(environment, systemDot, newEnvironment, system, systemDot, sweepParams.current_root(), sweepParams.current_root(), 
				      sweepParams.get_sys_add(), sweepParams.get_env_add(), forward, dmrginp.direct(),
				      sweepParams.get_onedot(), nexact, useSlater, system.get_integralIndex(), true, true, true);
  SpinBlock big;
  newSystem.set_loopblock(true);
  system.set_loopblock(false);
  newEnvironment.set_loopblock(false);
  InitBlocks::InitBigBlock(newSystem, newEnvironment, big); 

  const int nroots = dmrginp.nroots();
  std::vector<Wavefunction> solution(1);

  DiagonalMatrix e;
  GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.get_guesstype(), true, state, true, 0.0); 

#ifndef SERIAL
  mpi::communicator world;
  mpi::broadcast(world, solution, 0);
#endif

  std::vector<Matrix> rotateMatrix;
  DensityMatrix tracedMatrix(newSystem.get_stateInfo());
  tracedMatrix.allocate(newSystem.get_stateInfo());
  tracedMatrix.makedensitymatrix(solution, big, std::vector<double>(1,1.0), 0.0, 0.0, false);
  rotateMatrix.clear();
  if (!mpigetrank())
    double error = makeRotateMatrix(tracedMatrix, rotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
  

#ifndef SERIAL
  mpi::broadcast(world,rotateMatrix,0);
#endif
#ifdef SERIAL
  const int numprocs = 1;
#endif
#ifndef SERIAL
  const int numprocs = world.size();
#endif
  if (sweepParams.get_block_iter() == 0)
    compute_twopdm_initial(solution, system, systemDot, newSystem, newEnvironment, big, numprocs, state);

  compute_twopdm_sweep(solution, system, systemDot, newSystem, newEnvironment, big, numprocs, state);

  if (sweepParams.get_block_iter()  == sweepParams.get_n_iters() - 1)
    compute_twopdm_final(solution, system, systemDot, newSystem, newEnvironment, big, numprocs, state);

  SaveRotationMatrix (newSystem.get_sites(), rotateMatrix, state);

  //for(int i=0;i<dmrginp.nroots();++i)
  solution[0].SaveWavefunctionInfo (big.get_stateInfo(), big.get_leftBlock()->get_sites(), state);

  newSystem.transform_operators(rotateMatrix);

}
Example #2
0
//Canonicalize wavefunction, takes the wavefunction and does a sweep to update all the roation matrices so that we get a consistent wavefunction along the whole sweep
void SpinAdapted::Sweep::CanonicalizeWavefunction(SweepParams &sweepParams, const bool &forward, int currentstate)
{

  sweepParams.set_sweep_parameters();
  sweepParams.set_block_iter() = 0;

  std::vector<int> sites;
  int new_site, wave_site;
  if (forward) {
    pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in forwards direction"<<endl;
    new_site = 0;
  }
  else {
    pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in backwards direction" << endl;
    new_site = dmrginp.spinAdapted() ? dmrginp.last_site()-1 : dmrginp.last_site()/2-1;
  }
  pout << "\t\t\t ============================================================================ " << 
    endl;

  if (dmrginp.spinAdapted())
    sites.push_back(new_site);
  else {
    sites.push_back(2*new_site);
    sites.push_back(2*new_site+1);
    std::sort(sites.begin(), sites.end());
  }
    
    
  //only need statinfos
  StateInfo stateInfo1; makeStateInfo(stateInfo1, new_site);
  
  for (; sweepParams.get_block_iter() < sweepParams.get_n_iters(); ) {
      
    pout << "\t\t\t Block Iteration :: " << sweepParams.get_block_iter() << endl;
    pout << "\t\t\t ----------------------------" << endl;
    
    if (forward) {
      new_site++;
      wave_site = new_site+1;
      pout << "\t\t\t Current direction is :: Forwards " << endl;
    }
    else {
      new_site--;
      wave_site = new_site-1;
      pout << "\t\t\t Current direction is :: Backwards " << endl;
    }
    std::vector<int> complementarySites, spindotsites(1, new_site), oldsites = sites, oldcomplement;

    if (dmrginp.spinAdapted())
      sites.push_back(new_site);
    else {
      sites.push_back(2*new_site);
      sites.push_back(2*new_site+1);
      std::sort(sites.begin(), sites.end());
    }

    getComplementarySites(sites, complementarySites);
    getComplementarySites(oldsites, oldcomplement);
    
