void BinaryEdit::addLibraryPrereq(std::string libname) { Symtab *symObj = mobj->parse_img()->getObject(); symObj->addLibraryPrereq(libname); }
bool BinaryEdit::writeFile(const std::string &newFileName) { // Step 1: changes. inst_printf(" writing %s ... \n", newFileName.c_str()); Symtab *symObj = mobj->parse_img()->getObject(); // link to the runtime library if tramp guards are currently enabled if ( !symObj->isStaticBinary() && !BPatch::bpatch->isTrampRecursive() ) { assert(!runtime_lib.empty()); symObj->addLibraryPrereq((*runtime_lib.begin())->fileName()); } if( symObj->isStaticBinary() && isDirty() ) { if( !doStaticBinarySpecialCases() ) { cerr << "Failed to write file " << newFileName << ": static binary handler failed" << endl; return false; } } delayRelocation_ = false; relocate(); vector<Region*> oldSegs; symObj->getAllRegions(oldSegs); //Write any traps to the mutatee if (canUseTraps()) { trapMapping.shouldBlockFlushes(false); trapMapping.flush(); } // Now, we need to copy in the memory of the new segments for (unsigned i = 0; i < oldSegs.size(); i++) { codeRange *segRange = NULL; if (!memoryTracker_->find(oldSegs[i]->getMemOffset(), segRange)) { #if 0 // Looks like BSS if (newSegs[i].name == ".bss") #endif continue; //inst_printf (" segment name: %s\n", newSegs[i].name.c_str()); //assert(0); } //inst_printf(" ==> memtracker: Copying to 0x%lx from 0x%lx\n", //newSegs[i].loadaddr, segRange->get_local_ptr()); memoryTracker* mt = dynamic_cast<memoryTracker*>(segRange); assert(mt); if(mt->dirty) { oldSegs[i]->setPtrToRawData(segRange->get_local_ptr(), oldSegs[i]->getMemSize()); } //newSegs[i].data = segRange->get_local_ptr(); } // Okay, that does it for the old stuff. // Now we need to get the new stuff. That's all the allocated memory. First, big // buffer to hold it. void *newSectionPtr = malloc(highWaterMark_ - lowWaterMark_); pdvector<codeRange *> writes; memoryTracker_->elements(writes); for (unsigned i = 0; i < writes.size(); i++) { assert(newSectionPtr); memoryTracker *tracker = dynamic_cast<memoryTracker *>(writes[i]); assert(tracker); //inst_printf("memory tracker: 0x%lx load=0x%lx size=%d %s\n", //tracker->get_local_ptr(), tracker->get_address(), tracker->get_size(), //tracker->alloced ? "[A]" : ""); if (!tracker->alloced) continue; // Copy whatever is in there into the big buffer, at the appropriate address assert(tracker->get_address() >= lowWaterMark_); Address offset = tracker->get_address() - lowWaterMark_; assert((offset + tracker->get_size()) < highWaterMark_); void *ptr = (void *)(offset + (Address)newSectionPtr); memcpy(ptr, tracker->get_local_ptr(), tracker->get_size()); } // Righto. Now, that includes the old binary - by design - // so skip it and see what we're talking about size-wise. Which should // be less than the highWaterMark, so we can double-check. // Next, make a new section. We have the following parameters: // Offset vaddr: we get this from Symtab - "first free address with sufficient space" // std::string name: without reflection, ".dyninstInst" // unsigned long flags: these are a SymtabAPI abstraction. We're going with text|data because // we might have both. // bool loadable: heck yeah... Region *newSec = NULL; symObj->findRegion(newSec, ".dyninstInst"); if (newSec) { // We're re-instrumenting - will fail for now fprintf(stderr, "ERROR: unable to open/reinstrument previously instrumented binary %s!\n", newFileName.c_str()); return false; } symObj->addRegion(lowWaterMark_, newSectionPtr, highWaterMark_ - lowWaterMark_, ".dyninstInst", Region::RT_TEXTDATA, true); fprintf(stderr,"Write lowWater : %lx, highWater : %lx\n",lowWaterMark_,highWaterMark_); symObj->findRegion(newSec, ".dyninstInst"); assert(newSec); if (mobj == getAOut()) { // Add dynamic symbol relocations for (unsigned i=0; i < dependentRelocations.size(); i++) { Address to = dependentRelocations[i]->getAddress(); Symbol *referring = dependentRelocations[i]->getReferring(); /* if (!symObj->isStaticBinary() && !symObj->hasReldyn() && !symObj->hasReladyn()) { Address addr = referring->getOffset(); bool result = writeDataSpace((void *) to, getAddressWidth(), &addr); assert(result); continue; } */ // Create the relocationEntry relocationEntry localRel(to, referring->getMangledName(), referring, relocationEntry::getGlobalRelType(getAddressWidth(), referring)); /* if( mobj->isSharedLib() ) { localRel.setRelAddr(to - mobj->imageOffset()); } */ symObj->addExternalSymbolReference(referring, newSec, localRel); /* newSymbol = new Symbol(referring->getName(), Symbol::ST_FUNCTION, Symbol::SL_GLOBAL, Symbol::SV_DEFAULT, (Address)0, symObj->getDefaultModule(), NULL, 8, true, false); symObj->addSymbol(newSymbol, referring); if (!symObj->hasReldyn() && symObj->hasReladyn()) { newSec->addRelocationEntry(to, newSymbol, relocationEntry::dynrel, Region::RT_RELA); } else { newSec->addRelocationEntry(to, newSymbol, relocationEntry::dynrel); } */ } } pdvector<Symbol *> newSyms; buildDyninstSymbols(newSyms, newSec, symObj->getOrCreateModule("dyninstInst", lowWaterMark_)); for (unsigned i = 0; i < newSyms.size(); i++) { symObj->addSymbol(newSyms[i]); } // Okay, now... // Hand textSection and newSection to DynSymtab. // First, textSection. // From the SymtabAPI documentation: we have the following methods we want to use. // Symtab::addSection(Offset vaddr, void *data, unsigned int dataSize, std::string name, // unsigned long flags, bool loadable) // Symtab::updateCode(void *buffer, unsigned size) // Symtab::emit(std::string filename) // First, text assert(symObj); // And now we generate the new binary //if (!symObj->emit(newFileName.c_str())) { if (!symObj->emit(newFileName.c_str())) { SymtabError lastError = Symtab::getLastSymtabError(); showErrorCallback(109, Symtab::printError(lastError)); return false; } return true; }