secure_vector<uint8_t> rfc3394_keywrap(const secure_vector<uint8_t>& key, const SymmetricKey& kek) { BOTAN_ARG_CHECK(kek.size() == 16 || kek.size() == 24 || kek.size() == 32, "Invalid KEK length for NIST key wrap"); const std::string cipher_name = "AES-" + std::to_string(8*kek.size()); std::unique_ptr<BlockCipher> aes(BlockCipher::create_or_throw(cipher_name)); aes->set_key(kek); std::vector<uint8_t> wrapped = nist_key_wrap(key.data(), key.size(), *aes); return secure_vector<uint8_t>(wrapped.begin(), wrapped.end()); }
secure_vector<uint8_t> rfc3394_keyunwrap(const secure_vector<uint8_t>& key, const SymmetricKey& kek) { BOTAN_ARG_CHECK(kek.size() == 16 || kek.size() == 24 || kek.size() == 32, "Invalid KEK length for NIST key wrap"); BOTAN_ARG_CHECK(key.size() >= 16 && key.size() % 8 == 0, "Bad input key size for NIST key unwrap"); const std::string cipher_name = "AES-" + std::to_string(8*kek.size()); std::unique_ptr<BlockCipher> aes(BlockCipher::create_or_throw(cipher_name)); aes->set_key(kek); return nist_key_unwrap(key.data(), key.size(), *aes); }
secure_vector<uint8_t> rfc3394_keyunwrap(const secure_vector<uint8_t>& key, const SymmetricKey& kek) { if(key.size() < 16 || key.size() % 8 != 0) throw Invalid_Argument("Bad input key size for NIST key unwrap"); if(kek.size() != 16 && kek.size() != 24 && kek.size() != 32) throw Invalid_Argument("Bad KEK length " + std::to_string(kek.size()) + " for NIST key unwrap"); const std::string cipher_name = "AES-" + std::to_string(8*kek.size()); std::unique_ptr<BlockCipher> aes(BlockCipher::create_or_throw(cipher_name)); aes->set_key(kek); const size_t n = (key.size() - 8) / 8; secure_vector<uint8_t> R(n * 8); secure_vector<uint8_t> A(16); for(size_t i = 0; i != 8; ++i) A[i] = key[i]; copy_mem(R.data(), &key[8], key.size() - 8); for(size_t j = 0; j <= 5; ++j) { for(size_t i = n; i != 0; --i) { const uint32_t t = static_cast<uint32_t>((5 - j) * n + i); uint8_t t_buf[4] = { 0 }; store_be(t, t_buf); xor_buf(&A[4], t_buf, 4); copy_mem(&A[8], &R[8*(i-1)], 8); aes->decrypt(A.data()); copy_mem(&R[8*(i-1)], &A[8], 8); } } if(load_be<uint64_t>(A.data(), 0) != 0xA6A6A6A6A6A6A6A6) throw Integrity_Failure("NIST key unwrap failed"); return R; }
secure_vector<uint8_t> rfc3394_keywrap(const secure_vector<uint8_t>& key, const SymmetricKey& kek) { if(key.size() % 8 != 0) throw Invalid_Argument("Bad input key size for NIST key wrap"); if(kek.size() != 16 && kek.size() != 24 && kek.size() != 32) throw Invalid_Argument("Bad KEK length " + std::to_string(kek.size()) + " for NIST key wrap"); const std::string cipher_name = "AES-" + std::to_string(8*kek.size()); std::unique_ptr<BlockCipher> aes(BlockCipher::create_or_throw(cipher_name)); aes->set_key(kek); const size_t n = key.size() / 8; secure_vector<uint8_t> R((n + 1) * 8); secure_vector<uint8_t> A(16); for(size_t i = 0; i != 8; ++i) A[i] = 0xA6; copy_mem(&R[8], key.data(), key.size()); for(size_t j = 0; j <= 5; ++j) { for(size_t i = 1; i <= n; ++i) { const uint32_t t = static_cast<uint32_t>((n * j) + i); copy_mem(&A[8], &R[8*i], 8); aes->encrypt(A.data()); copy_mem(&R[8*i], &A[8], 8); uint8_t t_buf[4] = { 0 }; store_be(t, t_buf); xor_buf(&A[4], t_buf, 4); } } copy_mem(R.data(), A.data(), 8); return R; }