    StateInfo siteState, newState1, bigstate, envstate; 
    makeStateInfo(siteState, new_site);
    TensorProduct(stateInfo1, siteState, newState1, NO_PARTICLE_SPIN_NUMBER_CONSTRAINT);
    newState1.CollectQuanta();

    Wavefunction w; w.set_deltaQuantum() = dmrginp.effective_molecule_quantum_vec();
    w.set_onedot(true);

    if (!dmrginp.spinAdapted()) {
      std::vector<int> spinSites(complementarySites.size()/2, 0);
      for (int s=0; s<spinSites.size(); s++)
	spinSites[s] = complementarySites[2*s]/2;
      StateInfo::restore(!forward, spinSites, envstate, currentstate);
    }
    else
      StateInfo::restore(!forward, complementarySites, envstate, currentstate);

    TensorProduct(newState1, envstate, bigstate, PARTICLE_SPIN_NUMBER_CONSTRAINT);

    if (sweepParams.get_block_iter() == 0) 
      GuessWave::transpose_previous_wavefunction(w, bigstate, complementarySites, spindotsites, currentstate, true, true);
    else 
      GuessWave::transform_previous_wavefunction(w, bigstate, oldsites, oldcomplement, currentstate, true, true);
    
    w.SaveWavefunctionInfo(bigstate, sites, currentstate);

      
    //make the newstate
    std::vector<Matrix> rotation1; 
      
      
    DensityMatrix tracedMatrix;
    tracedMatrix.allocate(*bigstate.leftStateInfo);
    operatorfunctions::MultiplyProduct(w, Transpose(const_cast<Wavefunction&> (w)), tracedMatrix, 1.0);
    int largeNumber = 1000000;
    if (!mpigetrank())
      double error = makeRotateMatrix(tracedMatrix, rotation1, largeNumber, sweepParams.get_keep_qstates());
    SaveRotationMatrix (sites, rotation1, currentstate);
    
    StateInfo renormState1;
    SpinAdapted::StateInfo::transform_state(rotation1, newState1, renormState1);
    StateInfo::store(forward, sites, renormState1, currentstate);
    stateInfo1 = renormState1;
    ++sweepParams.set_block_iter();
  }
  
}
Example #3
0
File: type1.C Project: matk86/Block
void SpinAdapted::mps_nevpt::type1::Startup(const SweepParams &sweepParams, const bool &forward, perturber& pb, int baseState) {

#ifndef SERIAL
  mpi::communicator world;
#endif
  assert(forward);
  SpinBlock system;
  system.nonactive_orb() =pb.orb();
  bool restart=false, warmUp = false;
  int forward_starting_size=1, backward_starting_size=0, restartSize =0;
  InitBlocks::InitStartingBlock(system, forward, pb.wavenumber(), baseState, forward_starting_size, backward_starting_size, restartSize, restart, warmUp, 0,pb.braquanta, pb.ketquanta); 

  SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --

  for (int i=0; i<mps_nevpt::sweepIters; i++) {
    SpinBlock newSystem;
    SpinBlock dotSystem(i+1,i+1,pb.orb(),false);

    system.addAdditionalCompOps();
    //newSystem.default_op_components(true, system, dotSystem, true, true, false);
    newSystem.perturb_op_components(false, system, dotSystem, pb);
    newSystem.setstoragetype(DISTRIBUTED_STORAGE);
    newSystem.BuildSumBlock(LessThanQ, system, dotSystem, pb.braquanta, pb.ketquanta);
    newSystem.printOperatorSummary();
    //SpinBlock Environment, big;
    //SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment, baseState, baseState);
    //TODO
    //SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment,sweepParams.current_root(),sweepParams.current_root());

    //big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, newSystem, Environment, pb.braquanta, pb.ketquanta);

    //StateInfo envStateInfo;
    StateInfo ketStateInfo;
    StateInfo braStateInfo;
    StateInfo halfbraStateInfo;// It has the same left and right StateInfo as braStateInfo. However, its total quanta is pb.ketquanta.
    // It is used to project solution into to braStateInfo.

    std::vector<Wavefunction> solution; solution.resize(1);
    std::vector<Wavefunction> outputState; outputState.resize(1);
    std::vector<Wavefunction> solutionprojector; solutionprojector.resize(1);
    solution[0].LoadWavefunctionInfo(ketStateInfo, newSystem.get_sites(), baseState);
    #ifndef SERIAL
      broadcast(world, ketStateInfo, 0);
      broadcast(world, solution, 0);
    #endif
    outputState[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta);
    outputState[0].set_onedot(solution[0].get_onedot());
    outputState[0].Clear();
    solutionprojector[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta);
    solutionprojector[0].set_onedot(solution[0].get_onedot());
    solutionprojector[0].Clear();
    //TensorProduct (newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
    //TODO
    //TensorProduct do not support const StateInfo&
    TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
    TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta[0], EqualQ, halfbraStateInfo);

    //StateInfo::restore(forward, environmentsites, envStateInfo, baseState);

    //DiagonalMatrix e;
    //if(i == 0)
    //  GuessWave::guess_wavefunctions(solution, e, big, TRANSPOSE, true, true, 0.0, baseState); 
    //else
    //  GuessWave::guess_wavefunctions(solution, e, big, TRANSFORM, true, true, 0.0, baseState); 


    //SpinAdapted::operatorfunctions::Product(&newSystem, ccd, solution[0], &ketStateInfo, stateb.getw(), temp, SpinQuantum(0, SpinSpace(0), IrrepSpace(0)), true, 1.0);

    

    boost::shared_ptr<SparseMatrix> O;
    if (pb.type() == TwoPerturbType::Va)
      O = newSystem.get_op_array(CDD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
    if (pb.type() == TwoPerturbType::Vi)
      O = newSystem.get_op_array(CCD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
    boost::shared_ptr<SparseMatrix> overlap = newSystem.get_op_array(OVERLAP).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
    SpinAdapted::operatorfunctions::TensorMultiply(*O, &braStateInfo, &ketStateInfo , solution[0], outputState[0], pb.delta, true, 1.0);
    SpinAdapted::operatorfunctions::TensorMultiply(*overlap, &halfbraStateInfo, &ketStateInfo , solution[0], solutionprojector[0], overlap->get_deltaQuantum(0), true, 1.0);
    DensityMatrix bratracedMatrix(newSystem.get_braStateInfo());
    bratracedMatrix.allocate(newSystem.get_braStateInfo());
    double norm = DotProduct(outputState[0], outputState[0]);
    if(norm > NUMERICAL_ZERO)
      SpinAdapted::operatorfunctions::MultiplyProduct(outputState[0], Transpose(const_cast<Wavefunction&> (outputState[0])), bratracedMatrix, 0.5/norm);
    SpinAdapted::operatorfunctions::MultiplyProduct(solutionprojector[0], Transpose(const_cast<Wavefunction&> (solutionprojector[0])), bratracedMatrix, 0.5);
    std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
    LoadRotationMatrix (newSystem.get_sites(), ketrotateMatrix, baseState);
    double error;
    if (!mpigetrank())
      error = makeRotateMatrix(bratracedMatrix, brarotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
    #ifndef SERIAL
      broadcast(world, ketrotateMatrix, 0);
      broadcast(world, brarotateMatrix, 0);
    #endif

    SaveRotationMatrix (newSystem.get_sites(), brarotateMatrix, pb.wavenumber());
    newSystem.transform_operators(brarotateMatrix,ketrotateMatrix);
    SpinBlock::store (forward, newSystem.get_sites(), newSystem, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
    system=newSystem;
  }
  //TODO
  //It seems that there is no need to do Last Step of Sweep.
}
Example #4
0
File: type1.C Project: matk86/Block
void SpinAdapted::mps_nevpt::type1::BlockDecimateAndCompress (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, perturber& pb, int baseState)
{
  int sweepiter = sweepParams.get_sweep_iter();
  if (dmrginp.outputlevel() > 0) {
    mcheck("at the start of block and decimate");
    pout << "\t\t\t dot with system "<<dot_with_sys<<endl;
    pout <<endl<< "\t\t\t Performing Blocking"<<endl;
  }
  // figure out if we are going forward or backwards
  dmrginp.guessgenT -> start();
  bool forward = (system.get_sites() [0] == 0);
  SpinBlock systemDot;
  SpinBlock environment, environmentDot, newEnvironment;
  SpinBlock big;
  environment.nonactive_orb() = pb.orb();
  newEnvironment.nonactive_orb() = pb.orb();
  int systemDotStart, systemDotEnd;
  int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
  int systemDotSize = sweepParams.get_sys_add() - 1;
  int environmentDotSize = sweepParams.get_env_add() -1;
  if (forward)
  {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
    environmentDotStart = systemDotEnd + 1;
    environmentDotEnd = environmentDotStart + environmentDotSize;
  }
  else
  {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
    environmentDotStart = systemDotEnd - 1;
    environmentDotEnd = environmentDotStart - environmentDotSize;
  }
  systemDot = SpinBlock(systemDotStart, systemDotEnd, pb.orb());
  environmentDot = SpinBlock(environmentDotStart, environmentDotEnd, pb.orb());

  Sweep::makeSystemEnvironmentBigBlocks(system, systemDot, newSystem, environment, environmentDot, newEnvironment, big, sweepParams, dot_with_sys, useSlater, system.get_integralIndex(), pb.wavenumber(), baseState,pb.braquanta,pb.ketquanta);


  //analyse_operator_distribution(big);
  dmrginp.guessgenT -> stop();
  dmrginp.multiplierT -> start();
  std::vector<Matrix> rotatematrix;

  if (dmrginp.outputlevel() > 0)
    mcheck(""); 
  if (dmrginp.outputlevel() > 0) {
    if (!dot_with_sys && sweepParams.get_onedot())  { pout << "\t\t\t System  Block"<<system;    }
    else pout << "\t\t\t System  Block"<<newSystem;
    pout << "\t\t\t Environment Block"<<newEnvironment<<endl;
    pout << "\t\t\t Solving wavefunction "<<endl;
  }

  std::vector<Wavefunction> solution; solution.resize(1);
  std::vector<Wavefunction> outputState; outputState.resize(1);

  DiagonalMatrix e;


  //read the 0th wavefunction which we keep on the ket side because by default the ket stateinfo is used to initialize wavefunction
  //also when you use spinblock operators to multiply a state, it does so from the ket side i.e.  H|ket>
  //GuessWave::guess_wavefunctions(solution, e, big, sweepParams.set_guesstype(), sweepParams.get_onedot(), dot_with_sys, 0.0, baseState); 
  GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.set_guesstype(), sweepParams.get_onedot(), baseState, dot_with_sys, 0.0); 

#ifndef SERIAL
  mpi::communicator world;
  broadcast(world, solution, 0);
#endif
  
  outputState[0].AllowQuantaFor(big.get_leftBlock()->get_braStateInfo(), big.get_rightBlock()->get_braStateInfo(),pb.braquanta);
  outputState[0].set_onedot(sweepParams.get_onedot());
  outputState[0].Clear();
  if (pb.type() == TwoPerturbType::Va)
    big.multiplyCDD_sum(solution[0],&(outputState[0]),MAX_THRD);
  if (pb.type() == TwoPerturbType::Vi)
    big.multiplyCCD_sum(solution[0],&(outputState[0]),MAX_THRD);

  //davidson_f(solution[0], outputState[0]);
  SpinBlock newbig;

  if (sweepParams.get_onedot() && !dot_with_sys)
  {
    InitBlocks::InitNewSystemBlock(system, systemDot, newSystem, baseState, pb.wavenumber(), systemDot.size(), dmrginp.direct(), system.get_integralIndex(), DISTRIBUTED_STORAGE, false, true,NO_PARTICLE_SPIN_NUMBER_CONSTRAINT,pb.braquanta,pb.ketquanta);
    InitBlocks::InitBigBlock(newSystem, environment, newbig,pb.braquanta,pb.ketquanta); 

    Wavefunction tempwave = outputState[0];
    GuessWave::onedot_shufflesysdot(big.get_braStateInfo(), newbig.get_braStateInfo(), outputState[0], tempwave);  
    outputState[0] = tempwave;

    tempwave = solution[0];
    GuessWave::onedot_shufflesysdot(big.get_ketStateInfo(), newbig.get_ketStateInfo(), solution[0], tempwave);  
    solution[0] = tempwave;

    big.get_rightBlock()->clear();
    big.clear();
  }
  else
    newbig = big;
  
  DensityMatrix bratracedMatrix(newSystem.get_braStateInfo());
  bratracedMatrix.allocate(newSystem.get_braStateInfo());

  //bratracedMatrix.makedensitymatrix(outputState, newbig, dmrginp.weights(sweepiter), 0.0, 0.0, true);
  bratracedMatrix.makedensitymatrix(outputState, newbig, std::vector<double>(1,1.0), 0.0, 0.0, true);
  if (sweepParams.get_noise() > NUMERICAL_ZERO) {
    pout << "adding noise  "<<trace(bratracedMatrix)<<"  "<<sweepiter<<"  "<<dmrginp.weights(sweepiter)[0]<<endl;
    bratracedMatrix.add_onedot_noise_forCompression(solution[0], newbig, sweepParams.get_noise()*max(1.0,trace(bratracedMatrix)));
    if (trace(bratracedMatrix) <1e-14) 
      bratracedMatrix.SymmetricRandomise();
      
    pout << "after noise  "<<trace(bratracedMatrix)<<"  "<<sweepParams.get_noise()<<endl;
  }
  environment.clear();
  newEnvironment.clear();


  std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
  LoadRotationMatrix (newSystem.get_sites(), ketrotateMatrix, baseState);

  double braerror;
  if (!mpigetrank()) {
    braerror = makeRotateMatrix(bratracedMatrix, brarotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
  }

#ifndef SERIAL
  broadcast(world, ketrotateMatrix, 0);
  broadcast(world, brarotateMatrix, 0);
#endif

  if (dmrginp.outputlevel() > 0)
    pout << "\t\t\t Total bra discarded weight "<<braerror<<endl<<endl;

  sweepParams.set_lowest_error() = braerror;

  SaveRotationMatrix (newbig.get_leftBlock()->get_sites(), brarotateMatrix, pb.wavenumber());
  //FIXME
  //It is neccessary for twodot algorithm to save baseState wavefuntion.
  //I do not know why. 
  solution[0].SaveWavefunctionInfo (newbig.get_ketStateInfo(), newbig.get_leftBlock()->get_sites(), baseState);
  outputState[0].SaveWavefunctionInfo (newbig.get_braStateInfo(), newbig.get_leftBlock()->get_sites(), pb.wavenumber());
  //TODO 
  //Why do I need this?
  //They should have been consistent.
//  solution[0].SaveWavefunctionInfo (newbig.get_ketStateInfo(), newbig.get_leftBlock()->get_sites(), baseState);
//  SaveRotationMatrix (newbig.get_leftBlock()->get_sites(), ketrotateMatrix, baseState);

  if (dmrginp.outputlevel() > 0)
    pout <<"\t\t\t Performing Renormalization "<<endl;
  newSystem.transform_operators(brarotateMatrix, ketrotateMatrix);

  if (dmrginp.outputlevel() > 0)
    mcheck("after rotation and transformation of block");

  if (dmrginp.outputlevel() > 0){
    pout << *dmrginp.guessgenT<<" "<<*dmrginp.multiplierT<<" "<<*dmrginp.operrotT<< "  "<<globaltimer.totalwalltime()<<" timer "<<endl;
    pout << *dmrginp.makeopsT<<" makeops "<<endl;
    pout << *dmrginp.datatransfer<<" datatransfer "<<endl;
    pout <<"oneindexopmult   twoindexopmult   Hc  couplingcoeff"<<endl;  
    pout << *dmrginp.oneelecT<<" "<<*dmrginp.twoelecT<<" "<<*dmrginp.hmultiply<<" "<<*dmrginp.couplingcoeff<<" hmult"<<endl;
    pout << *dmrginp.buildsumblock<<" "<<*dmrginp.buildblockops<<" build block"<<endl;
    pout << "addnoise  S_0_opxop  S_1_opxop   S_2_opxop"<<endl;
    pout << *dmrginp.addnoise<<" "<<*dmrginp.s0time<<" "<<*dmrginp.s1time<<" "<<*dmrginp.s2time<<endl;
  }

}
Example #5
0
File: sweep.C Project: matk86/Block
void SweepOnepdm::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int state)
{
  //mcheck("at the start of block and decimate");
  // figure out if we are going forward or backwards
  dmrginp.guessgenT -> start();
  bool forward = (system.get_sites() [0] == 0);
  SpinBlock systemDot;
  SpinBlock envDot;
  int systemDotStart, systemDotEnd;
  int systemDotSize = sweepParams.get_sys_add() - 1;

  if (forward)
  {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
  }
  else
  {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
  }
  vector<int> spindotsites(2); 
  spindotsites[0] = systemDotStart;
  spindotsites[1] = systemDotEnd;
  systemDot = SpinBlock(systemDotStart, systemDotEnd, system.get_integralIndex(), true);

  SpinBlock environment, environmentDot, newEnvironment;
  int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;

  const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();
  
  newSystem.set_integralIndex() = system.get_integralIndex();
  newSystem.default_op_components(dmrginp.direct(), system, systemDot, false, false, true);
  newSystem.erase(CRE_CRE_DESCOMP);
  newSystem.erase(CRE_CRE);
  newSystem.erase(HAM);
  newSystem.setstoragetype(DISTRIBUTED_STORAGE_FOR_ONEPDM);
  newSystem.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, system, systemDot);
  if (dmrginp.outputlevel() > 0) {
    pout << "\t\t\t NewSystem block " << endl << newSystem << endl;
    newSystem.printOperatorSummary();
  }

  
  InitBlocks::InitNewEnvironmentBlock(environment, systemDot, newEnvironment, system, systemDot, sweepParams.current_root(), sweepParams.current_root(),
				      sweepParams.get_sys_add(), sweepParams.get_env_add(), forward, dmrginp.direct(),
				      sweepParams.get_onedot(), nexact, useSlater, system.get_integralIndex(), false, false, true);
  SpinBlock big;
  newSystem.set_loopblock(true);
  system.set_loopblock(false);
  newEnvironment.set_loopblock(false);
  InitBlocks::InitBigBlock(newSystem, newEnvironment, big); 

  const int nroots = dmrginp.nroots();
  std::vector<Wavefunction> solution(1);

  DiagonalMatrix e;
  GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.get_guesstype(), true, state, true, 0.0); 

#ifndef SERIAL
  mpi::communicator world;
  mpi::broadcast(world, solution, 0);
#endif

  std::vector<Matrix> rotateMatrix;
  DensityMatrix tracedMatrix(newSystem.get_stateInfo());
  tracedMatrix.allocate(newSystem.get_stateInfo());
  tracedMatrix.makedensitymatrix(solution, big, std::vector<double>(1,1.0), 0.0, 0.0, false);
  rotateMatrix.clear();
  if (!mpigetrank())
    double error = makeRotateMatrix(tracedMatrix, rotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
  

#ifndef SERIAL
  mpi::broadcast(world,rotateMatrix,0);
#endif
#ifdef SERIAL
  const int numprocs = 1;
#endif
#ifndef SERIAL
  const int numprocs = world.size();
#endif

  Matrix onepdm;
  load_onepdm_binary(onepdm, state ,state);
  Matrix pairmat;
  if (dmrginp.hamiltonian() == BCS)
    load_pairmat_binary(pairmat, state ,state);

  if (sweepParams.get_block_iter() == 0) {
    //this is inface a combination of  2_0_0, 1_1_0 and 0_2_0
    p2out << "\t\t\t compute 2_0_0"<<endl;
    compute_one_pdm_2_0_0(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)
      compute_pair_2_0_0(solution[0], solution[0], big, pairmat);
    p2out << "\t\t\t compute 1_1_0"<<endl;
    compute_one_pdm_1_1_0(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)    
      compute_pair_1_1_0(solution[0], solution[0], big, pairmat);
  }

  p2out << "\t\t\t compute 0_2_0"<<endl;
  compute_one_pdm_0_2_0(solution[0], solution[0], big, onepdm);
  if (dmrginp.hamiltonian() == BCS)  
    compute_pair_0_2_0(solution[0], solution[0], big, pairmat);  
  p2out << "\t\t\t compute 1_1"<<endl;
  compute_one_pdm_1_1(solution[0], solution[0], big, onepdm);
  if (dmrginp.hamiltonian() == BCS)  
    compute_pair_1_1(solution[0], solution[0], big, pairmat);

  if (sweepParams.get_block_iter()  == sweepParams.get_n_iters() - 1) {
    p2out << "\t\t\t compute 0_2"<<endl;
    compute_one_pdm_0_2(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)    
      compute_pair_0_2(solution[0], solution[0], big, pairmat);    
  }

  accumulate_onepdm(onepdm);
  save_onepdm_binary(onepdm, state, state);

  if (dmrginp.hamiltonian() == BCS) {
    accumulate_onepdm(pairmat);
    save_pairmat_binary(pairmat, state, state);
  }

  SaveRotationMatrix (newSystem.get_sites(), rotateMatrix, state);

  solution[0].SaveWavefunctionInfo (big.get_stateInfo(), big.get_leftBlock()->get_sites(), state);

  newSystem.transform_operators(rotateMatrix);

}
Example #6
0
void SweepGenblock::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int state)
{
  if (dmrginp.outputlevel() > 0) 
    mcheck("at the start of block and decimate");
  // figure out if we are going forward or backwards
  pout << "\t\t\t Performing Blocking"<<endl;
  dmrginp.guessgenT -> start();
  bool forward = (system.get_sites() [0] == 0);
  SpinBlock systemDot;
  int systemDotStart, systemDotEnd;
  int systemDotSize = sweepParams.get_sys_add() - 1;
  if (forward)
  {
    systemDotStart = *system.get_sites().rbegin () + 1;
    systemDotEnd = systemDotStart + systemDotSize;
  }
  else
  {
    systemDotStart = system.get_sites() [0] - 1;
    systemDotEnd = systemDotStart - systemDotSize;
  }
  vector<int> spindotsites(2); 
  spindotsites[0] = systemDotStart;
  spindotsites[1] = systemDotEnd;
  systemDot = SpinBlock(systemDotStart, systemDotEnd);

  const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();

  system.addAdditionalCompOps();
  InitBlocks::InitNewSystemBlock(system, systemDot, newSystem, sweepParams.get_sys_add(), dmrginp.direct(), DISTRIBUTED_STORAGE, dot_with_sys, true);


  pout << "\t\t\t System  Block"<<newSystem;
  if (dmrginp.outputlevel() > 0)
    newSystem.printOperatorSummary();

  std::vector<Matrix> rotateMatrix;


  if (!dmrginp.get_fullrestart()) {
    //this should be done when we actually have wavefunctions stored, otherwise not!!
    SpinBlock environment, environmentDot, newEnvironment;
    int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
    InitBlocks::InitNewEnvironmentBlock(environment, systemDot, newEnvironment, system, systemDot,
					sweepParams.get_sys_add(), sweepParams.get_env_add(), forward, dmrginp.direct(),
					sweepParams.get_onedot(), nexact, useSlater, true, true, true);
    SpinBlock big;
    InitBlocks::InitBigBlock(newSystem, newEnvironment, big); 
    DiagonalMatrix e;
    std::vector<Wavefunction> solution(1);
    
    GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.get_guesstype(), true, state, true, 0.0); 
    solution[0].SaveWavefunctionInfo (big.get_stateInfo(), big.get_leftBlock()->get_sites(), state);


    DensityMatrix tracedMatrix;
    tracedMatrix.allocate(newSystem.get_stateInfo());
    tracedMatrix.makedensitymatrix(solution, big, std::vector<double>(1, 1.0), 0.0, 0.0, false);
    rotateMatrix.clear();
    if (!mpigetrank())
      double error = newSystem.makeRotateMatrix(tracedMatrix, rotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
    
  }
  else
    LoadRotationMatrix (newSystem.get_sites(), rotateMatrix, state);

#ifndef SERIAL
  mpi::communicator world;
  broadcast(world, rotateMatrix, 0);
#endif

  if (!dmrginp.get_fullrestart())
    SaveRotationMatrix (newSystem.get_sites(), rotateMatrix, state);

  pout <<"\t\t\t Performing Renormalization "<<endl<<endl;
  newSystem.transform_operators(rotateMatrix);
  if (dmrginp.outputlevel() > 0) 
    mcheck("after rotation and transformation of block");
  if (dmrginp.outputlevel() > 0) 
    pout <<newSystem<<endl;
  if (dmrginp.outputlevel() > 0)
    newSystem.printOperatorSummary();
  //mcheck("After renorm transform");
}